#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int cunghr_(integer *n, integer *ilo, integer *ihi, complex * a, integer *lda, complex *tau, complex *work, integer *lwork, integer *info) { /* -- LAPACK routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CUNGHR generates a complex unitary matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by CGEHRD: Q = H(ilo) H(ilo+1) . . . H(ihi-1). Arguments ========= N (input) INTEGER The order of the matrix Q. N >= 0. ILO (input) INTEGER IHI (input) INTEGER ILO and IHI must have the same values as in the previous call of CGEHRD. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. A (input/output) COMPLEX array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by CGEHRD. On exit, the N-by-N unitary matrix Q. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). TAU (input) COMPLEX array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGEHRD. WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= IHI-ILO. For optimum performance LWORK >= (IHI-ILO)*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== Test the input arguments Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; /* Local variables */ static integer i__, j, nb, nh, iinfo; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int cungqr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); static integer lwkopt; static logical lquery; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; nh = *ihi - *ilo; lquery = *lwork == -1; if (*n < 0) { *info = -1; } else if (*ilo < 1 || *ilo > max(1,*n)) { *info = -2; } else if (*ihi < min(*ilo,*n) || *ihi > *n) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*lwork < max(1,nh) && ! lquery) { *info = -8; } if (*info == 0) { nb = ilaenv_(&c__1, "CUNGQR", " ", &nh, &nh, &nh, &c_n1, (ftnlen)6, (ftnlen)1); lwkopt = max(1,nh) * nb; work[1].r = (real) lwkopt, work[1].i = 0.f; } if (*info != 0) { i__1 = -(*info); xerbla_("CUNGHR", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { work[1].r = 1.f, work[1].i = 0.f; return 0; } /* Shift the vectors which define the elementary reflectors one column to the right, and set the first ilo and the last n-ihi rows and columns to those of the unit matrix */ i__1 = *ilo + 1; for (j = *ihi; j >= i__1; --j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; a[i__3].r = 0.f, a[i__3].i = 0.f; /* L10: */ } i__2 = *ihi; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + (j - 1) * a_dim1; a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i; /* L20: */ } i__2 = *n; for (i__ = *ihi + 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; a[i__3].r = 0.f, a[i__3].i = 0.f; /* L30: */ } /* L40: */ } i__1 = *ilo; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; a[i__3].r = 0.f, a[i__3].i = 0.f; /* L50: */ } i__2 = j + j * a_dim1; a[i__2].r = 1.f, a[i__2].i = 0.f; /* L60: */ } i__1 = *n; for (j = *ihi + 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; a[i__3].r = 0.f, a[i__3].i = 0.f; /* L70: */ } i__2 = j + j * a_dim1; a[i__2].r = 1.f, a[i__2].i = 0.f; /* L80: */ } if (nh > 0) { /* Generate Q(ilo+1:ihi,ilo+1:ihi) */ cungqr_(&nh, &nh, &nh, &a[*ilo + 1 + (*ilo + 1) * a_dim1], lda, &tau[* ilo], &work[1], lwork, &iinfo); } work[1].r = (real) lwkopt, work[1].i = 0.f; return 0; /* End of CUNGHR */ } /* cunghr_ */