#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int ctgsen_(integer *ijob, logical *wantq, logical *wantz, logical *select, integer *n, complex *a, integer *lda, complex *b, integer *ldb, complex *alpha, complex *beta, complex *q, integer *ldq, complex *z__, integer *ldz, integer *m, real *pl, real *pr, real * dif, complex *work, integer *lwork, integer *iwork, integer *liwork, integer *info) { /* -- LAPACK routine (version 3.1.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. January 2007 Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. Purpose ======= CTGSEN reorders the generalized Schur decomposition of a complex matrix pair (A, B) (in terms of an unitary equivalence trans- formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the pair (A,B). The leading columns of Q and Z form unitary bases of the corresponding left and right eigenspaces (deflating subspaces). (A, B) must be in generalized Schur canonical form, that is, A and B are both upper triangular. CTGSEN also computes the generalized eigenvalues w(j)= ALPHA(j) / BETA(j) of the reordered matrix pair (A, B). Optionally, the routine computes estimates of reciprocal condition numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11), (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) between the matrix pairs (A11, B11) and (A22,B22) that correspond to the selected cluster and the eigenvalues outside the cluster, resp., and norms of "projections" onto left and right eigenspaces w.r.t. the selected cluster in the (1,1)-block. Arguments ========= IJOB (input) integer Specifies whether condition numbers are required for the cluster of eigenvalues (PL and PR) or the deflating subspaces (Difu and Difl): =0: Only reorder w.r.t. SELECT. No extras. =1: Reciprocal of norms of "projections" onto left and right eigenspaces w.r.t. the selected cluster (PL and PR). =2: Upper bounds on Difu and Difl. F-norm-based estimate (DIF(1:2)). =3: Estimate of Difu and Difl. 1-norm-based estimate (DIF(1:2)). About 5 times as expensive as IJOB = 2. =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic version to get it all. =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above) WANTQ (input) LOGICAL .TRUE. : update the left transformation matrix Q; .FALSE.: do not update Q. WANTZ (input) LOGICAL .TRUE. : update the right transformation matrix Z; .FALSE.: do not update Z. SELECT (input) LOGICAL array, dimension (N) SELECT specifies the eigenvalues in the selected cluster. To select an eigenvalue w(j), SELECT(j) must be set to .TRUE.. N (input) INTEGER The order of the matrices A and B. N >= 0. A (input/output) COMPLEX array, dimension(LDA,N) On entry, the upper triangular matrix A, in generalized Schur canonical form. On exit, A is overwritten by the reordered matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input/output) COMPLEX array, dimension(LDB,N) On entry, the upper triangular matrix B, in generalized Schur canonical form. On exit, B is overwritten by the reordered matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). ALPHA (output) COMPLEX array, dimension (N) BETA (output) COMPLEX array, dimension (N) The diagonal elements of A and B, respectively, when the pair (A,B) has been reduced to generalized Schur form. ALPHA(i)/BETA(i) i=1,...,N are the generalized eigenvalues. Q (input/output) COMPLEX array, dimension (LDQ,N) On entry, if WANTQ = .TRUE., Q is an N-by-N matrix. On exit, Q has been postmultiplied by the left unitary transformation matrix which reorder (A, B); The leading M columns of Q form orthonormal bases for the specified pair of left eigenspaces (deflating subspaces). If WANTQ = .FALSE., Q is not referenced. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= 1. If WANTQ = .TRUE., LDQ >= N. Z (input/output) COMPLEX array, dimension (LDZ,N) On entry, if WANTZ = .TRUE., Z is an N-by-N matrix. On exit, Z has been postmultiplied by the left unitary transformation matrix which reorder (A, B); The leading M columns of Z form orthonormal bases for the specified pair of left eigenspaces (deflating subspaces). If WANTZ = .FALSE., Z is not referenced. LDZ (input) INTEGER The leading dimension of the array Z. LDZ >= 1. If WANTZ = .TRUE., LDZ >= N. M (output) INTEGER The dimension of the specified pair of left and right eigenspaces, (deflating subspaces) 0 <= M <= N. PL (output) REAL PR (output) REAL If IJOB = 1, 4 or 5, PL, PR are lower bounds on the reciprocal of the norm of "projections" onto left and right eigenspace with respect to the selected cluster. 0 < PL, PR <= 1. If M = 0 or M = N, PL = PR = 1. If IJOB = 0, 2 or 3 PL, PR are not referenced. DIF (output) REAL array, dimension (2). If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl. If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based estimates of Difu and Difl, computed using reversed communication with CLACN2. If M = 0 or N, DIF(1:2) = F-norm([A, B]). If IJOB = 0 or 1, DIF is not referenced. WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) IF IJOB = 0, WORK is not referenced. Otherwise, on exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= 1 If IJOB = 1, 2 or 4, LWORK >= 2*M*(N-M) If IJOB = 3 or 5, LWORK >= 4*M*(N-M) If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) IF IJOB = 0, IWORK is not referenced. Otherwise, on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. LIWORK (input) INTEGER The dimension of the array IWORK. LIWORK >= 1. If IJOB = 1, 2 or 4, LIWORK >= N+2; If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M)); If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the IWORK array, returns this value as the first entry of the IWORK array, and no error message related to LIWORK is issued by XERBLA. INFO (output) INTEGER =0: Successful exit. <0: If INFO = -i, the i-th argument had an illegal value. =1: Reordering of (A, B) failed because the transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is very ill-conditioned. (A, B) may have been partially reordered. If requested, 0 is returned in DIF(*), PL and PR. Further Details =============== CTGSEN first collects the selected eigenvalues by computing unitary U and W that move them to the top left corner of (A, B). In other words, the selected eigenvalues are the eigenvalues of (A11, B11) in U'*(A, B)*W = (A11 A12) (B11 B12) n1 ( 0 A22),( 0 B22) n2 n1 n2 n1 n2 where N = n1+n2 and U' means the conjugate transpose of U. The first n1 columns of U and W span the specified pair of left and right eigenspaces (deflating subspaces) of (A, B). If (A, B) has been obtained from the generalized real Schur decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the reordered generalized Schur form of (C, D) is given by (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)', and the first n1 columns of Q*U and Z*W span the corresponding deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.). Note that if the selected eigenvalue is sufficiently ill-conditioned, then its value may differ significantly from its value before reordering. The reciprocal condition numbers of the left and right eigenspaces spanned by the first n1 columns of U and W (or Q*U and Z*W) may be returned in DIF(1:2), corresponding to Difu and Difl, resp. The Difu and Difl are defined as: Difu[(A11, B11), (A22, B22)] = sigma-min( Zu ) and Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)], where sigma-min(Zu) is the smallest singular value of the (2*n1*n2)-by-(2*n1*n2) matrix Zu = [ kron(In2, A11) -kron(A22', In1) ] [ kron(In2, B11) -kron(B22', In1) ]. Here, Inx is the identity matrix of size nx and A22' is the transpose of A22. kron(X, Y) is the Kronecker product between the matrices X and Y. When DIF(2) is small, small changes in (A, B) can cause large changes in the deflating subspace. An approximate (asymptotic) bound on the maximum angular error in the computed deflating subspaces is EPS * norm((A, B)) / DIF(2), where EPS is the machine precision. The reciprocal norm of the projectors on the left and right eigenspaces associated with (A11, B11) may be returned in PL and PR. They are computed as follows. First we compute L and R so that P*(A, B)*Q is block diagonal, where P = ( I -L ) n1 Q = ( I R ) n1 ( 0 I ) n2 and ( 0 I ) n2 n1 n2 n1 n2 and (L, R) is the solution to the generalized Sylvester equation A11*R - L*A22 = -A12 B11*R - L*B22 = -B12 Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2). An approximate (asymptotic) bound on the average absolute error of the selected eigenvalues is EPS * norm((A, B)) / PL. There are also global error bounds which valid for perturbations up to a certain restriction: A lower bound (x) on the smallest F-norm(E,F) for which an eigenvalue of (A11, B11) may move and coalesce with an eigenvalue of (A22, B22) under perturbation (E,F), (i.e. (A + E, B + F), is x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)). An approximate bound on x can be computed from DIF(1:2), PL and PR. If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed (L', R') and unperturbed (L, R) left and right deflating subspaces associated with the selected cluster in the (1,1)-blocks can be bounded as max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2)) max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2)) See LAPACK User's Guide section 4.11 or the following references for more information. Note that if the default method for computing the Frobenius-norm- based estimate DIF is not wanted (see CLATDF), then the parameter IDIFJB (see below) should be changed from 3 to 4 (routine CLATDF (IJOB = 2 will be used)). See CTGSYL for more details. Based on contributions by Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden. References ========== [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF - 94.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996. [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996. ===================================================================== Decode and test the input parameters Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, i__2, i__3; complex q__1, q__2; /* Builtin functions */ double sqrt(doublereal), c_abs(complex *); void r_cnjg(complex *, complex *); /* Local variables */ static integer i__, k, n1, n2, ks, mn2, ijb, kase, ierr; static real dsum; static logical swap; static complex temp1, temp2; extern /* Subroutine */ int cscal_(integer *, complex *, complex *, integer *); static integer isave[3]; static logical wantd; static integer lwmin; static logical wantp; extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real *, integer *, integer *); static logical wantd1, wantd2; static real dscale; extern doublereal slamch_(char *); static real rdscal; extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *); static real safmin; extern /* Subroutine */ int ctgexc_(logical *, logical *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *, integer *, integer *), xerbla_( char *, integer *), classq_(integer *, complex *, integer *, real *, real *); static integer liwmin; extern /* Subroutine */ int ctgsyl_(char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *, complex *, integer *, integer *, integer *); static logical lquery; --select; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --alpha; --beta; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --dif; --work; --iwork; /* Function Body */ *info = 0; lquery = *lwork == -1 || *liwork == -1; if (*ijob < 0 || *ijob > 5) { *info = -1; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,*n)) { *info = -7; } else if (*ldb < max(1,*n)) { *info = -9; } else if (*ldq < 1 || *wantq && *ldq < *n) { *info = -13; } else if (*ldz < 1 || *wantz && *ldz < *n) { *info = -15; } if (*info != 0) { i__1 = -(*info); xerbla_("CTGSEN", &i__1); return 0; } ierr = 0; wantp = *ijob == 1 || *ijob >= 4; wantd1 = *ijob == 2 || *ijob == 4; wantd2 = *ijob == 3 || *ijob == 5; wantd = wantd1 || wantd2; /* Set M to the dimension of the specified pair of deflating subspaces. */ *m = 0; i__1 = *n; for (k = 1; k <= i__1; ++k) { i__2 = k; i__3 = k + k * a_dim1; alpha[i__2].r = a[i__3].r, alpha[i__2].i = a[i__3].i; i__2 = k; i__3 = k + k * b_dim1; beta[i__2].r = b[i__3].r, beta[i__2].i = b[i__3].i; if (k < *n) { if (select[k]) { ++(*m); } } else { if (select[*n]) { ++(*m); } } /* L10: */ } if (*ijob == 1 || *ijob == 2 || *ijob == 4) { /* Computing MAX */ i__1 = 1, i__2 = (*m << 1) * (*n - *m); lwmin = max(i__1,i__2); /* Computing MAX */ i__1 = 1, i__2 = *n + 2; liwmin = max(i__1,i__2); } else if (*ijob == 3 || *ijob == 5) { /* Computing MAX */ i__1 = 1, i__2 = (*m << 2) * (*n - *m); lwmin = max(i__1,i__2); /* Computing MAX */ i__1 = 1, i__2 = (*m << 1) * (*n - *m), i__1 = max(i__1,i__2), i__2 = *n + 2; liwmin = max(i__1,i__2); } else { lwmin = 1; liwmin = 1; } work[1].r = (real) lwmin, work[1].i = 0.f; iwork[1] = liwmin; if (*lwork < lwmin && ! lquery) { *info = -21; } else if (*liwork < liwmin && ! lquery) { *info = -23; } if (*info != 0) { i__1 = -(*info); xerbla_("CTGSEN", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible. */ if (*m == *n || *m == 0) { if (wantp) { *pl = 1.f; *pr = 1.f; } if (wantd) { dscale = 0.f; dsum = 1.f; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { classq_(n, &a[i__ * a_dim1 + 1], &c__1, &dscale, &dsum); classq_(n, &b[i__ * b_dim1 + 1], &c__1, &dscale, &dsum); /* L20: */ } dif[1] = dscale * sqrt(dsum); dif[2] = dif[1]; } goto L70; } /* Get machine constant */ safmin = slamch_("S"); /* Collect the selected blocks at the top-left corner of (A, B). */ ks = 0; i__1 = *n; for (k = 1; k <= i__1; ++k) { swap = select[k]; if (swap) { ++ks; /* Swap the K-th block to position KS. Compute unitary Q and Z that will swap adjacent diagonal blocks in (A, B). */ if (k != ks) { ctgexc_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &k, &ks, & ierr); } if (ierr > 0) { /* Swap is rejected: exit. */ *info = 1; if (wantp) { *pl = 0.f; *pr = 0.f; } if (wantd) { dif[1] = 0.f; dif[2] = 0.f; } goto L70; } } /* L30: */ } if (wantp) { /* Solve generalized Sylvester equation for R and L: A11 * R - L * A22 = A12 B11 * R - L * B22 = B12 */ n1 = *m; n2 = *n - *m; i__ = n1 + 1; clacpy_("Full", &n1, &n2, &a[i__ * a_dim1 + 1], lda, &work[1], &n1); clacpy_("Full", &n1, &n2, &b[i__ * b_dim1 + 1], ldb, &work[n1 * n2 + 1], &n1); ijb = 0; i__1 = *lwork - (n1 << 1) * n2; ctgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * a_dim1] , lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &dif[1], & work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &ierr); /* Estimate the reciprocal of norms of "projections" onto left and right eigenspaces */ rdscal = 0.f; dsum = 1.f; i__1 = n1 * n2; classq_(&i__1, &work[1], &c__1, &rdscal, &dsum); *pl = rdscal * sqrt(dsum); if (*pl == 0.f) { *pl = 1.f; } else { *pl = dscale / (sqrt(dscale * dscale / *pl + *pl) * sqrt(*pl)); } rdscal = 0.f; dsum = 1.f; i__1 = n1 * n2; classq_(&i__1, &work[n1 * n2 + 1], &c__1, &rdscal, &dsum); *pr = rdscal * sqrt(dsum); if (*pr == 0.f) { *pr = 1.f; } else { *pr = dscale / (sqrt(dscale * dscale / *pr + *pr) * sqrt(*pr)); } } if (wantd) { /* Compute estimates Difu and Difl. */ if (wantd1) { n1 = *m; n2 = *n - *m; i__ = n1 + 1; ijb = 3; /* Frobenius norm-based Difu estimate. */ i__1 = *lwork - (n1 << 1) * n2; ctgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * a_dim1], lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, & dif[1], &work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], & ierr); /* Frobenius norm-based Difl estimate. */ i__1 = *lwork - (n1 << 1) * n2; ctgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, &a[ a_offset], lda, &work[1], &n2, &b[i__ + i__ * b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 + 1], &n2, &dscale, &dif[2], &work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], & ierr); } else { /* Compute 1-norm-based estimates of Difu and Difl using reversed communication with CLACN2. In each step a generalized Sylvester equation or a transposed variant is solved. */ kase = 0; n1 = *m; n2 = *n - *m; i__ = n1 + 1; ijb = 0; mn2 = (n1 << 1) * n2; /* 1-norm-based estimate of Difu. */ L40: clacn2_(&mn2, &work[mn2 + 1], &work[1], &dif[1], &kase, isave); if (kase != 0) { if (kase == 1) { /* Solve generalized Sylvester equation */ i__1 = *lwork - (n1 << 1) * n2; ctgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * a_dim1], lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &dif[1], &work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &ierr); } else { /* Solve the transposed variant. */ i__1 = *lwork - (n1 << 1) * n2; ctgsyl_("C", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * a_dim1], lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &dif[1], &work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &ierr); } goto L40; } dif[1] = dscale / dif[1]; /* 1-norm-based estimate of Difl. */ L50: clacn2_(&mn2, &work[mn2 + 1], &work[1], &dif[2], &kase, isave); if (kase != 0) { if (kase == 1) { /* Solve generalized Sylvester equation */ i__1 = *lwork - (n1 << 1) * n2; ctgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, &a[a_offset], lda, &work[1], &n2, &b[i__ + i__ * b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 + 1], &n2, &dscale, &dif[2], &work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &ierr); } else { /* Solve the transposed variant. */ i__1 = *lwork - (n1 << 1) * n2; ctgsyl_("C", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, &a[a_offset], lda, &work[1], &n2, &b[b_offset], ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 1], &n2, &dscale, &dif[2], &work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &ierr); } goto L50; } dif[2] = dscale / dif[2]; } } /* If B(K,K) is complex, make it real and positive (normalization of the generalized Schur form) and Store the generalized eigenvalues of reordered pair (A, B) */ i__1 = *n; for (k = 1; k <= i__1; ++k) { dscale = c_abs(&b[k + k * b_dim1]); if (dscale > safmin) { i__2 = k + k * b_dim1; q__2.r = b[i__2].r / dscale, q__2.i = b[i__2].i / dscale; r_cnjg(&q__1, &q__2); temp1.r = q__1.r, temp1.i = q__1.i; i__2 = k + k * b_dim1; q__1.r = b[i__2].r / dscale, q__1.i = b[i__2].i / dscale; temp2.r = q__1.r, temp2.i = q__1.i; i__2 = k + k * b_dim1; b[i__2].r = dscale, b[i__2].i = 0.f; i__2 = *n - k; cscal_(&i__2, &temp1, &b[k + (k + 1) * b_dim1], ldb); i__2 = *n - k + 1; cscal_(&i__2, &temp1, &a[k + k * a_dim1], lda); if (*wantq) { cscal_(n, &temp2, &q[k * q_dim1 + 1], &c__1); } } else { i__2 = k + k * b_dim1; b[i__2].r = 0.f, b[i__2].i = 0.f; } i__2 = k; i__3 = k + k * a_dim1; alpha[i__2].r = a[i__3].r, alpha[i__2].i = a[i__3].i; i__2 = k; i__3 = k + k * b_dim1; beta[i__2].r = b[i__3].r, beta[i__2].i = b[i__3].i; /* L60: */ } L70: work[1].r = (real) lwmin, work[1].i = 0.f; iwork[1] = liwmin; return 0; /* End of CTGSEN */ } /* ctgsen_ */