#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int clatrz_(integer *m, integer *n, integer *l, complex *a, integer *lda, complex *tau, complex *work) { /* -- LAPACK routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z by means of unitary transformations, where Z is an (M+L)-by-(M+L) unitary matrix and, R and A1 are M-by-M upper triangular matrices. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. L (input) INTEGER The number of columns of the matrix A containing the meaningful part of the Householder vectors. N-M >= L >= 0. A (input/output) COMPLEX array, dimension (LDA,N) On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements N-L+1 to N of the first M rows of A, with the array TAU, represent the unitary matrix Z as a product of M elementary reflectors. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU (output) COMPLEX array, dimension (M) The scalar factors of the elementary reflectors. WORK (workspace) COMPLEX array, dimension (M) Further Details =============== Based on contributions by A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA The factorization is obtained by Householder's method. The kth transformation matrix, Z( k ), which is used to introduce zeros into the ( m - k + 1 )th row of A, is given in the form Z( k ) = ( I 0 ), ( 0 T( k ) ) where T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), ( 0 ) ( z( k ) ) tau is a scalar and z( k ) is an l element vector. tau and z( k ) are chosen to annihilate the elements of the kth row of A2. The scalar tau is returned in the kth element of TAU and the vector u( k ) in the kth row of A2, such that the elements of z( k ) are in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in the upper triangular part of A1. Z is given by Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). ===================================================================== Quick return if possible Parameter adjustments */ /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; complex q__1; /* Builtin functions */ void r_cnjg(complex *, complex *); /* Local variables */ static integer i__; static complex alpha; extern /* Subroutine */ int clarz_(char *, integer *, integer *, integer * , complex *, integer *, complex *, complex *, integer *, complex * ), clarfg_(integer *, complex *, complex *, integer *, complex *), clacgv_(integer *, complex *, integer *); a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ if (*m == 0) { return 0; } else if (*m == *n) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; tau[i__2].r = 0.f, tau[i__2].i = 0.f; /* L10: */ } return 0; } for (i__ = *m; i__ >= 1; --i__) { /* Generate elementary reflector H(i) to annihilate [ A(i,i) A(i,n-l+1:n) ] */ clacgv_(l, &a[i__ + (*n - *l + 1) * a_dim1], lda); r_cnjg(&q__1, &a[i__ + i__ * a_dim1]); alpha.r = q__1.r, alpha.i = q__1.i; i__1 = *l + 1; clarfg_(&i__1, &alpha, &a[i__ + (*n - *l + 1) * a_dim1], lda, &tau[ i__]); i__1 = i__; r_cnjg(&q__1, &tau[i__]); tau[i__1].r = q__1.r, tau[i__1].i = q__1.i; /* Apply H(i) to A(1:i-1,i:n) from the right */ i__1 = i__ - 1; i__2 = *n - i__ + 1; r_cnjg(&q__1, &tau[i__]); clarz_("Right", &i__1, &i__2, l, &a[i__ + (*n - *l + 1) * a_dim1], lda, &q__1, &a[i__ * a_dim1 + 1], lda, &work[1]); i__1 = i__ + i__ * a_dim1; r_cnjg(&q__1, &alpha); a[i__1].r = q__1.r, a[i__1].i = q__1.i; /* L20: */ } return 0; /* End of CLATRZ */ } /* clatrz_ */