#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int clatrd_(char *uplo, integer *n, integer *nb, complex *a, integer *lda, real *e, complex *tau, complex *w, integer *ldw ) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CLATRD reduces NB rows and columns of a complex Hermitian matrix A to Hermitian tridiagonal form by a unitary similarity transformation Q' * A * Q, and returns the matrices V and W which are needed to apply the transformation to the unreduced part of A. If UPLO = 'U', CLATRD reduces the last NB rows and columns of a matrix, of which the upper triangle is supplied; if UPLO = 'L', CLATRD reduces the first NB rows and columns of a matrix, of which the lower triangle is supplied. This is an auxiliary routine called by CHETRD. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular N (input) INTEGER The order of the matrix A. NB (input) INTEGER The number of rows and columns to be reduced. A (input/output) COMPLEX array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit: if UPLO = 'U', the last NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements above the diagonal with the array TAU, represent the unitary matrix Q as a product of elementary reflectors; if UPLO = 'L', the first NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements below the diagonal with the array TAU, represent the unitary matrix Q as a product of elementary reflectors. See Further Details. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). E (output) REAL array, dimension (N-1) If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal elements of the last NB columns of the reduced matrix; if UPLO = 'L', E(1:nb) contains the subdiagonal elements of the first NB columns of the reduced matrix. TAU (output) COMPLEX array, dimension (N-1) The scalar factors of the elementary reflectors, stored in TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. See Further Details. W (output) COMPLEX array, dimension (LDW,NB) The n-by-nb matrix W required to update the unreduced part of A. LDW (input) INTEGER The leading dimension of the array W. LDW >= max(1,N). Further Details =============== If UPLO = 'U', the matrix Q is represented as a product of elementary reflectors Q = H(n) H(n-1) . . . H(n-nb+1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), and tau in TAU(i-1). If UPLO = 'L', the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(nb). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), and tau in TAU(i). The elements of the vectors v together form the n-by-nb matrix V which is needed, with W, to apply the transformation to the unreduced part of the matrix, using a Hermitian rank-2k update of the form: A := A - V*W' - W*V'. The contents of A on exit are illustrated by the following examples with n = 5 and nb = 2: if UPLO = 'U': if UPLO = 'L': ( a a a v4 v5 ) ( d ) ( a a v4 v5 ) ( 1 d ) ( a 1 v5 ) ( v1 1 a ) ( d 1 ) ( v1 v2 a a ) ( d ) ( v1 v2 a a a ) where d denotes a diagonal element of the reduced matrix, a denotes an element of the original matrix that is unchanged, and vi denotes an element of the vector defining H(i). ===================================================================== Quick return if possible Parameter adjustments */ /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static complex c_b2 = {1.f,0.f}; static integer c__1 = 1; /* System generated locals */ integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3; real r__1; complex q__1, q__2, q__3, q__4; /* Local variables */ static integer i__, iw; static complex alpha; extern /* Subroutine */ int cscal_(integer *, complex *, complex *, integer *); extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer *, complex *, integer *); extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex * , complex *, integer *, complex *, integer *, complex *, complex * , integer *), chemv_(char *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, integer *, complex *, integer *), clarfg_(integer *, complex *, complex *, integer *, complex *), clacgv_(integer *, complex *, integer *); a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --e; --tau; w_dim1 = *ldw; w_offset = 1 + w_dim1; w -= w_offset; /* Function Body */ if (*n <= 0) { return 0; } if (lsame_(uplo, "U")) { /* Reduce last NB columns of upper triangle */ i__1 = *n - *nb + 1; for (i__ = *n; i__ >= i__1; --i__) { iw = i__ - *n + *nb; if (i__ < *n) { /* Update A(1:i,i) */ i__2 = i__ + i__ * a_dim1; i__3 = i__ + i__ * a_dim1; r__1 = a[i__3].r; a[i__2].r = r__1, a[i__2].i = 0.f; i__2 = *n - i__; clacgv_(&i__2, &w[i__ + (iw + 1) * w_dim1], ldw); i__2 = *n - i__; q__1.r = -1.f, q__1.i = -0.f; cgemv_("No transpose", &i__, &i__2, &q__1, &a[(i__ + 1) * a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, & c_b2, &a[i__ * a_dim1 + 1], &c__1); i__2 = *n - i__; clacgv_(&i__2, &w[i__ + (iw + 1) * w_dim1], ldw); i__2 = *n - i__; clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); i__2 = *n - i__; q__1.r = -1.f, q__1.i = -0.f; cgemv_("No transpose", &i__, &i__2, &q__1, &w[(iw + 1) * w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, & c_b2, &a[i__ * a_dim1 + 1], &c__1); i__2 = *n - i__; clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda); i__2 = i__ + i__ * a_dim1; i__3 = i__ + i__ * a_dim1; r__1 = a[i__3].r; a[i__2].r = r__1, a[i__2].i = 0.f; } if (i__ > 1) { /* Generate elementary reflector H(i) to annihilate A(1:i-2,i) */ i__2 = i__ - 1 + i__ * a_dim1; alpha.r = a[i__2].r, alpha.i = a[i__2].i; i__2 = i__ - 1; clarfg_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &tau[i__ - 1]); i__2 = i__ - 1; e[i__2] = alpha.r; i__2 = i__ - 1 + i__ * a_dim1; a[i__2].r = 1.f, a[i__2].i = 0.f; /* Compute W(1:i-1,i) */ i__2 = i__ - 1; chemv_("Upper", &i__2, &c_b2, &a[a_offset], lda, &a[i__ * a_dim1 + 1], &c__1, &c_b1, &w[iw * w_dim1 + 1], &c__1); if (i__ < *n) { i__2 = i__ - 1; i__3 = *n - i__; cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &w[(iw + 1) * w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], & c__1, &c_b1, &w[i__ + 1 + iw * w_dim1], &c__1); i__2 = i__ - 1; i__3 = *n - i__; q__1.r = -1.f, q__1.i = -0.f; cgemv_("No transpose", &i__2, &i__3, &q__1, &a[(i__ + 1) * a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], & c__1, &c_b2, &w[iw * w_dim1 + 1], &c__1); i__2 = i__ - 1; i__3 = *n - i__; cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[( i__ + 1) * a_dim1 + 1], lda, &a[i__ * a_dim1 + 1], &c__1, &c_b1, &w[i__ + 1 + iw * w_dim1], &c__1); i__2 = i__ - 1; i__3 = *n - i__; q__1.r = -1.f, q__1.i = -0.f; cgemv_("No transpose", &i__2, &i__3, &q__1, &w[(iw + 1) * w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], & c__1, &c_b2, &w[iw * w_dim1 + 1], &c__1); } i__2 = i__ - 1; cscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1); q__3.r = -.5f, q__3.i = -0.f; i__2 = i__ - 1; q__2.r = q__3.r * tau[i__2].r - q__3.i * tau[i__2].i, q__2.i = q__3.r * tau[i__2].i + q__3.i * tau[i__2].r; i__3 = i__ - 1; cdotc_(&q__4, &i__3, &w[iw * w_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &c__1); q__1.r = q__2.r * q__4.r - q__2.i * q__4.i, q__1.i = q__2.r * q__4.i + q__2.i * q__4.r; alpha.r = q__1.r, alpha.i = q__1.i; i__2 = i__ - 1; caxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw * w_dim1 + 1], &c__1); } /* L10: */ } } else { /* Reduce first NB columns of lower triangle */ i__1 = *nb; for (i__ = 1; i__ <= i__1; ++i__) { /* Update A(i:n,i) */ i__2 = i__ + i__ * a_dim1; i__3 = i__ + i__ * a_dim1; r__1 = a[i__3].r; a[i__2].r = r__1, a[i__2].i = 0.f; i__2 = i__ - 1; clacgv_(&i__2, &w[i__ + w_dim1], ldw); i__2 = *n - i__ + 1; i__3 = i__ - 1; q__1.r = -1.f, q__1.i = -0.f; cgemv_("No transpose", &i__2, &i__3, &q__1, &a[i__ + a_dim1], lda, &w[i__ + w_dim1], ldw, &c_b2, &a[i__ + i__ * a_dim1], & c__1); i__2 = i__ - 1; clacgv_(&i__2, &w[i__ + w_dim1], ldw); i__2 = i__ - 1; clacgv_(&i__2, &a[i__ + a_dim1], lda); i__2 = *n - i__ + 1; i__3 = i__ - 1; q__1.r = -1.f, q__1.i = -0.f; cgemv_("No transpose", &i__2, &i__3, &q__1, &w[i__ + w_dim1], ldw, &a[i__ + a_dim1], lda, &c_b2, &a[i__ + i__ * a_dim1], & c__1); i__2 = i__ - 1; clacgv_(&i__2, &a[i__ + a_dim1], lda); i__2 = i__ + i__ * a_dim1; i__3 = i__ + i__ * a_dim1; r__1 = a[i__3].r; a[i__2].r = r__1, a[i__2].i = 0.f; if (i__ < *n) { /* Generate elementary reflector H(i) to annihilate A(i+2:n,i) */ i__2 = i__ + 1 + i__ * a_dim1; alpha.r = a[i__2].r, alpha.i = a[i__2].i; i__2 = *n - i__; /* Computing MIN */ i__3 = i__ + 2; clarfg_(&i__2, &alpha, &a[min(i__3,*n) + i__ * a_dim1], &c__1, &tau[i__]); i__2 = i__; e[i__2] = alpha.r; i__2 = i__ + 1 + i__ * a_dim1; a[i__2].r = 1.f, a[i__2].i = 0.f; /* Compute W(i+1:n,i) */ i__2 = *n - i__; chemv_("Lower", &i__2, &c_b2, &a[i__ + 1 + (i__ + 1) * a_dim1] , lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b1, &w[ i__ + 1 + i__ * w_dim1], &c__1); i__2 = *n - i__; i__3 = i__ - 1; cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &w[i__ + 1 + w_dim1], ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, & c_b1, &w[i__ * w_dim1 + 1], &c__1); i__2 = *n - i__; i__3 = i__ - 1; q__1.r = -1.f, q__1.i = -0.f; cgemv_("No transpose", &i__2, &i__3, &q__1, &a[i__ + 1 + a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b2, &w[ i__ + 1 + i__ * w_dim1], &c__1); i__2 = *n - i__; i__3 = i__ - 1; cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, & c_b1, &w[i__ * w_dim1 + 1], &c__1); i__2 = *n - i__; i__3 = i__ - 1; q__1.r = -1.f, q__1.i = -0.f; cgemv_("No transpose", &i__2, &i__3, &q__1, &w[i__ + 1 + w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b2, &w[ i__ + 1 + i__ * w_dim1], &c__1); i__2 = *n - i__; cscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1); q__3.r = -.5f, q__3.i = -0.f; i__2 = i__; q__2.r = q__3.r * tau[i__2].r - q__3.i * tau[i__2].i, q__2.i = q__3.r * tau[i__2].i + q__3.i * tau[i__2].r; i__3 = *n - i__; cdotc_(&q__4, &i__3, &w[i__ + 1 + i__ * w_dim1], &c__1, &a[ i__ + 1 + i__ * a_dim1], &c__1); q__1.r = q__2.r * q__4.r - q__2.i * q__4.i, q__1.i = q__2.r * q__4.i + q__2.i * q__4.r; alpha.r = q__1.r, alpha.i = q__1.i; i__2 = *n - i__; caxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[ i__ + 1 + i__ * w_dim1], &c__1); } /* L20: */ } } return 0; /* End of CLATRD */ } /* clatrd_ */