#include "blaswrap.h" /* clartv.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Subroutine */ int clartv_(integer *n, complex *x, integer *incx, complex * y, integer *incy, real *c__, complex *s, integer *incc) { /* System generated locals */ integer i__1, i__2, i__3, i__4; complex q__1, q__2, q__3, q__4; /* Builtin functions */ void r_cnjg(complex *, complex *); /* Local variables */ static integer i__, ic, ix, iy; static complex xi, yi; /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CLARTV applies a vector of complex plane rotations with real cosines to elements of the complex vectors x and y. For i = 1,2,...,n ( x(i) ) := ( c(i) s(i) ) ( x(i) ) ( y(i) ) ( -conjg(s(i)) c(i) ) ( y(i) ) Arguments ========= N (input) INTEGER The number of plane rotations to be applied. X (input/output) COMPLEX array, dimension (1+(N-1)*INCX) The vector x. INCX (input) INTEGER The increment between elements of X. INCX > 0. Y (input/output) COMPLEX array, dimension (1+(N-1)*INCY) The vector y. INCY (input) INTEGER The increment between elements of Y. INCY > 0. C (input) REAL array, dimension (1+(N-1)*INCC) The cosines of the plane rotations. S (input) COMPLEX array, dimension (1+(N-1)*INCC) The sines of the plane rotations. INCC (input) INTEGER The increment between elements of C and S. INCC > 0. ===================================================================== Parameter adjustments */ --s; --c__; --y; --x; /* Function Body */ ix = 1; iy = 1; ic = 1; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = ix; xi.r = x[i__2].r, xi.i = x[i__2].i; i__2 = iy; yi.r = y[i__2].r, yi.i = y[i__2].i; i__2 = ix; i__3 = ic; q__2.r = c__[i__3] * xi.r, q__2.i = c__[i__3] * xi.i; i__4 = ic; q__3.r = s[i__4].r * yi.r - s[i__4].i * yi.i, q__3.i = s[i__4].r * yi.i + s[i__4].i * yi.r; q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i; x[i__2].r = q__1.r, x[i__2].i = q__1.i; i__2 = iy; i__3 = ic; q__2.r = c__[i__3] * yi.r, q__2.i = c__[i__3] * yi.i; r_cnjg(&q__4, &s[ic]); q__3.r = q__4.r * xi.r - q__4.i * xi.i, q__3.i = q__4.r * xi.i + q__4.i * xi.r; q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i; y[i__2].r = q__1.r, y[i__2].i = q__1.i; ix += *incx; iy += *incy; ic += *incc; /* L10: */ } return 0; /* End of CLARTV */ } /* clartv_ */