#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int chptrs_(char *uplo, integer *n, integer *nrhs, complex * ap, integer *ipiv, complex *b, integer *ldb, integer *info ) { /* -- LAPACK routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CHPTRS solves a system of linear equations A*X = B with a complex Hermitian matrix A stored in packed format using the factorization A = U*D*U**H or A = L*D*L**H computed by CHPTRF. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**H; = 'L': Lower triangular, form is A = L*D*L**H. N (input) INTEGER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. AP (input) COMPLEX array, dimension (N*(N+1)/2) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CHPTRF, stored as a packed triangular matrix. IPIV (input) INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CHPTRF. B (input/output) COMPLEX array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== Parameter adjustments */ /* Table of constant values */ static complex c_b1 = {1.f,0.f}; static integer c__1 = 1; /* System generated locals */ integer b_dim1, b_offset, i__1, i__2; complex q__1, q__2, q__3; /* Builtin functions */ void c_div(complex *, complex *, complex *), r_cnjg(complex *, complex *); /* Local variables */ static integer j, k; static real s; static complex ak, bk; static integer kc, kp; static complex akm1, bkm1, akm1k; extern logical lsame_(char *, char *); static complex denom; extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex * , complex *, integer *, complex *, integer *, complex *, complex * , integer *), cgeru_(integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, integer *), cswap_(integer *, complex *, integer *, complex *, integer *); static logical upper; extern /* Subroutine */ int clacgv_(integer *, complex *, integer *), csscal_(integer *, real *, complex *, integer *), xerbla_(char *, integer *); --ap; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*ldb < max(1,*n)) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("CHPTRS", &i__1); return 0; } /* Quick return if possible */ if (*n == 0 || *nrhs == 0) { return 0; } if (upper) { /* Solve A*X = B, where A = U*D*U'. First solve U*D*X = B, overwriting B with X. K is the main loop index, decreasing from N to 1 in steps of 1 or 2, depending on the size of the diagonal blocks. */ k = *n; kc = *n * (*n + 1) / 2 + 1; L10: /* If K < 1, exit from loop. */ if (k < 1) { goto L30; } kc -= k; if (ipiv[k] > 0) { /* 1 x 1 diagonal block Interchange rows K and IPIV(K). */ kp = ipiv[k]; if (kp != k) { cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); } /* Multiply by inv(U(K)), where U(K) is the transformation stored in column K of A. */ i__1 = k - 1; q__1.r = -1.f, q__1.i = -0.f; cgeru_(&i__1, nrhs, &q__1, &ap[kc], &c__1, &b[k + b_dim1], ldb, & b[b_dim1 + 1], ldb); /* Multiply by the inverse of the diagonal block. */ i__1 = kc + k - 1; s = 1.f / ap[i__1].r; csscal_(nrhs, &s, &b[k + b_dim1], ldb); --k; } else { /* 2 x 2 diagonal block Interchange rows K-1 and -IPIV(K). */ kp = -ipiv[k]; if (kp != k - 1) { cswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb); } /* Multiply by inv(U(K)), where U(K) is the transformation stored in columns K-1 and K of A. */ i__1 = k - 2; q__1.r = -1.f, q__1.i = -0.f; cgeru_(&i__1, nrhs, &q__1, &ap[kc], &c__1, &b[k + b_dim1], ldb, & b[b_dim1 + 1], ldb); i__1 = k - 2; q__1.r = -1.f, q__1.i = -0.f; cgeru_(&i__1, nrhs, &q__1, &ap[kc - (k - 1)], &c__1, &b[k - 1 + b_dim1], ldb, &b[b_dim1 + 1], ldb); /* Multiply by the inverse of the diagonal block. */ i__1 = kc + k - 2; akm1k.r = ap[i__1].r, akm1k.i = ap[i__1].i; c_div(&q__1, &ap[kc - 1], &akm1k); akm1.r = q__1.r, akm1.i = q__1.i; r_cnjg(&q__2, &akm1k); c_div(&q__1, &ap[kc + k - 1], &q__2); ak.r = q__1.r, ak.i = q__1.i; q__2.r = akm1.r * ak.r - akm1.i * ak.i, q__2.i = akm1.r * ak.i + akm1.i * ak.r; q__1.r = q__2.r - 1.f, q__1.i = q__2.i - 0.f; denom.r = q__1.r, denom.i = q__1.i; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { c_div(&q__1, &b[k - 1 + j * b_dim1], &akm1k); bkm1.r = q__1.r, bkm1.i = q__1.i; r_cnjg(&q__2, &akm1k); c_div(&q__1, &b[k + j * b_dim1], &q__2); bk.r = q__1.r, bk.i = q__1.i; i__2 = k - 1 + j * b_dim1; q__3.r = ak.r * bkm1.r - ak.i * bkm1.i, q__3.i = ak.r * bkm1.i + ak.i * bkm1.r; q__2.r = q__3.r - bk.r, q__2.i = q__3.i - bk.i; c_div(&q__1, &q__2, &denom); b[i__2].r = q__1.r, b[i__2].i = q__1.i; i__2 = k + j * b_dim1; q__3.r = akm1.r * bk.r - akm1.i * bk.i, q__3.i = akm1.r * bk.i + akm1.i * bk.r; q__2.r = q__3.r - bkm1.r, q__2.i = q__3.i - bkm1.i; c_div(&q__1, &q__2, &denom); b[i__2].r = q__1.r, b[i__2].i = q__1.i; /* L20: */ } kc = kc - k + 1; k += -2; } goto L10; L30: /* Next solve U'*X = B, overwriting B with X. K is the main loop index, increasing from 1 to N in steps of 1 or 2, depending on the size of the diagonal blocks. */ k = 1; kc = 1; L40: /* If K > N, exit from loop. */ if (k > *n) { goto L50; } if (ipiv[k] > 0) { /* 1 x 1 diagonal block Multiply by inv(U'(K)), where U(K) is the transformation stored in column K of A. */ if (k > 1) { clacgv_(nrhs, &b[k + b_dim1], ldb); i__1 = k - 1; q__1.r = -1.f, q__1.i = -0.f; cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[b_offset] , ldb, &ap[kc], &c__1, &c_b1, &b[k + b_dim1], ldb); clacgv_(nrhs, &b[k + b_dim1], ldb); } /* Interchange rows K and IPIV(K). */ kp = ipiv[k]; if (kp != k) { cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); } kc += k; ++k; } else { /* 2 x 2 diagonal block Multiply by inv(U'(K+1)), where U(K+1) is the transformation stored in columns K and K+1 of A. */ if (k > 1) { clacgv_(nrhs, &b[k + b_dim1], ldb); i__1 = k - 1; q__1.r = -1.f, q__1.i = -0.f; cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[b_offset] , ldb, &ap[kc], &c__1, &c_b1, &b[k + b_dim1], ldb); clacgv_(nrhs, &b[k + b_dim1], ldb); clacgv_(nrhs, &b[k + 1 + b_dim1], ldb); i__1 = k - 1; q__1.r = -1.f, q__1.i = -0.f; cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[b_offset] , ldb, &ap[kc + k], &c__1, &c_b1, &b[k + 1 + b_dim1], ldb); clacgv_(nrhs, &b[k + 1 + b_dim1], ldb); } /* Interchange rows K and -IPIV(K). */ kp = -ipiv[k]; if (kp != k) { cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); } kc = kc + (k << 1) + 1; k += 2; } goto L40; L50: ; } else { /* Solve A*X = B, where A = L*D*L'. First solve L*D*X = B, overwriting B with X. K is the main loop index, increasing from 1 to N in steps of 1 or 2, depending on the size of the diagonal blocks. */ k = 1; kc = 1; L60: /* If K > N, exit from loop. */ if (k > *n) { goto L80; } if (ipiv[k] > 0) { /* 1 x 1 diagonal block Interchange rows K and IPIV(K). */ kp = ipiv[k]; if (kp != k) { cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); } /* Multiply by inv(L(K)), where L(K) is the transformation stored in column K of A. */ if (k < *n) { i__1 = *n - k; q__1.r = -1.f, q__1.i = -0.f; cgeru_(&i__1, nrhs, &q__1, &ap[kc + 1], &c__1, &b[k + b_dim1], ldb, &b[k + 1 + b_dim1], ldb); } /* Multiply by the inverse of the diagonal block. */ i__1 = kc; s = 1.f / ap[i__1].r; csscal_(nrhs, &s, &b[k + b_dim1], ldb); kc = kc + *n - k + 1; ++k; } else { /* 2 x 2 diagonal block Interchange rows K+1 and -IPIV(K). */ kp = -ipiv[k]; if (kp != k + 1) { cswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb); } /* Multiply by inv(L(K)), where L(K) is the transformation stored in columns K and K+1 of A. */ if (k < *n - 1) { i__1 = *n - k - 1; q__1.r = -1.f, q__1.i = -0.f; cgeru_(&i__1, nrhs, &q__1, &ap[kc + 2], &c__1, &b[k + b_dim1], ldb, &b[k + 2 + b_dim1], ldb); i__1 = *n - k - 1; q__1.r = -1.f, q__1.i = -0.f; cgeru_(&i__1, nrhs, &q__1, &ap[kc + *n - k + 2], &c__1, &b[k + 1 + b_dim1], ldb, &b[k + 2 + b_dim1], ldb); } /* Multiply by the inverse of the diagonal block. */ i__1 = kc + 1; akm1k.r = ap[i__1].r, akm1k.i = ap[i__1].i; r_cnjg(&q__2, &akm1k); c_div(&q__1, &ap[kc], &q__2); akm1.r = q__1.r, akm1.i = q__1.i; c_div(&q__1, &ap[kc + *n - k + 1], &akm1k); ak.r = q__1.r, ak.i = q__1.i; q__2.r = akm1.r * ak.r - akm1.i * ak.i, q__2.i = akm1.r * ak.i + akm1.i * ak.r; q__1.r = q__2.r - 1.f, q__1.i = q__2.i - 0.f; denom.r = q__1.r, denom.i = q__1.i; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { r_cnjg(&q__2, &akm1k); c_div(&q__1, &b[k + j * b_dim1], &q__2); bkm1.r = q__1.r, bkm1.i = q__1.i; c_div(&q__1, &b[k + 1 + j * b_dim1], &akm1k); bk.r = q__1.r, bk.i = q__1.i; i__2 = k + j * b_dim1; q__3.r = ak.r * bkm1.r - ak.i * bkm1.i, q__3.i = ak.r * bkm1.i + ak.i * bkm1.r; q__2.r = q__3.r - bk.r, q__2.i = q__3.i - bk.i; c_div(&q__1, &q__2, &denom); b[i__2].r = q__1.r, b[i__2].i = q__1.i; i__2 = k + 1 + j * b_dim1; q__3.r = akm1.r * bk.r - akm1.i * bk.i, q__3.i = akm1.r * bk.i + akm1.i * bk.r; q__2.r = q__3.r - bkm1.r, q__2.i = q__3.i - bkm1.i; c_div(&q__1, &q__2, &denom); b[i__2].r = q__1.r, b[i__2].i = q__1.i; /* L70: */ } kc = kc + (*n - k << 1) + 1; k += 2; } goto L60; L80: /* Next solve L'*X = B, overwriting B with X. K is the main loop index, decreasing from N to 1 in steps of 1 or 2, depending on the size of the diagonal blocks. */ k = *n; kc = *n * (*n + 1) / 2 + 1; L90: /* If K < 1, exit from loop. */ if (k < 1) { goto L100; } kc -= *n - k + 1; if (ipiv[k] > 0) { /* 1 x 1 diagonal block Multiply by inv(L'(K)), where L(K) is the transformation stored in column K of A. */ if (k < *n) { clacgv_(nrhs, &b[k + b_dim1], ldb); i__1 = *n - k; q__1.r = -1.f, q__1.i = -0.f; cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[k + 1 + b_dim1], ldb, &ap[kc + 1], &c__1, &c_b1, &b[k + b_dim1], ldb); clacgv_(nrhs, &b[k + b_dim1], ldb); } /* Interchange rows K and IPIV(K). */ kp = ipiv[k]; if (kp != k) { cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); } --k; } else { /* 2 x 2 diagonal block Multiply by inv(L'(K-1)), where L(K-1) is the transformation stored in columns K-1 and K of A. */ if (k < *n) { clacgv_(nrhs, &b[k + b_dim1], ldb); i__1 = *n - k; q__1.r = -1.f, q__1.i = -0.f; cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[k + 1 + b_dim1], ldb, &ap[kc + 1], &c__1, &c_b1, &b[k + b_dim1], ldb); clacgv_(nrhs, &b[k + b_dim1], ldb); clacgv_(nrhs, &b[k - 1 + b_dim1], ldb); i__1 = *n - k; q__1.r = -1.f, q__1.i = -0.f; cgemv_("Conjugate transpose", &i__1, nrhs, &q__1, &b[k + 1 + b_dim1], ldb, &ap[kc - (*n - k)], &c__1, &c_b1, &b[k - 1 + b_dim1], ldb); clacgv_(nrhs, &b[k - 1 + b_dim1], ldb); } /* Interchange rows K and -IPIV(K). */ kp = -ipiv[k]; if (kp != k) { cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); } kc -= *n - k + 2; k += -2; } goto L90; L100: ; } return 0; /* End of CHPTRS */ } /* chptrs_ */