#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int chegvd_(integer *itype, char *jobz, char *uplo, integer * n, complex *a, integer *lda, complex *b, integer *ldb, real *w, complex *work, integer *lwork, real *rwork, integer *lrwork, integer * iwork, integer *liwork, integer *info ) { /* -- LAPACK driver routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CHEGVD computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments ========= ITYPE (input) INTEGER Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*x JOBZ (input) CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO (input) CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored. N (input) INTEGER The order of the matrices A and B. N >= 0. A (input/output) COMPLEX array, dimension (LDA, N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = 'V', then if INFO = 0, A contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**H*B*Z = I; if ITYPE = 3, Z**H*inv(B)*Z = I. If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') or the lower triangle (if UPLO='L') of A, including the diagonal, is destroyed. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input/output) COMPLEX array, dimension (LDB, N) On entry, the Hermitian matrix B. If UPLO = 'U', the leading N-by-N upper triangular part of B contains the upper triangular part of the matrix B. If UPLO = 'L', the leading N-by-N lower triangular part of B contains the lower triangular part of the matrix B. On exit, if INFO <= N, the part of B containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization B = U**H*U or B = L*L**H. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). W (output) REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The length of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >= N + 1. If JOBZ = 'V' and N > 1, LWORK >= 2*N + N**2. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. RWORK (workspace/output) REAL array, dimension (MAX(1,LRWORK)) On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. LRWORK (input) INTEGER The dimension of the array RWORK. If N <= 1, LRWORK >= 1. If JOBZ = 'N' and N > 1, LRWORK >= N. If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2. If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. LIWORK (input) INTEGER The dimension of the array IWORK. If N <= 1, LIWORK >= 1. If JOBZ = 'N' and N > 1, LIWORK >= 1. If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: CPOTRF or CHEEVD returned an error code: <= N: if INFO = i and JOBZ = 'N', then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = 'V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1); > N: if INFO = N + i, for 1 <= i <= N, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. Further Details =============== Based on contributions by Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA Modified so that no backsubstitution is performed if CHEEVD fails to converge (NEIG in old code could be greater than N causing out of bounds reference to A - reported by Ralf Meyer). Also corrected the description of INFO and the test on ITYPE. Sven, 16 Feb 05. ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static complex c_b1 = {1.f,0.f}; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1; real r__1, r__2; /* Local variables */ static integer lopt; extern logical lsame_(char *, char *); extern /* Subroutine */ int ctrmm_(char *, char *, char *, char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *); static integer lwmin; static char trans[1]; static integer liopt; extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *); static logical upper; static integer lropt; static logical wantz; extern /* Subroutine */ int cheevd_(char *, char *, integer *, complex *, integer *, real *, complex *, integer *, real *, integer *, integer *, integer *, integer *), chegst_(integer *, char *, integer *, complex *, integer *, complex *, integer *, integer *), xerbla_(char *, integer *), cpotrf_( char *, integer *, complex *, integer *, integer *); static integer liwmin, lrwmin; static logical lquery; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --w; --work; --rwork; --iwork; /* Function Body */ wantz = lsame_(jobz, "V"); upper = lsame_(uplo, "U"); lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1; *info = 0; if (*n <= 1) { lwmin = 1; lrwmin = 1; liwmin = 1; } else if (wantz) { lwmin = (*n << 1) + *n * *n; lrwmin = *n * 5 + 1 + (*n << 1) * *n; liwmin = *n * 5 + 3; } else { lwmin = *n + 1; lrwmin = *n; liwmin = 1; } lopt = lwmin; lropt = lrwmin; liopt = liwmin; if (*itype < 1 || *itype > 3) { *info = -1; } else if (! (wantz || lsame_(jobz, "N"))) { *info = -2; } else if (! (upper || lsame_(uplo, "L"))) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*lda < max(1,*n)) { *info = -6; } else if (*ldb < max(1,*n)) { *info = -8; } if (*info == 0) { work[1].r = (real) lopt, work[1].i = 0.f; rwork[1] = (real) lropt; iwork[1] = liopt; if (*lwork < lwmin && ! lquery) { *info = -11; } else if (*lrwork < lrwmin && ! lquery) { *info = -13; } else if (*liwork < liwmin && ! lquery) { *info = -15; } } if (*info != 0) { i__1 = -(*info); xerbla_("CHEGVD", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Form a Cholesky factorization of B. */ cpotrf_(uplo, n, &b[b_offset], ldb, info); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem and solve. */ chegst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info); cheevd_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, &rwork[ 1], lrwork, &iwork[1], liwork, info); /* Computing MAX */ r__1 = (real) lopt, r__2 = work[1].r; lopt = dmax(r__1,r__2); /* Computing MAX */ r__1 = (real) lropt; lropt = dmax(r__1,rwork[1]); /* Computing MAX */ r__1 = (real) liopt, r__2 = (real) iwork[1]; liopt = dmax(r__1,r__2); if (wantz && *info == 0) { /* Backtransform eigenvectors to the original problem. */ if (*itype == 1 || *itype == 2) { /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */ if (upper) { *(unsigned char *)trans = 'N'; } else { *(unsigned char *)trans = 'C'; } ctrsm_("Left", uplo, trans, "Non-unit", n, n, &c_b1, &b[b_offset], ldb, &a[a_offset], lda); } else if (*itype == 3) { /* For B*A*x=(lambda)*x; backtransform eigenvectors: x = L*y or U'*y */ if (upper) { *(unsigned char *)trans = 'C'; } else { *(unsigned char *)trans = 'N'; } ctrmm_("Left", uplo, trans, "Non-unit", n, n, &c_b1, &b[b_offset], ldb, &a[a_offset], lda); } } work[1].r = (real) lopt, work[1].i = 0.f; rwork[1] = (real) lropt; iwork[1] = liopt; return 0; /* End of CHEGVD */ } /* chegvd_ */