#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b23 = 0.; static integer c__0 = 0; static doublereal c_b39 = 1.; /* Subroutine */ int dlatme_(integer *n, char *dist, integer *iseed, doublereal *d__, integer *mode, doublereal *cond, doublereal *dmax__, char *ei, char *rsign, char *upper, char *sim, doublereal *ds, integer *modes, doublereal *conds, integer *kl, integer *ku, doublereal *anorm, doublereal *a, integer *lda, doublereal *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; doublereal d__1, d__2, d__3; /* Local variables */ integer i__, j, ic, jc, ir, jr, jcr; doublereal tau; logical bads; extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *); integer isim; doublereal temp; logical badei; doublereal alpha; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int dgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); integer iinfo; doublereal tempa[1]; integer icols; logical useei; integer idist; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); integer irows; extern /* Subroutine */ int dlatm1_(integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *, integer *); extern doublereal dlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int dlarge_(integer *, doublereal *, integer *, integer *, doublereal *, integer *), dlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *); extern doublereal dlaran_(integer *); extern /* Subroutine */ int dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *), dlarnv_(integer *, integer *, integer *, doublereal *); integer irsign, iupper; doublereal xnorms; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLATME generates random non-symmetric square matrices with */ /* specified eigenvalues for testing LAPACK programs. */ /* DLATME operates by applying the following sequence of */ /* operations: */ /* 1. Set the diagonal to D, where D may be input or */ /* computed according to MODE, COND, DMAX, and RSIGN */ /* as described below. */ /* 2. If complex conjugate pairs are desired (MODE=0 and EI(1)='R', */ /* or MODE=5), certain pairs of adjacent elements of D are */ /* interpreted as the real and complex parts of a complex */ /* conjugate pair; A thus becomes block diagonal, with 1x1 */ /* and 2x2 blocks. */ /* 3. If UPPER='T', the upper triangle of A is set to random values */ /* out of distribution DIST. */ /* 4. If SIM='T', A is multiplied on the left by a random matrix */ /* X, whose singular values are specified by DS, MODES, and */ /* CONDS, and on the right by X inverse. */ /* 5. If KL < N-1, the lower bandwidth is reduced to KL using */ /* Householder transformations. If KU < N-1, the upper */ /* bandwidth is reduced to KU. */ /* 6. If ANORM is not negative, the matrix is scaled to have */ /* maximum-element-norm ANORM. */ /* (Note: since the matrix cannot be reduced beyond Hessenberg form, */ /* no packing options are available.) */ /* Arguments */ /* ========= */ /* N - INTEGER */ /* The number of columns (or rows) of A. Not modified. */ /* DIST - CHARACTER*1 */ /* On entry, DIST specifies the type of distribution to be used */ /* to generate the random eigen-/singular values, and for the */ /* upper triangle (see UPPER). */ /* 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform ) */ /* 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric ) */ /* 'N' => NORMAL( 0, 1 ) ( 'N' for normal ) */ /* Not modified. */ /* ISEED - INTEGER array, dimension ( 4 ) */ /* On entry ISEED specifies the seed of the random number */ /* generator. They should lie between 0 and 4095 inclusive, */ /* and ISEED(4) should be odd. The random number generator */ /* uses a linear congruential sequence limited to small */ /* integers, and so should produce machine independent */ /* random numbers. The values of ISEED are changed on */ /* exit, and can be used in the next call to DLATME */ /* to continue the same random number sequence. */ /* Changed on exit. */ /* D - DOUBLE PRECISION array, dimension ( N ) */ /* This array is used to specify the eigenvalues of A. If */ /* MODE=0, then D is assumed to contain the eigenvalues (but */ /* see the description of EI), otherwise they will be */ /* computed according to MODE, COND, DMAX, and RSIGN and */ /* placed in D. */ /* Modified if MODE is nonzero. */ /* MODE - INTEGER */ /* On entry this describes how the eigenvalues are to */ /* be specified: */ /* MODE = 0 means use D (with EI) as input */ /* MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND */ /* MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND */ /* MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) */ /* MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */ /* MODE = 5 sets D to random numbers in the range */ /* ( 1/COND , 1 ) such that their logarithms */ /* are uniformly distributed. Each odd-even pair */ /* of elements will be either used as two real */ /* eigenvalues or as the real and imaginary part */ /* of a complex conjugate pair of eigenvalues; */ /* the choice of which is done is random, with */ /* 50-50 probability, for each pair. */ /* MODE = 6 set D to random numbers from same distribution */ /* as the rest of the matrix. */ /* MODE < 0 has the same meaning as ABS(MODE), except that */ /* the order of the elements of D is reversed. */ /* Thus if MODE is between 1 and 4, D has entries ranging */ /* from 1 to 1/COND, if between -1 and -4, D has entries */ /* ranging from 1/COND to 1, */ /* Not modified. */ /* COND - DOUBLE PRECISION */ /* On entry, this is used as described under MODE above. */ /* If used, it must be >= 1. Not modified. */ /* DMAX - DOUBLE PRECISION */ /* If MODE is neither -6, 0 nor 6, the contents of D, as */ /* computed according to MODE and COND, will be scaled by */ /* DMAX / max(abs(D(i))). Note that DMAX need not be */ /* positive: if DMAX is negative (or zero), D will be */ /* scaled by a negative number (or zero). */ /* Not modified. */ /* EI - CHARACTER*1 array, dimension ( N ) */ /* If MODE is 0, and EI(1) is not ' ' (space character), */ /* this array specifies which elements of D (on input) are */ /* real eigenvalues and which are the real and imaginary parts */ /* of a complex conjugate pair of eigenvalues. The elements */ /* of EI may then only have the values 'R' and 'I'. If */ /* EI(j)='R' and EI(j+1)='I', then the j-th eigenvalue is */ /* CMPLX( D(j) , D(j+1) ), and the (j+1)-th is the complex */ /* conjugate thereof. If EI(j)=EI(j+1)='R', then the j-th */ /* eigenvalue is D(j) (i.e., real). EI(1) may not be 'I', */ /* nor may two adjacent elements of EI both have the value 'I'. */ /* If MODE is not 0, then EI is ignored. If MODE is 0 and */ /* EI(1)=' ', then the eigenvalues will all be real. */ /* Not modified. */ /* RSIGN - CHARACTER*1 */ /* If MODE is not 0, 6, or -6, and RSIGN='T', then the */ /* elements of D, as computed according to MODE and COND, will */ /* be multiplied by a random sign (+1 or -1). If RSIGN='F', */ /* they will not be. RSIGN may only have the values 'T' or */ /* 'F'. */ /* Not modified. */ /* UPPER - CHARACTER*1 */ /* If UPPER='T', then the elements of A above the diagonal */ /* (and above the 2x2 diagonal blocks, if A has complex */ /* eigenvalues) will be set to random numbers out of DIST. */ /* If UPPER='F', they will not. UPPER may only have the */ /* values 'T' or 'F'. */ /* Not modified. */ /* SIM - CHARACTER*1 */ /* If SIM='T', then A will be operated on by a "similarity */ /* transform", i.e., multiplied on the left by a matrix X and */ /* on the right by X inverse. X = U S V, where U and V are */ /* random unitary matrices and S is a (diagonal) matrix of */ /* singular values specified by DS, MODES, and CONDS. If */ /* SIM='F', then A will not be transformed. */ /* Not modified. */ /* DS - DOUBLE PRECISION array, dimension ( N ) */ /* This array is used to specify the singular values of X, */ /* in the same way that D specifies the eigenvalues of A. */ /* If MODE=0, the DS contains the singular values, which */ /* may not be zero. */ /* Modified if MODE is nonzero. */ /* MODES - INTEGER */ /* CONDS - DOUBLE PRECISION */ /* Same as MODE and COND, but for specifying the diagonal */ /* of S. MODES=-6 and +6 are not allowed (since they would */ /* result in randomly ill-conditioned eigenvalues.) */ /* KL - INTEGER */ /* This specifies the lower bandwidth of the matrix. KL=1 */ /* specifies upper Hessenberg form. If KL is at least N-1, */ /* then A will have full lower bandwidth. KL must be at */ /* least 1. */ /* Not modified. */ /* KU - INTEGER */ /* This specifies the upper bandwidth of the matrix. KU=1 */ /* specifies lower Hessenberg form. If KU is at least N-1, */ /* then A will have full upper bandwidth; if KU and KL */ /* are both at least N-1, then A will be dense. Only one of */ /* KU and KL may be less than N-1. KU must be at least 1. */ /* Not modified. */ /* ANORM - DOUBLE PRECISION */ /* If ANORM is not negative, then A will be scaled by a non- */ /* negative real number to make the maximum-element-norm of A */ /* to be ANORM. */ /* Not modified. */ /* A - DOUBLE PRECISION array, dimension ( LDA, N ) */ /* On exit A is the desired test matrix. */ /* Modified. */ /* LDA - INTEGER */ /* LDA specifies the first dimension of A as declared in the */ /* calling program. LDA must be at least N. */ /* Not modified. */ /* WORK - DOUBLE PRECISION array, dimension ( 3*N ) */ /* Workspace. */ /* Modified. */ /* INFO - INTEGER */ /* Error code. On exit, INFO will be set to one of the */ /* following values: */ /* 0 => normal return */ /* -1 => N negative */ /* -2 => DIST illegal string */ /* -5 => MODE not in range -6 to 6 */ /* -6 => COND less than 1.0, and MODE neither -6, 0 nor 6 */ /* -8 => EI(1) is not ' ' or 'R', EI(j) is not 'R' or 'I', or */ /* two adjacent elements of EI are 'I'. */ /* -9 => RSIGN is not 'T' or 'F' */ /* -10 => UPPER is not 'T' or 'F' */ /* -11 => SIM is not 'T' or 'F' */ /* -12 => MODES=0 and DS has a zero singular value. */ /* -13 => MODES is not in the range -5 to 5. */ /* -14 => MODES is nonzero and CONDS is less than 1. */ /* -15 => KL is less than 1. */ /* -16 => KU is less than 1, or KL and KU are both less than */ /* N-1. */ /* -19 => LDA is less than N. */ /* 1 => Error return from DLATM1 (computing D) */ /* 2 => Cannot scale to DMAX (max. eigenvalue is 0) */ /* 3 => Error return from DLATM1 (computing DS) */ /* 4 => Error return from DLARGE */ /* 5 => Zero singular value from DLATM1. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* 1) Decode and Test the input parameters. */ /* Initialize flags & seed. */ /* Parameter adjustments */ --iseed; --d__; --ei; --ds; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --work; /* Function Body */ *info = 0; /* Quick return if possible */ if (*n == 0) { return 0; } /* Decode DIST */ if (lsame_(dist, "U")) { idist = 1; } else if (lsame_(dist, "S")) { idist = 2; } else if (lsame_(dist, "N")) { idist = 3; } else { idist = -1; } /* Check EI */ useei = TRUE_; badei = FALSE_; if (lsame_(ei + 1, " ") || *mode != 0) { useei = FALSE_; } else { if (lsame_(ei + 1, "R")) { i__1 = *n; for (j = 2; j <= i__1; ++j) { if (lsame_(ei + j, "I")) { if (lsame_(ei + (j - 1), "I")) { badei = TRUE_; } } else { if (! lsame_(ei + j, "R")) { badei = TRUE_; } } /* L10: */ } } else { badei = TRUE_; } } /* Decode RSIGN */ if (lsame_(rsign, "T")) { irsign = 1; } else if (lsame_(rsign, "F")) { irsign = 0; } else { irsign = -1; } /* Decode UPPER */ if (lsame_(upper, "T")) { iupper = 1; } else if (lsame_(upper, "F")) { iupper = 0; } else { iupper = -1; } /* Decode SIM */ if (lsame_(sim, "T")) { isim = 1; } else if (lsame_(sim, "F")) { isim = 0; } else { isim = -1; } /* Check DS, if MODES=0 and ISIM=1 */ bads = FALSE_; if (*modes == 0 && isim == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (ds[j] == 0.) { bads = TRUE_; } /* L20: */ } } /* Set INFO if an error */ if (*n < 0) { *info = -1; } else if (idist == -1) { *info = -2; } else if (abs(*mode) > 6) { *info = -5; } else if (*mode != 0 && abs(*mode) != 6 && *cond < 1.) { *info = -6; } else if (badei) { *info = -8; } else if (irsign == -1) { *info = -9; } else if (iupper == -1) { *info = -10; } else if (isim == -1) { *info = -11; } else if (bads) { *info = -12; } else if (isim == 1 && abs(*modes) > 5) { *info = -13; } else if (isim == 1 && *modes != 0 && *conds < 1.) { *info = -14; } else if (*kl < 1) { *info = -15; } else if (*ku < 1 || *ku < *n - 1 && *kl < *n - 1) { *info = -16; } else if (*lda < max(1,*n)) { *info = -19; } if (*info != 0) { i__1 = -(*info); xerbla_("DLATME", &i__1); return 0; } /* Initialize random number generator */ for (i__ = 1; i__ <= 4; ++i__) { iseed[i__] = (i__1 = iseed[i__], abs(i__1)) % 4096; /* L30: */ } if (iseed[4] % 2 != 1) { ++iseed[4]; } /* 2) Set up diagonal of A */ /* Compute D according to COND and MODE */ dlatm1_(mode, cond, &irsign, &idist, &iseed[1], &d__[1], n, &iinfo); if (iinfo != 0) { *info = 1; return 0; } if (*mode != 0 && abs(*mode) != 6) { /* Scale by DMAX */ temp = abs(d__[1]); i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { /* Computing MAX */ d__2 = temp, d__3 = (d__1 = d__[i__], abs(d__1)); temp = max(d__2,d__3); /* L40: */ } if (temp > 0.) { alpha = *dmax__ / temp; } else if (*dmax__ != 0.) { *info = 2; return 0; } else { alpha = 0.; } dscal_(n, &alpha, &d__[1], &c__1); } dlaset_("Full", n, n, &c_b23, &c_b23, &a[a_offset], lda); i__1 = *lda + 1; dcopy_(n, &d__[1], &c__1, &a[a_offset], &i__1); /* Set up complex conjugate pairs */ if (*mode == 0) { if (useei) { i__1 = *n; for (j = 2; j <= i__1; ++j) { if (lsame_(ei + j, "I")) { a[j - 1 + j * a_dim1] = a[j + j * a_dim1]; a[j + (j - 1) * a_dim1] = -a[j + j * a_dim1]; a[j + j * a_dim1] = a[j - 1 + (j - 1) * a_dim1]; } /* L50: */ } } } else if (abs(*mode) == 5) { i__1 = *n; for (j = 2; j <= i__1; j += 2) { if (dlaran_(&iseed[1]) > .5) { a[j - 1 + j * a_dim1] = a[j + j * a_dim1]; a[j + (j - 1) * a_dim1] = -a[j + j * a_dim1]; a[j + j * a_dim1] = a[j - 1 + (j - 1) * a_dim1]; } /* L60: */ } } /* 3) If UPPER='T', set upper triangle of A to random numbers. */ /* (but don't modify the corners of 2x2 blocks.) */ if (iupper != 0) { i__1 = *n; for (jc = 2; jc <= i__1; ++jc) { if (a[jc - 1 + jc * a_dim1] != 0.) { jr = jc - 2; } else { jr = jc - 1; } dlarnv_(&idist, &iseed[1], &jr, &a[jc * a_dim1 + 1]); /* L70: */ } } /* 4) If SIM='T', apply similarity transformation. */ /* -1 */ /* Transform is X A X , where X = U S V, thus */ /* it is U S V A V' (1/S) U' */ if (isim != 0) { /* Compute S (singular values of the eigenvector matrix) */ /* according to CONDS and MODES */ dlatm1_(modes, conds, &c__0, &c__0, &iseed[1], &ds[1], n, &iinfo); if (iinfo != 0) { *info = 3; return 0; } /* Multiply by V and V' */ dlarge_(n, &a[a_offset], lda, &iseed[1], &work[1], &iinfo); if (iinfo != 0) { *info = 4; return 0; } /* Multiply by S and (1/S) */ i__1 = *n; for (j = 1; j <= i__1; ++j) { dscal_(n, &ds[j], &a[j + a_dim1], lda); if (ds[j] != 0.) { d__1 = 1. / ds[j]; dscal_(n, &d__1, &a[j * a_dim1 + 1], &c__1); } else { *info = 5; return 0; } /* L80: */ } /* Multiply by U and U' */ dlarge_(n, &a[a_offset], lda, &iseed[1], &work[1], &iinfo); if (iinfo != 0) { *info = 4; return 0; } } /* 5) Reduce the bandwidth. */ if (*kl < *n - 1) { /* Reduce bandwidth -- kill column */ i__1 = *n - 1; for (jcr = *kl + 1; jcr <= i__1; ++jcr) { ic = jcr - *kl; irows = *n + 1 - jcr; icols = *n + *kl - jcr; dcopy_(&irows, &a[jcr + ic * a_dim1], &c__1, &work[1], &c__1); xnorms = work[1]; dlarfg_(&irows, &xnorms, &work[2], &c__1, &tau); work[1] = 1.; dgemv_("T", &irows, &icols, &c_b39, &a[jcr + (ic + 1) * a_dim1], lda, &work[1], &c__1, &c_b23, &work[irows + 1], &c__1); d__1 = -tau; dger_(&irows, &icols, &d__1, &work[1], &c__1, &work[irows + 1], & c__1, &a[jcr + (ic + 1) * a_dim1], lda); dgemv_("N", n, &irows, &c_b39, &a[jcr * a_dim1 + 1], lda, &work[1] , &c__1, &c_b23, &work[irows + 1], &c__1); d__1 = -tau; dger_(n, &irows, &d__1, &work[irows + 1], &c__1, &work[1], &c__1, &a[jcr * a_dim1 + 1], lda); a[jcr + ic * a_dim1] = xnorms; i__2 = irows - 1; dlaset_("Full", &i__2, &c__1, &c_b23, &c_b23, &a[jcr + 1 + ic * a_dim1], lda); /* L90: */ } } else if (*ku < *n - 1) { /* Reduce upper bandwidth -- kill a row at a time. */ i__1 = *n - 1; for (jcr = *ku + 1; jcr <= i__1; ++jcr) { ir = jcr - *ku; irows = *n + *ku - jcr; icols = *n + 1 - jcr; dcopy_(&icols, &a[ir + jcr * a_dim1], lda, &work[1], &c__1); xnorms = work[1]; dlarfg_(&icols, &xnorms, &work[2], &c__1, &tau); work[1] = 1.; dgemv_("N", &irows, &icols, &c_b39, &a[ir + 1 + jcr * a_dim1], lda, &work[1], &c__1, &c_b23, &work[icols + 1], &c__1); d__1 = -tau; dger_(&irows, &icols, &d__1, &work[icols + 1], &c__1, &work[1], & c__1, &a[ir + 1 + jcr * a_dim1], lda); dgemv_("C", &icols, n, &c_b39, &a[jcr + a_dim1], lda, &work[1], & c__1, &c_b23, &work[icols + 1], &c__1); d__1 = -tau; dger_(&icols, n, &d__1, &work[1], &c__1, &work[icols + 1], &c__1, &a[jcr + a_dim1], lda); a[ir + jcr * a_dim1] = xnorms; i__2 = icols - 1; dlaset_("Full", &c__1, &i__2, &c_b23, &c_b23, &a[ir + (jcr + 1) * a_dim1], lda); /* L100: */ } } /* Scale the matrix to have norm ANORM */ if (*anorm >= 0.) { temp = dlange_("M", n, n, &a[a_offset], lda, tempa); if (temp > 0.) { alpha = *anorm / temp; i__1 = *n; for (j = 1; j <= i__1; ++j) { dscal_(n, &alpha, &a[j * a_dim1 + 1], &c__1); /* L110: */ } } } return 0; /* End of DLATME */ } /* dlatme_ */