#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static complex c_b2 = {1.f,0.f}; static integer c__3 = 3; static integer c__1 = 1; /* Subroutine */ int claror_(char *side, char *init, integer *m, integer *n, complex *a, integer *lda, integer *iseed, complex *x, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; complex q__1, q__2; /* Builtin functions */ double c_abs(complex *); void r_cnjg(complex *, complex *); /* Local variables */ integer j, kbeg, jcol; real xabs; integer irow; extern /* Subroutine */ int cgerc_(integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, integer *), cscal_(integer *, complex *, complex *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex * , complex *, integer *, complex *, integer *, complex *, complex * , integer *); complex csign; integer ixfrm, itype, nxfrm; real xnorm; extern doublereal scnrm2_(integer *, complex *, integer *); extern /* Subroutine */ int clacgv_(integer *, complex *, integer *); extern /* Complex */ VOID clarnd_(complex *, integer *, integer *); extern /* Subroutine */ int claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *); real factor; complex xnorms; /* -- LAPACK auxiliary test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CLAROR pre- or post-multiplies an M by N matrix A by a random */ /* unitary matrix U, overwriting A. A may optionally be */ /* initialized to the identity matrix before multiplying by U. */ /* U is generated using the method of G.W. Stewart */ /* ( SIAM J. Numer. Anal. 17, 1980, pp. 403-409 ). */ /* (BLAS-2 version) */ /* Arguments */ /* ========= */ /* SIDE - CHARACTER*1 */ /* SIDE specifies whether A is multiplied on the left or right */ /* by U. */ /* SIDE = 'L' Multiply A on the left (premultiply) by U */ /* SIDE = 'R' Multiply A on the right (postmultiply) by U* */ /* SIDE = 'C' Multiply A on the left by U and the right by U* */ /* SIDE = 'T' Multiply A on the left by U and the right by U' */ /* Not modified. */ /* INIT - CHARACTER*1 */ /* INIT specifies whether or not A should be initialized to */ /* the identity matrix. */ /* INIT = 'I' Initialize A to (a section of) the */ /* identity matrix before applying U. */ /* INIT = 'N' No initialization. Apply U to the */ /* input matrix A. */ /* INIT = 'I' may be used to generate square (i.e., unitary) */ /* or rectangular orthogonal matrices (orthogonality being */ /* in the sense of CDOTC): */ /* For square matrices, M=N, and SIDE many be either 'L' or */ /* 'R'; the rows will be orthogonal to each other, as will the */ /* columns. */ /* For rectangular matrices where M < N, SIDE = 'R' will */ /* produce a dense matrix whose rows will be orthogonal and */ /* whose columns will not, while SIDE = 'L' will produce a */ /* matrix whose rows will be orthogonal, and whose first M */ /* columns will be orthogonal, the remaining columns being */ /* zero. */ /* For matrices where M > N, just use the previous */ /* explaination, interchanging 'L' and 'R' and "rows" and */ /* "columns". */ /* Not modified. */ /* M - INTEGER */ /* Number of rows of A. Not modified. */ /* N - INTEGER */ /* Number of columns of A. Not modified. */ /* A - COMPLEX array, dimension ( LDA, N ) */ /* Input and output array. Overwritten by U A ( if SIDE = 'L' ) */ /* or by A U ( if SIDE = 'R' ) */ /* or by U A U* ( if SIDE = 'C') */ /* or by U A U' ( if SIDE = 'T') on exit. */ /* LDA - INTEGER */ /* Leading dimension of A. Must be at least MAX ( 1, M ). */ /* Not modified. */ /* ISEED - INTEGER array, dimension ( 4 ) */ /* On entry ISEED specifies the seed of the random number */ /* generator. The array elements should be between 0 and 4095; */ /* if not they will be reduced mod 4096. Also, ISEED(4) must */ /* be odd. The random number generator uses a linear */ /* congruential sequence limited to small integers, and so */ /* should produce machine independent random numbers. The */ /* values of ISEED are changed on exit, and can be used in the */ /* next call to CLAROR to continue the same random number */ /* sequence. */ /* Modified. */ /* X - COMPLEX array, dimension ( 3*MAX( M, N ) ) */ /* Workspace. Of length: */ /* 2*M + N if SIDE = 'L', */ /* 2*N + M if SIDE = 'R', */ /* 3*N if SIDE = 'C' or 'T'. */ /* Modified. */ /* INFO - INTEGER */ /* An error flag. It is set to: */ /* 0 if no error. */ /* 1 if CLARND returned a bad random number (installation */ /* problem) */ /* -1 if SIDE is not L, R, C, or T. */ /* -3 if M is negative. */ /* -4 if N is negative or if SIDE is C or T and N is not equal */ /* to M. */ /* -6 if LDA is less than M. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --iseed; --x; /* Function Body */ if (*n == 0 || *m == 0) { return 0; } itype = 0; if (lsame_(side, "L")) { itype = 1; } else if (lsame_(side, "R")) { itype = 2; } else if (lsame_(side, "C")) { itype = 3; } else if (lsame_(side, "T")) { itype = 4; } /* Check for argument errors. */ *info = 0; if (itype == 0) { *info = -1; } else if (*m < 0) { *info = -3; } else if (*n < 0 || itype == 3 && *n != *m) { *info = -4; } else if (*lda < *m) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("CLAROR", &i__1); return 0; } if (itype == 1) { nxfrm = *m; } else { nxfrm = *n; } /* Initialize A to the identity matrix if desired */ if (lsame_(init, "I")) { claset_("Full", m, n, &c_b1, &c_b2, &a[a_offset], lda); } /* If no rotation possible, still multiply by */ /* a random complex number from the circle |x| = 1 */ /* 2) Compute Rotation by computing Householder */ /* Transformations H(2), H(3), ..., H(n). Note that the */ /* order in which they are computed is irrelevant. */ i__1 = nxfrm; for (j = 1; j <= i__1; ++j) { i__2 = j; x[i__2].r = 0.f, x[i__2].i = 0.f; /* L40: */ } i__1 = nxfrm; for (ixfrm = 2; ixfrm <= i__1; ++ixfrm) { kbeg = nxfrm - ixfrm + 1; /* Generate independent normal( 0, 1 ) random numbers */ i__2 = nxfrm; for (j = kbeg; j <= i__2; ++j) { i__3 = j; clarnd_(&q__1, &c__3, &iseed[1]); x[i__3].r = q__1.r, x[i__3].i = q__1.i; /* L50: */ } /* Generate a Householder transformation from the random vector X */ xnorm = scnrm2_(&ixfrm, &x[kbeg], &c__1); xabs = c_abs(&x[kbeg]); if (xabs != 0.f) { i__2 = kbeg; q__1.r = x[i__2].r / xabs, q__1.i = x[i__2].i / xabs; csign.r = q__1.r, csign.i = q__1.i; } else { csign.r = 1.f, csign.i = 0.f; } q__1.r = xnorm * csign.r, q__1.i = xnorm * csign.i; xnorms.r = q__1.r, xnorms.i = q__1.i; i__2 = nxfrm + kbeg; q__1.r = -csign.r, q__1.i = -csign.i; x[i__2].r = q__1.r, x[i__2].i = q__1.i; factor = xnorm * (xnorm + xabs); if (dabs(factor) < 1e-20f) { *info = 1; i__2 = -(*info); xerbla_("CLAROR", &i__2); return 0; } else { factor = 1.f / factor; } i__2 = kbeg; i__3 = kbeg; q__1.r = x[i__3].r + xnorms.r, q__1.i = x[i__3].i + xnorms.i; x[i__2].r = q__1.r, x[i__2].i = q__1.i; /* Apply Householder transformation to A */ if (itype == 1 || itype == 3 || itype == 4) { /* Apply H(k) on the left of A */ cgemv_("C", &ixfrm, n, &c_b2, &a[kbeg + a_dim1], lda, &x[kbeg], & c__1, &c_b1, &x[(nxfrm << 1) + 1], &c__1); q__2.r = factor, q__2.i = 0.f; q__1.r = -q__2.r, q__1.i = -q__2.i; cgerc_(&ixfrm, n, &q__1, &x[kbeg], &c__1, &x[(nxfrm << 1) + 1], & c__1, &a[kbeg + a_dim1], lda); } if (itype >= 2 && itype <= 4) { /* Apply H(k)* (or H(k)') on the right of A */ if (itype == 4) { clacgv_(&ixfrm, &x[kbeg], &c__1); } cgemv_("N", m, &ixfrm, &c_b2, &a[kbeg * a_dim1 + 1], lda, &x[kbeg] , &c__1, &c_b1, &x[(nxfrm << 1) + 1], &c__1); q__2.r = factor, q__2.i = 0.f; q__1.r = -q__2.r, q__1.i = -q__2.i; cgerc_(m, &ixfrm, &q__1, &x[(nxfrm << 1) + 1], &c__1, &x[kbeg], & c__1, &a[kbeg * a_dim1 + 1], lda); } /* L60: */ } clarnd_(&q__1, &c__3, &iseed[1]); x[1].r = q__1.r, x[1].i = q__1.i; xabs = c_abs(&x[1]); if (xabs != 0.f) { q__1.r = x[1].r / xabs, q__1.i = x[1].i / xabs; csign.r = q__1.r, csign.i = q__1.i; } else { csign.r = 1.f, csign.i = 0.f; } i__1 = nxfrm << 1; x[i__1].r = csign.r, x[i__1].i = csign.i; /* Scale the matrix A by D. */ if (itype == 1 || itype == 3 || itype == 4) { i__1 = *m; for (irow = 1; irow <= i__1; ++irow) { r_cnjg(&q__1, &x[nxfrm + irow]); cscal_(n, &q__1, &a[irow + a_dim1], lda); /* L70: */ } } if (itype == 2 || itype == 3) { i__1 = *n; for (jcol = 1; jcol <= i__1; ++jcol) { cscal_(m, &x[nxfrm + jcol], &a[jcol * a_dim1 + 1], &c__1); /* L80: */ } } if (itype == 4) { i__1 = *n; for (jcol = 1; jcol <= i__1; ++jcol) { r_cnjg(&q__1, &x[nxfrm + jcol]); cscal_(m, &q__1, &a[jcol * a_dim1 + 1], &c__1); /* L90: */ } } return 0; /* End of CLAROR */ } /* claror_ */