#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int ztrt01_(char *uplo, char *diag, integer *n, doublecomplex *a, integer *lda, doublecomplex *ainv, integer *ldainv, doublereal *rcond, doublereal *rwork, doublereal *resid) { /* System generated locals */ integer a_dim1, a_offset, ainv_dim1, ainv_offset, i__1, i__2, i__3; doublecomplex z__1; /* Local variables */ integer j; doublereal eps; extern logical lsame_(char *, char *); doublereal anorm; extern /* Subroutine */ int ztrmv_(char *, char *, char *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern doublereal dlamch_(char *); doublereal ainvnm; extern doublereal zlantr_(char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZTRT01 computes the residual for a triangular matrix A times its */ /* inverse: */ /* RESID = norm( A*AINV - I ) / ( N * norm(A) * norm(AINV) * EPS ), */ /* where EPS is the machine epsilon. */ /* Arguments */ /* ========== */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the matrix A is upper or lower triangular. */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* DIAG (input) CHARACTER*1 */ /* Specifies whether or not the matrix A is unit triangular. */ /* = 'N': Non-unit triangular */ /* = 'U': Unit triangular */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input) COMPLEX*16 array, dimension (LDA,N) */ /* The triangular matrix A. If UPLO = 'U', the leading n by n */ /* upper triangular part of the array A contains the upper */ /* triangular matrix, and the strictly lower triangular part of */ /* A is not referenced. If UPLO = 'L', the leading n by n lower */ /* triangular part of the array A contains the lower triangular */ /* matrix, and the strictly upper triangular part of A is not */ /* referenced. If DIAG = 'U', the diagonal elements of A are */ /* also not referenced and are assumed to be 1. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* AINV (input) COMPLEX*16 array, dimension (LDAINV,N) */ /* On entry, the (triangular) inverse of the matrix A, in the */ /* same storage format as A. */ /* On exit, the contents of AINV are destroyed. */ /* LDAINV (input) INTEGER */ /* The leading dimension of the array AINV. LDAINV >= max(1,N). */ /* RCOND (output) DOUBLE PRECISION */ /* The reciprocal condition number of A, computed as */ /* 1/(norm(A) * norm(AINV)). */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* RESID (output) DOUBLE PRECISION */ /* norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0 */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; ainv_dim1 = *ldainv; ainv_offset = 1 + ainv_dim1; ainv -= ainv_offset; --rwork; /* Function Body */ if (*n <= 0) { *rcond = 1.; *resid = 0.; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. */ eps = dlamch_("Epsilon"); anorm = zlantr_("1", uplo, diag, n, n, &a[a_offset], lda, &rwork[1]); ainvnm = zlantr_("1", uplo, diag, n, n, &ainv[ainv_offset], ldainv, & rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { *rcond = 0.; *resid = 1. / eps; return 0; } *rcond = 1. / anorm / ainvnm; /* Set the diagonal of AINV to 1 if AINV has unit diagonal. */ if (lsame_(diag, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j + j * ainv_dim1; ainv[i__2].r = 1., ainv[i__2].i = 0.; /* L10: */ } } /* Compute A * AINV, overwriting AINV. */ if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { ztrmv_("Upper", "No transpose", diag, &j, &a[a_offset], lda, & ainv[j * ainv_dim1 + 1], &c__1); /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n - j + 1; ztrmv_("Lower", "No transpose", diag, &i__2, &a[j + j * a_dim1], lda, &ainv[j + j * ainv_dim1], &c__1); /* L30: */ } } /* Subtract 1 from each diagonal element to form A*AINV - I. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j + j * ainv_dim1; i__3 = j + j * ainv_dim1; z__1.r = ainv[i__3].r - 1., z__1.i = ainv[i__3].i; ainv[i__2].r = z__1.r, ainv[i__2].i = z__1.i; /* L40: */ } /* Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS) */ *resid = zlantr_("1", uplo, "Non-unit", n, n, &ainv[ainv_offset], ldainv, &rwork[1]); *resid = *resid * *rcond / (doublereal) (*n) / eps; return 0; /* End of ZTRT01 */ } /* ztrt01_ */