#include "f2c.h" #include "blaswrap.h" /* Subroutine */ int ztpt06_(doublereal *rcond, doublereal *rcondc, char * uplo, char *diag, integer *n, doublecomplex *ap, doublereal *rwork, doublereal *rat) { /* System generated locals */ doublereal d__1, d__2; /* Local variables */ doublereal eps, rmin, rmax, anorm; extern doublereal dlamch_(char *); doublereal bignum; extern doublereal zlantp_(char *, char *, char *, integer *, doublecomplex *, doublereal *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZTPT06 computes a test ratio comparing RCOND (the reciprocal */ /* condition number of the triangular matrix A) and RCONDC, the estimate */ /* computed by ZTPCON. Information about the triangular matrix is used */ /* if one estimate is zero and the other is non-zero to decide if */ /* underflow in the estimate is justified. */ /* Arguments */ /* ========= */ /* RCOND (input) DOUBLE PRECISION */ /* The estimate of the reciprocal condition number obtained by */ /* forming the explicit inverse of the matrix A and computing */ /* RCOND = 1/( norm(A) * norm(inv(A)) ). */ /* RCONDC (input) DOUBLE PRECISION */ /* The estimate of the reciprocal condition number computed by */ /* ZTPCON. */ /* UPLO (input) CHARACTER */ /* Specifies whether the matrix A is upper or lower triangular. */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* DIAG (input) CHARACTER */ /* Specifies whether or not the matrix A is unit triangular. */ /* = 'N': Non-unit triangular */ /* = 'U': Unit triangular */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input) COMPLEX*16 array, dimension (N*(N+1)/2) */ /* The upper or lower triangular matrix A, packed columnwise in */ /* a linear array. The j-th column of A is stored in the array */ /* AP as follows: */ /* if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', */ /* AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* RAT (output) DOUBLE PRECISION */ /* The test ratio. If both RCOND and RCONDC are nonzero, */ /* RAT = MAX( RCOND, RCONDC )/MIN( RCOND, RCONDC ) - 1. */ /* If RAT = 0, the two estimates are exactly the same. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --rwork; --ap; /* Function Body */ eps = dlamch_("Epsilon"); rmax = max(*rcond,*rcondc); rmin = min(*rcond,*rcondc); /* Do the easy cases first. */ if (rmin < 0.) { /* Invalid value for RCOND or RCONDC, return 1/EPS. */ *rat = 1. / eps; } else if (rmin > 0.) { /* Both estimates are positive, return RMAX/RMIN - 1. */ *rat = rmax / rmin - 1.; } else if (rmax == 0.) { /* Both estimates zero. */ *rat = 0.; } else { /* One estimate is zero, the other is non-zero. If the matrix is */ /* ill-conditioned, return the nonzero estimate multiplied by */ /* 1/EPS; if the matrix is badly scaled, return the nonzero */ /* estimate multiplied by BIGNUM/TMAX, where TMAX is the maximum */ /* element in absolute value in A. */ bignum = 1. / dlamch_("Safe minimum"); anorm = zlantp_("M", uplo, diag, n, &ap[1], &rwork[1]); /* Computing MIN */ d__1 = bignum / max(1.,anorm), d__2 = 1. / eps; *rat = rmax * min(d__1,d__2); } return 0; /* End of ZTPT06 */ } /* ztpt06_ */