#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int ztpt01_(char *uplo, char *diag, integer *n, doublecomplex *ap, doublecomplex *ainvp, doublereal *rcond, doublereal *rwork, doublereal *resid) { /* System generated locals */ integer i__1, i__2, i__3; doublecomplex z__1; /* Local variables */ integer j, jc; doublereal eps; extern logical lsame_(char *, char *); doublereal anorm; logical unitd; extern /* Subroutine */ int ztpmv_(char *, char *, char *, integer *, doublecomplex *, doublecomplex *, integer *); extern doublereal dlamch_(char *); doublereal ainvnm; extern doublereal zlantp_(char *, char *, char *, integer *, doublecomplex *, doublereal *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZTPT01 computes the residual for a triangular matrix A times its */ /* inverse when A is stored in packed format: */ /* RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ), */ /* where EPS is the machine epsilon. */ /* Arguments */ /* ========== */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the matrix A is upper or lower triangular. */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* DIAG (input) CHARACTER*1 */ /* Specifies whether or not the matrix A is unit triangular. */ /* = 'N': Non-unit triangular */ /* = 'U': Unit triangular */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input) COMPLEX*16 array, dimension (N*(N+1)/2) */ /* The original upper or lower triangular matrix A, packed */ /* columnwise in a linear array. The j-th column of A is stored */ /* in the array AP as follows: */ /* if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', */ /* AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. */ /* AINVP (input) COMPLEX*16 array, dimension (N*(N+1)/2) */ /* On entry, the (triangular) inverse of the matrix A, packed */ /* columnwise in a linear array as in AP. */ /* On exit, the contents of AINVP are destroyed. */ /* RCOND (output) DOUBLE PRECISION */ /* The reciprocal condition number of A, computed as */ /* 1/(norm(A) * norm(AINV)). */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* RESID (output) DOUBLE PRECISION */ /* norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0. */ /* Parameter adjustments */ --rwork; --ainvp; --ap; /* Function Body */ if (*n <= 0) { *rcond = 1.; *resid = 0.; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. */ eps = dlamch_("Epsilon"); anorm = zlantp_("1", uplo, diag, n, &ap[1], &rwork[1]); ainvnm = zlantp_("1", uplo, diag, n, &ainvp[1], &rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { *rcond = 0.; *resid = 1. / eps; return 0; } *rcond = 1. / anorm / ainvnm; /* Compute A * AINV, overwriting AINV. */ unitd = lsame_(diag, "U"); if (lsame_(uplo, "U")) { jc = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (unitd) { i__2 = jc + j - 1; ainvp[i__2].r = 1., ainvp[i__2].i = 0.; } /* Form the j-th column of A*AINV. */ ztpmv_("Upper", "No transpose", diag, &j, &ap[1], &ainvp[jc], & c__1); /* Subtract 1 from the diagonal to form A*AINV - I. */ i__2 = jc + j - 1; i__3 = jc + j - 1; z__1.r = ainvp[i__3].r - 1., z__1.i = ainvp[i__3].i; ainvp[i__2].r = z__1.r, ainvp[i__2].i = z__1.i; jc += j; /* L10: */ } } else { jc = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (unitd) { i__2 = jc; ainvp[i__2].r = 1., ainvp[i__2].i = 0.; } /* Form the j-th column of A*AINV. */ i__2 = *n - j + 1; ztpmv_("Lower", "No transpose", diag, &i__2, &ap[jc], &ainvp[jc], &c__1); /* Subtract 1 from the diagonal to form A*AINV - I. */ i__2 = jc; i__3 = jc; z__1.r = ainvp[i__3].r - 1., z__1.i = ainvp[i__3].i; ainvp[i__2].r = z__1.r, ainvp[i__2].i = z__1.i; jc = jc + *n - j + 1; /* L20: */ } } /* Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS) */ *resid = zlantp_("1", uplo, "Non-unit", n, &ainvp[1], &rwork[1]); *resid = *resid * *rcond / (doublereal) (*n) / eps; return 0; /* End of ZTPT01 */ } /* ztpt01_ */