#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int ztbt03_(char *uplo, char *trans, char *diag, integer *n, integer *kd, integer *nrhs, doublecomplex *ab, integer *ldab, doublereal *scale, doublereal *cnorm, doublereal *tscal, doublecomplex *x, integer *ldx, doublecomplex *b, integer *ldb, doublecomplex *work, doublereal *resid) { /* System generated locals */ integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; doublereal d__1, d__2; doublecomplex z__1; /* Builtin functions */ double z_abs(doublecomplex *); /* Local variables */ integer j, ix; doublereal eps, err; extern logical lsame_(char *, char *); doublereal xscal, tnorm; extern /* Subroutine */ int ztbmv_(char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); doublereal xnorm; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *); extern doublereal dlamch_(char *); extern /* Subroutine */ int zdscal_(integer *, doublereal *, doublecomplex *, integer *); extern integer izamax_(integer *, doublecomplex *, integer *); doublereal smlnum; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZTBT03 computes the residual for the solution to a scaled triangular */ /* system of equations A*x = s*b, A**T *x = s*b, or A**H *x = s*b */ /* when A is a triangular band matrix. Here A**T denotes the transpose */ /* of A, A**H denotes the conjugate transpose of A, s is a scalar, and */ /* x and b are N by NRHS matrices. The test ratio is the maximum over */ /* the number of right hand sides of */ /* norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */ /* where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the matrix A is upper or lower triangular. */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* TRANS (input) CHARACTER*1 */ /* Specifies the operation applied to A. */ /* = 'N': A *x = s*b (No transpose) */ /* = 'T': A**T *x = s*b (Transpose) */ /* = 'C': A**H *x = s*b (Conjugate transpose) */ /* DIAG (input) CHARACTER*1 */ /* Specifies whether or not the matrix A is unit triangular. */ /* = 'N': Non-unit triangular */ /* = 'U': Unit triangular */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KD (input) INTEGER */ /* The number of superdiagonals or subdiagonals of the */ /* triangular band matrix A. KD >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices X and B. NRHS >= 0. */ /* AB (input) COMPLEX*16 array, dimension (LDAB,N) */ /* The upper or lower triangular band matrix A, stored in the */ /* first kd+1 rows of the array. The j-th column of A is stored */ /* in the j-th column of the array AB as follows: */ /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KD+1. */ /* SCALE (input) DOUBLE PRECISION */ /* The scaling factor s used in solving the triangular system. */ /* CNORM (input) DOUBLE PRECISION array, dimension (N) */ /* The 1-norms of the columns of A, not counting the diagonal. */ /* TSCAL (input) DOUBLE PRECISION */ /* The scaling factor used in computing the 1-norms in CNORM. */ /* CNORM actually contains the column norms of TSCAL*A. */ /* X (input) COMPLEX*16 array, dimension (LDX,NRHS) */ /* The computed solution vectors for the system of linear */ /* equations. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* B (input) COMPLEX*16 array, dimension (LDB,NRHS) */ /* The right hand side vectors for the system of linear */ /* equations. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* WORK (workspace) COMPLEX*16 array, dimension (N) */ /* RESID (output) DOUBLE PRECISION */ /* The maximum over the number of right hand sides of */ /* norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0 */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --cnorm; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --work; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { *resid = 0.; return 0; } eps = dlamch_("Epsilon"); smlnum = dlamch_("Safe minimum"); /* Compute the norm of the triangular matrix A using the column */ /* norms already computed by ZLATBS. */ tnorm = 0.; if (lsame_(diag, "N")) { if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ d__1 = tnorm, d__2 = *tscal * z_abs(&ab[*kd + 1 + j * ab_dim1] ) + cnorm[j]; tnorm = max(d__1,d__2); /* L10: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ d__1 = tnorm, d__2 = *tscal * z_abs(&ab[j * ab_dim1 + 1]) + cnorm[j]; tnorm = max(d__1,d__2); /* L20: */ } } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ d__1 = tnorm, d__2 = *tscal + cnorm[j]; tnorm = max(d__1,d__2); /* L30: */ } } /* Compute the maximum over the number of right hand sides of */ /* norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */ *resid = 0.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { zcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1); ix = izamax_(n, &work[1], &c__1); /* Computing MAX */ d__1 = 1., d__2 = z_abs(&x[ix + j * x_dim1]); xnorm = max(d__1,d__2); xscal = 1. / xnorm / (doublereal) (*kd + 1); zdscal_(n, &xscal, &work[1], &c__1); ztbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[1], & c__1); d__1 = -(*scale) * xscal; z__1.r = d__1, z__1.i = 0.; zaxpy_(n, &z__1, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); ix = izamax_(n, &work[1], &c__1); err = *tscal * z_abs(&work[ix]); ix = izamax_(n, &x[j * x_dim1 + 1], &c__1); xnorm = z_abs(&x[ix + j * x_dim1]); if (err * smlnum <= xnorm) { if (xnorm > 0.) { err /= xnorm; } } else { if (err > 0.) { err = 1. / eps; } } if (err * smlnum <= tnorm) { if (tnorm > 0.) { err /= tnorm; } } else { if (err > 0.) { err = 1. / eps; } } *resid = max(*resid,err); /* L40: */ } return 0; /* End of ZTBT03 */ } /* ztbt03_ */