#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublecomplex c_b1 = {0.,0.}; /* Subroutine */ int zsyt03_(char *uplo, integer *n, doublecomplex *a, integer *lda, doublecomplex *ainv, integer *ldainv, doublecomplex * work, integer *ldwork, doublereal *rwork, doublereal *rcond, doublereal *resid) { /* System generated locals */ integer a_dim1, a_offset, ainv_dim1, ainv_offset, work_dim1, work_offset, i__1, i__2, i__3, i__4; doublecomplex z__1; /* Local variables */ integer i__, j; doublereal eps; extern logical lsame_(char *, char *); doublereal anorm; extern /* Subroutine */ int zsymm_(char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); extern doublereal dlamch_(char *), zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); doublereal ainvnm; extern doublereal zlansy_(char *, char *, integer *, doublecomplex *, integer *, doublereal *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZSYT03 computes the residual for a complex symmetric matrix times */ /* its inverse: */ /* norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ) */ /* where EPS is the machine epsilon. */ /* Arguments */ /* ========== */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* complex symmetric matrix A is stored: */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The number of rows and columns of the matrix A. N >= 0. */ /* A (input) COMPLEX*16 array, dimension (LDA,N) */ /* The original complex symmetric matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N) */ /* AINV (input/output) COMPLEX*16 array, dimension (LDAINV,N) */ /* On entry, the inverse of the matrix A, stored as a symmetric */ /* matrix in the same format as A. */ /* In this version, AINV is expanded into a full matrix and */ /* multiplied by A, so the opposing triangle of AINV will be */ /* changed; i.e., if the upper triangular part of AINV is */ /* stored, the lower triangular part will be used as work space. */ /* LDAINV (input) INTEGER */ /* The leading dimension of the array AINV. LDAINV >= max(1,N). */ /* WORK (workspace) COMPLEX*16 array, dimension (LDWORK,N) */ /* LDWORK (input) INTEGER */ /* The leading dimension of the array WORK. LDWORK >= max(1,N). */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* RCOND (output) DOUBLE PRECISION */ /* The reciprocal of the condition number of A, computed as */ /* RCOND = 1/ (norm(A) * norm(AINV)). */ /* RESID (output) DOUBLE PRECISION */ /* norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0 */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; ainv_dim1 = *ldainv; ainv_offset = 1 + ainv_dim1; ainv -= ainv_offset; work_dim1 = *ldwork; work_offset = 1 + work_dim1; work -= work_offset; --rwork; /* Function Body */ if (*n <= 0) { *rcond = 1.; *resid = 0.; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. */ eps = dlamch_("Epsilon"); anorm = zlansy_("1", uplo, n, &a[a_offset], lda, &rwork[1]); ainvnm = zlansy_("1", uplo, n, &ainv[ainv_offset], ldainv, &rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { *rcond = 0.; *resid = 1. / eps; return 0; } *rcond = 1. / anorm / ainvnm; /* Expand AINV into a full matrix and call ZSYMM to multiply */ /* AINV on the left by A (store the result in WORK). */ if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = j + i__ * ainv_dim1; i__4 = i__ + j * ainv_dim1; ainv[i__3].r = ainv[i__4].r, ainv[i__3].i = ainv[i__4].i; /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = j + i__ * ainv_dim1; i__4 = i__ + j * ainv_dim1; ainv[i__3].r = ainv[i__4].r, ainv[i__3].i = ainv[i__4].i; /* L30: */ } /* L40: */ } } z__1.r = -1., z__1.i = -0.; zsymm_("Left", uplo, n, n, &z__1, &a[a_offset], lda, &ainv[ainv_offset], ldainv, &c_b1, &work[work_offset], ldwork); /* Add the identity matrix to WORK . */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + i__ * work_dim1; i__3 = i__ + i__ * work_dim1; z__1.r = work[i__3].r + 1., z__1.i = work[i__3].i + 0.; work[i__2].r = z__1.r, work[i__2].i = z__1.i; /* L50: */ } /* Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS) */ *resid = zlange_("1", n, n, &work[work_offset], ldwork, &rwork[1]); *resid = *resid * *rcond / eps / (doublereal) (*n); return 0; /* End of ZSYT03 */ } /* zsyt03_ */