#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublereal c_b5 = 0.; static doublereal c_b6 = 1.; /* Subroutine */ int dsyt01_(char *uplo, integer *n, doublereal *a, integer * lda, doublereal *afac, integer *ldafac, integer *ipiv, doublereal * c__, integer *ldc, doublereal *rwork, doublereal *resid) { /* System generated locals */ integer a_dim1, a_offset, afac_dim1, afac_offset, c_dim1, c_offset, i__1, i__2; /* Local variables */ integer i__, j; doublereal eps; integer info; extern logical lsame_(char *, char *); doublereal anorm; extern doublereal dlamch_(char *); extern /* Subroutine */ int dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *); extern doublereal dlansy_(char *, char *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int dlavsy_(char *, char *, char *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DSYT01 reconstructs a symmetric indefinite matrix A from its */ /* block L*D*L' or U*D*U' factorization and computes the residual */ /* norm( C - A ) / ( N * norm(A) * EPS ), */ /* where C is the reconstructed matrix and EPS is the machine epsilon. */ /* Arguments */ /* ========== */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* symmetric matrix A is stored: */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The number of rows and columns of the matrix A. N >= 0. */ /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ /* The original symmetric matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N) */ /* AFAC (input) DOUBLE PRECISION array, dimension (LDAFAC,N) */ /* The factored form of the matrix A. AFAC contains the block */ /* diagonal matrix D and the multipliers used to obtain the */ /* factor L or U from the block L*D*L' or U*D*U' factorization */ /* as computed by DSYTRF. */ /* LDAFAC (input) INTEGER */ /* The leading dimension of the array AFAC. LDAFAC >= max(1,N). */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices from DSYTRF. */ /* C (workspace) DOUBLE PRECISION array, dimension (LDC,N) */ /* LDC (integer) INTEGER */ /* The leading dimension of the array C. LDC >= max(1,N). */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* RESID (output) DOUBLE PRECISION */ /* If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) */ /* If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; afac_dim1 = *ldafac; afac_offset = 1 + afac_dim1; afac -= afac_offset; --ipiv; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --rwork; /* Function Body */ if (*n <= 0) { *resid = 0.; return 0; } /* Determine EPS and the norm of A. */ eps = dlamch_("Epsilon"); anorm = dlansy_("1", uplo, n, &a[a_offset], lda, &rwork[1]); /* Initialize C to the identity matrix. */ dlaset_("Full", n, n, &c_b5, &c_b6, &c__[c_offset], ldc); /* Call DLAVSY to form the product D * U' (or D * L' ). */ dlavsy_(uplo, "Transpose", "Non-unit", n, n, &afac[afac_offset], ldafac, & ipiv[1], &c__[c_offset], ldc, &info); /* Call DLAVSY again to multiply by U (or L ). */ dlavsy_(uplo, "No transpose", "Unit", n, n, &afac[afac_offset], ldafac, & ipiv[1], &c__[c_offset], ldc, &info); /* Compute the difference C - A . */ if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] -= a[i__ + j * a_dim1]; /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] -= a[i__ + j * a_dim1]; /* L30: */ } /* L40: */ } } /* Compute norm( C - A ) / ( N * norm(A) * EPS ) */ *resid = dlansy_("1", uplo, n, &c__[c_offset], ldc, &rwork[1]); if (anorm <= 0.) { if (*resid != 0.) { *resid = 1. / eps; } } else { *resid = *resid / (doublereal) (*n) / anorm / eps; } return 0; /* End of DSYT01 */ } /* dsyt01_ */