#include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__1 = 1; static integer c__2 = 2; static integer c__0 = 0; static integer c_n1 = -1; static doublereal c_b49 = 0.; /* Subroutine */ int ddrvsy_(logical *dotype, integer *nn, integer *nval, integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, doublereal *a, doublereal *afac, doublereal *ainv, doublereal *b, doublereal *x, doublereal *xact, doublereal *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char facts[1*2] = "F" "N"; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5" ",\002, type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)"; static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a" "1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002, " "ratio =\002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5[2]; char ch__1[2]; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ integer i__, j, k, n, i1, i2, k1, nb, in, kl, ku, nt, lda; char fact[1]; integer ioff, mode, imat, info; char path[3], dist[1], uplo[1], type__[1]; integer nrun, ifact; extern /* Subroutine */ int dget04_(integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); integer nfail, iseed[4]; extern doublereal dget06_(doublereal *, doublereal *); integer nbmin; doublereal rcond; integer nimat; extern /* Subroutine */ int dpot02_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *), dpot05_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *); doublereal anorm; extern /* Subroutine */ int dsyt01_(char *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *); integer iuplo, izero, nerrs, lwork; logical zerot; extern /* Subroutine */ int dsysv_(char *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *); char xtype[1]; extern /* Subroutine */ int dlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *), aladhd_(integer *, char *), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); doublereal rcondc; extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), dlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *), dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), alasvm_(char *, integer *, integer *, integer *, integer *); doublereal cndnum; extern /* Subroutine */ int dlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublereal *, integer *, doublereal *, integer *); doublereal ainvnm; extern doublereal dlansy_(char *, char *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int xlaenv_(integer *, integer *), derrvx_(char *, integer *), dsytrf_(char *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); doublereal result[6]; extern /* Subroutine */ int dsytri_(char *, integer *, doublereal *, integer *, integer *, doublereal *, integer *), dsysvx_( char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___42 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___45 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DDRVSY tests the driver routines DSYSV and -SVX. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NRHS (input) INTEGER */ /* The number of right hand side vectors to be generated for */ /* each linear system. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for N, used in dimensioning the */ /* work arrays. */ /* A (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */ /* AFAC (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */ /* AINV (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */ /* B (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* X (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* XACT (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* WORK (workspace) DOUBLE PRECISION array, dimension */ /* (NMAX*max(2,NRHS)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) */ /* IWORK (workspace) INTEGER array, dimension (2*NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --ainv; --afac; --a; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "SY", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Computing MAX */ i__1 = *nmax << 1, i__2 = *nmax * *nrhs; lwork = max(i__1,i__2); /* Test the error exits */ if (*tsterr) { derrvx_(path, nout); } infoc_1.infot = 0; /* Set the block size and minimum block size for testing. */ nb = 1; nbmin = 2; xlaenv_(&c__1, &nb); xlaenv_(&c__2, &nbmin); /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; nimat = 10; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L170; } /* Skip types 3, 4, 5, or 6 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 6; if (zerot && n < imat - 2) { goto L170; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; /* Set up parameters with DLATB4 and generate a test matrix */ /* with DLATMS. */ dlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)6, (ftnlen)6); dlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, uplo, &a[1], &lda, &work[1], &info); /* Check error code from DLATMS. */ if (info != 0) { alaerh_(path, "DLATMS", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L160; } /* For types 3-6, zero one or more rows and columns of the */ /* matrix to test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } if (imat < 6) { /* Set row and column IZERO to zero. */ if (iuplo == 1) { ioff = (izero - 1) * lda; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { a[ioff + i__] = 0.; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { a[ioff] = 0.; ioff += lda; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { a[ioff] = 0.; ioff += lda; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { a[ioff + i__] = 0.; /* L50: */ } } } else { ioff = 0; if (iuplo == 1) { /* Set the first IZERO rows and columns to zero. */ i__3 = n; for (j = 1; j <= i__3; ++j) { i2 = min(j,izero); i__4 = i2; for (i__ = 1; i__ <= i__4; ++i__) { a[ioff + i__] = 0.; /* L60: */ } ioff += lda; /* L70: */ } } else { /* Set the last IZERO rows and columns to zero. */ i__3 = n; for (j = 1; j <= i__3; ++j) { i1 = max(j,izero); i__4 = n; for (i__ = i1; i__ <= i__4; ++i__) { a[ioff + i__] = 0.; /* L80: */ } ioff += lda; /* L90: */ } } } } else { izero = 0; } for (ifact = 1; ifact <= 2; ++ifact) { /* Do first for FACT = 'F', then for other values. */ *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 1]; /* Compute the condition number for comparison with */ /* the value returned by DSYSVX. */ if (zerot) { if (ifact == 1) { goto L150; } rcondc = 0.; } else if (ifact == 1) { /* Compute the 1-norm of A. */ anorm = dlansy_("1", uplo, &n, &a[1], &lda, &rwork[1]); /* Factor the matrix A. */ dlacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda); dsytrf_(uplo, &n, &afac[1], &lda, &iwork[1], &work[1], &lwork, &info); /* Compute inv(A) and take its norm. */ dlacpy_(uplo, &n, &n, &afac[1], &lda, &ainv[1], &lda); dsytri_(uplo, &n, &ainv[1], &lda, &iwork[1], &work[1], &info); ainvnm = dlansy_("1", uplo, &n, &ainv[1], &lda, & rwork[1]); /* Compute the 1-norm condition number of A. */ if (anorm <= 0. || ainvnm <= 0.) { rcondc = 1.; } else { rcondc = 1. / anorm / ainvnm; } } /* Form an exact solution and set the right hand side. */ s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)6, (ftnlen)6); dlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, & a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, & info); *(unsigned char *)xtype = 'C'; /* --- Test DSYSV --- */ if (ifact == 2) { dlacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda); dlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda); /* Factor the matrix and solve the system using DSYSV. */ s_copy(srnamc_1.srnamt, "DSYSV ", (ftnlen)6, (ftnlen) 6); dsysv_(uplo, &n, nrhs, &afac[1], &lda, &iwork[1], &x[ 1], &lda, &work[1], &lwork, &info); /* Adjust the expected value of INFO to account for */ /* pivoting. */ k = izero; if (k > 0) { L100: if (iwork[k] < 0) { if (iwork[k] != -k) { k = -iwork[k]; goto L100; } } else if (iwork[k] != k) { k = iwork[k]; goto L100; } } /* Check error code from DSYSV . */ if (info != k) { alaerh_(path, "DSYSV ", &info, &k, uplo, &n, &n, & c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, nout); goto L120; } else if (info != 0) { goto L120; } /* Reconstruct matrix from factors and compute */ /* residual. */ dsyt01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &iwork[ 1], &ainv[1], &lda, &rwork[1], result); /* Compute residual of the computed solution. */ dlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda); dpot02_(uplo, &n, nrhs, &a[1], &lda, &x[1], &lda, & work[1], &lda, &rwork[1], &result[1]); /* Check solution from generated exact solution. */ dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); nt = 3; /* Print information about the tests that did not pass */ /* the threshold. */ i__3 = nt; for (k = 1; k <= i__3; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___42.ciunit = *nout; s_wsfe(&io___42); do_fio(&c__1, "DSYSV ", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L110: */ } nrun += nt; L120: ; } /* --- Test DSYSVX --- */ if (ifact == 2) { dlaset_(uplo, &n, &n, &c_b49, &c_b49, &afac[1], &lda); } dlaset_("Full", &n, nrhs, &c_b49, &c_b49, &x[1], &lda); /* Solve the system and compute the condition number and */ /* error bounds using DSYSVX. */ s_copy(srnamc_1.srnamt, "DSYSVX", (ftnlen)6, (ftnlen)6); dsysvx_(fact, uplo, &n, nrhs, &a[1], &lda, &afac[1], &lda, &iwork[1], &b[1], &lda, &x[1], &lda, &rcond, & rwork[1], &rwork[*nrhs + 1], &work[1], &lwork, & iwork[n + 1], &info); /* Adjust the expected value of INFO to account for */ /* pivoting. */ k = izero; if (k > 0) { L130: if (iwork[k] < 0) { if (iwork[k] != -k) { k = -iwork[k]; goto L130; } } else if (iwork[k] != k) { k = iwork[k]; goto L130; } } /* Check the error code from DSYSVX. */ if (info != k) { /* Writing concatenation */ i__5[0] = 1, a__1[0] = fact; i__5[1] = 1, a__1[1] = uplo; s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2); alaerh_(path, "DSYSVX", &info, &k, ch__1, &n, &n, & c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, nout); goto L150; } if (info == 0) { if (ifact >= 2) { /* Reconstruct matrix from factors and compute */ /* residual. */ dsyt01_(uplo, &n, &a[1], &lda, &afac[1], &lda, & iwork[1], &ainv[1], &lda, &rwork[(*nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } /* Compute residual of the computed solution. */ dlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda); dpot02_(uplo, &n, nrhs, &a[1], &lda, &x[1], &lda, & work[1], &lda, &rwork[(*nrhs << 1) + 1], & result[1]); /* Check solution from generated exact solution. */ dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); /* Check the error bounds from iterative refinement. */ dpot05_(uplo, &n, nrhs, &a[1], &lda, &b[1], &lda, &x[ 1], &lda, &xact[1], &lda, &rwork[1], &rwork[* nrhs + 1], &result[3]); } else { k1 = 6; } /* Compare RCOND from DSYSVX with the computed value */ /* in RCONDC. */ result[5] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = k1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___45.ciunit = *nout; s_wsfe(&io___45); do_fio(&c__1, "DSYSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L140: */ } nrun = nrun + 7 - k1; L150: ; } L160: ; } L170: ; } /* L180: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of DDRVSY */ } /* ddrvsy_ */