#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublecomplex c_b1 = {0.,0.}; static doublecomplex c_b2 = {1.,0.}; static integer c__1 = 1; /* Subroutine */ int zhbt21_(char *uplo, integer *n, integer *ka, integer *ks, doublecomplex *a, integer *lda, doublereal *d__, doublereal *e, doublecomplex *u, integer *ldu, doublecomplex *work, doublereal * rwork, doublereal *result) { /* System generated locals */ integer a_dim1, a_offset, u_dim1, u_offset, i__1, i__2, i__3, i__4; doublereal d__1, d__2; doublecomplex z__1, z__2; /* Local variables */ integer j, jc, jr, ika; doublereal ulp, unfl; extern /* Subroutine */ int zhpr_(char *, integer *, doublereal *, doublecomplex *, integer *, doublecomplex *), zhpr2_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *); extern logical lsame_(char *, char *); doublereal anorm; extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); char cuplo[1]; logical lower; doublereal wnorm; extern doublereal dlamch_(char *), zlanhb_(char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *), zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *), zlanhp_(char *, char *, integer *, doublecomplex *, doublereal *) ; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZHBT21 generally checks a decomposition of the form */ /* A = U S U* */ /* where * means conjugate transpose, A is hermitian banded, U is */ /* unitary, and S is diagonal (if KS=0) or symmetric */ /* tridiagonal (if KS=1). */ /* Specifically: */ /* RESULT(1) = | A - U S U* | / ( |A| n ulp ) *and* */ /* RESULT(2) = | I - UU* | / ( n ulp ) */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER */ /* If UPLO='U', the upper triangle of A and V will be used and */ /* the (strictly) lower triangle will not be referenced. */ /* If UPLO='L', the lower triangle of A and V will be used and */ /* the (strictly) upper triangle will not be referenced. */ /* N (input) INTEGER */ /* The size of the matrix. If it is zero, ZHBT21 does nothing. */ /* It must be at least zero. */ /* KA (input) INTEGER */ /* The bandwidth of the matrix A. It must be at least zero. If */ /* it is larger than N-1, then max( 0, N-1 ) will be used. */ /* KS (input) INTEGER */ /* The bandwidth of the matrix S. It may only be zero or one. */ /* If zero, then S is diagonal, and E is not referenced. If */ /* one, then S is symmetric tri-diagonal. */ /* A (input) COMPLEX*16 array, dimension (LDA, N) */ /* The original (unfactored) matrix. It is assumed to be */ /* hermitian, and only the upper (UPLO='U') or only the lower */ /* (UPLO='L') will be referenced. */ /* LDA (input) INTEGER */ /* The leading dimension of A. It must be at least 1 */ /* and at least min( KA, N-1 ). */ /* D (input) DOUBLE PRECISION array, dimension (N) */ /* The diagonal of the (symmetric tri-) diagonal matrix S. */ /* E (input) DOUBLE PRECISION array, dimension (N-1) */ /* The off-diagonal of the (symmetric tri-) diagonal matrix S. */ /* E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and */ /* (3,2) element, etc. */ /* Not referenced if KS=0. */ /* U (input) COMPLEX*16 array, dimension (LDU, N) */ /* The unitary matrix in the decomposition, expressed as a */ /* dense matrix (i.e., not as a product of Householder */ /* transformations, Givens transformations, etc.) */ /* LDU (input) INTEGER */ /* The leading dimension of U. LDU must be at least N and */ /* at least 1. */ /* WORK (workspace) COMPLEX*16 array, dimension (N**2) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* RESULT (output) DOUBLE PRECISION array, dimension (2) */ /* The values computed by the two tests described above. The */ /* values are currently limited to 1/ulp, to avoid overflow. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Constants */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --d__; --e; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; --work; --rwork; --result; /* Function Body */ result[1] = 0.; result[2] = 0.; if (*n <= 0) { return 0; } /* Computing MAX */ /* Computing MIN */ i__3 = *n - 1; i__1 = 0, i__2 = min(i__3,*ka); ika = max(i__1,i__2); if (lsame_(uplo, "U")) { lower = FALSE_; *(unsigned char *)cuplo = 'U'; } else { lower = TRUE_; *(unsigned char *)cuplo = 'L'; } unfl = dlamch_("Safe minimum"); ulp = dlamch_("Epsilon") * dlamch_("Base"); /* Some Error Checks */ /* Do Test 1 */ /* Norm of A: */ /* Computing MAX */ d__1 = zlanhb_("1", cuplo, n, &ika, &a[a_offset], lda, &rwork[1]); anorm = max(d__1,unfl); /* Compute error matrix: Error = A - U S U* */ /* Copy A from SB to SP storage format. */ j = 0; i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { if (lower) { /* Computing MIN */ i__3 = ika + 1, i__4 = *n + 1 - jc; i__2 = min(i__3,i__4); for (jr = 1; jr <= i__2; ++jr) { ++j; i__3 = j; i__4 = jr + jc * a_dim1; work[i__3].r = a[i__4].r, work[i__3].i = a[i__4].i; /* L10: */ } i__2 = *n + 1 - jc; for (jr = ika + 2; jr <= i__2; ++jr) { ++j; i__3 = j; work[i__3].r = 0., work[i__3].i = 0.; /* L20: */ } } else { i__2 = jc; for (jr = ika + 2; jr <= i__2; ++jr) { ++j; i__3 = j; work[i__3].r = 0., work[i__3].i = 0.; /* L30: */ } /* Computing MIN */ i__2 = ika, i__3 = jc - 1; for (jr = min(i__2,i__3); jr >= 0; --jr) { ++j; i__2 = j; i__3 = ika + 1 - jr + jc * a_dim1; work[i__2].r = a[i__3].r, work[i__2].i = a[i__3].i; /* L40: */ } } /* L50: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { d__1 = -d__[j]; zhpr_(cuplo, n, &d__1, &u[j * u_dim1 + 1], &c__1, &work[1]) ; /* L60: */ } if (*n > 1 && *ks == 1) { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { i__2 = j; z__2.r = e[i__2], z__2.i = 0.; z__1.r = -z__2.r, z__1.i = -z__2.i; zhpr2_(cuplo, n, &z__1, &u[j * u_dim1 + 1], &c__1, &u[(j + 1) * u_dim1 + 1], &c__1, &work[1]); /* L70: */ } } wnorm = zlanhp_("1", cuplo, n, &work[1], &rwork[1]); if (anorm > wnorm) { result[1] = wnorm / anorm / (*n * ulp); } else { if (anorm < 1.) { /* Computing MIN */ d__1 = wnorm, d__2 = *n * anorm; result[1] = min(d__1,d__2) / anorm / (*n * ulp); } else { /* Computing MIN */ d__1 = wnorm / anorm, d__2 = (doublereal) (*n); result[1] = min(d__1,d__2) / (*n * ulp); } } /* Do Test 2 */ /* Compute UU* - I */ zgemm_("N", "C", n, n, n, &c_b2, &u[u_offset], ldu, &u[u_offset], ldu, & c_b1, &work[1], n); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = (*n + 1) * (j - 1) + 1; i__3 = (*n + 1) * (j - 1) + 1; z__1.r = work[i__3].r - 1., z__1.i = work[i__3].i - 0.; work[i__2].r = z__1.r, work[i__2].i = z__1.i; /* L80: */ } /* Computing MIN */ d__1 = zlange_("1", n, n, &work[1], n, &rwork[1]), d__2 = ( doublereal) (*n); result[2] = min(d__1,d__2) / (*n * ulp); return 0; /* End of ZHBT21 */ } /* zhbt21_ */