#include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { integer selopt, seldim; logical selval[20]; doublereal selwr[20], selwi[20]; } sslct_; #define sslct_1 sslct_ /* Table of constant values */ static doublereal c_b18 = 0.; static integer c__0 = 0; static doublereal c_b32 = 1.; static integer c__4 = 4; static integer c__6 = 6; static integer c__1 = 1; static integer c__2 = 2; static logical c_false = FALSE_; static integer c__3 = 3; static integer c__5 = 5; static logical c_true = TRUE_; static integer c__22 = 22; /* Subroutine */ int ddrvsx_(integer *nsizes, integer *nn, integer *ntypes, logical *dotype, integer *iseed, doublereal *thresh, integer *niunit, integer *nounit, doublereal *a, integer *lda, doublereal *h__, doublereal *ht, doublereal *wr, doublereal *wi, doublereal *wrt, doublereal *wit, doublereal *wrtmp, doublereal *witmp, doublereal *vs, integer *ldvs, doublereal *vs1, doublereal *result, doublereal *work, integer *lwork, integer *iwork, logical *bwork, integer *info) { /* Initialized data */ static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 }; static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 }; static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 }; static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 }; /* Format strings */ static char fmt_9991[] = "(\002 DDRVSX: \002,a,\002 returned INFO=\002,i" "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED=" "(\002,3(i5,\002,\002),i5,\002)\002)"; static char fmt_9999[] = "(/1x,a3,\002 -- Real Schur Form Decomposition " "Expert \002,\002Driver\002,/\002 Matrix types (see DDRVSX for de" "tails):\002)"; static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002 1=Zero mat" "rix. \002,\002 \002,\002 5=Diagonal: geom" "etr. spaced entries.\002,/\002 2=Identity matrix. " " \002,\002 6=Diagona\002,\002l: clustered entries.\002," "/\002 3=Transposed Jordan block. \002,\002 \002,\002 " " 7=Diagonal: large, evenly spaced.\002,/\002 \002,\0024=Diagona" "l: evenly spaced entries. \002,\002 8=Diagonal: s\002,\002ma" "ll, evenly spaced.\002)"; static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002" " 9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il" "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con" "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste" "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e." "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,/\002" " 12=Well-cond., random complex \002,\002 \002,\002 17=Il" "l-cond., large rand. complx \002,/\002 13=Ill-condi\002,\002tion" "ed, evenly spaced. \002,\002 18=Ill-cond., small rand.\002" ",\002 complx \002)"; static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries. " " \002,\002 21=Matrix \002,\002with small random entries.\002," "/\002 20=Matrix with large ran\002,\002dom entries. \002,/)"; static char fmt_9995[] = "(\002 Tests performed with test threshold =" "\002,f8.2,/\002 ( A denotes A on input and T denotes A on output)" "\002,//\002 1 = 0 if T in Schur form (no sort), \002,\002 1/ulp" " otherwise\002,/\002 2 = | A - VS T transpose(VS) | / ( n |A| ul" "p ) (no sort)\002,/\002 3 = | I - VS transpose(VS) | / ( n ulp )" " (no sort) \002,/\002 4 = 0 if WR+sqrt(-1)*WI are eigenvalues of" " T (no sort),\002,\002 1/ulp otherwise\002,/\002 5 = 0 if T sam" "e no matter if VS computed (no sort),\002,\002 1/ulp otherwis" "e\002,/\002 6 = 0 if WR, WI same no matter if VS computed (no so" "rt)\002,\002, 1/ulp otherwise\002)"; static char fmt_9994[] = "(\002 7 = 0 if T in Schur form (sort), \002" ",\002 1/ulp otherwise\002,/\002 8 = | A - VS T transpose(VS) | " "/ ( n |A| ulp ) (sort)\002,/\002 9 = | I - VS transpose(VS) | / " "( n ulp ) (sort) \002,/\002 10 = 0 if WR+sqrt(-1)*WI are eigenva" "lues of T (sort),\002,\002 1/ulp otherwise\002,/\002 11 = 0 if " "T same no matter what else computed (sort),\002,\002 1/ulp othe" "rwise\002,/\002 12 = 0 if WR, WI same no matter what else comput" "ed \002,\002(sort), 1/ulp otherwise\002,/\002 13 = 0 if sorting " "succesful, 1/ulp otherwise\002,/\002 14 = 0 if RCONDE same no ma" "tter what else computed,\002,\002 1/ulp otherwise\002,/\002 15 =" " 0 if RCONDv same no matter what else computed,\002,\002 1/ulp o" "therwise\002,/\002 16 = | RCONDE - RCONDE(precomputed) | / cond(" "RCONDE),\002,/\002 17 = | RCONDV - RCONDV(precomputed) | / cond(" "RCONDV),\002)"; static char fmt_9993[] = "(\002 N=\002,i5,\002, IWK=\002,i2,\002, seed" "=\002,4(i4,\002,\002),\002 type \002,i2,\002, test(\002,i2,\002)=" "\002,g10.3)"; static char fmt_9992[] = "(\002 N=\002,i5,\002, input example =\002,i3" ",\002, test(\002,i2,\002)=\002,g10.3)"; /* System generated locals */ integer a_dim1, a_offset, h_dim1, h_offset, ht_dim1, ht_offset, vs_dim1, vs_offset, vs1_dim1, vs1_offset, i__1, i__2, i__3, i__4; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); double sqrt(doublereal); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void), s_rsle(cilist *), do_lio(integer *, integer *, char *, ftnlen), e_rsle(void); /* Local variables */ integer i__, j, n, iwk; doublereal ulp, cond; integer jcol; char path[3]; integer nmax; doublereal unfl, ovfl; logical badnn; integer nfail; extern /* Subroutine */ int dget24_(logical *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, logical *, integer *); integer imode, iinfo; doublereal conds, anorm; integer islct[20], nslct, jsize, nerrs, itype, jtype, ntest; doublereal rtulp; extern /* Subroutine */ int dlabad_(doublereal *, doublereal *); extern doublereal dlamch_(char *); doublereal rcdein; char adumma[1*1]; extern /* Subroutine */ int dlatme_(integer *, char *, integer *, doublereal *, integer *, doublereal *, doublereal *, char *, char *, char *, char *, doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); integer idumma[1], ioldsd[4]; extern /* Subroutine */ int dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *), dlatmr_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, char *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, char *, integer *, integer *, integer *, doublereal *, doublereal *, char *, doublereal *, integer *, integer *, integer *), dlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublereal *, integer *, doublereal *, integer *); doublereal rcdvin; extern /* Subroutine */ int dlasum_(char *, integer *, integer *, integer *); integer ntestf; doublereal ulpinv; integer nnwork; doublereal rtulpi; integer mtypes, ntestt; /* Fortran I/O blocks */ static cilist io___32 = { 0, 0, 0, fmt_9991, 0 }; static cilist io___41 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___42 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___43 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___44 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___45 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___46 = { 0, 0, 0, fmt_9994, 0 }; static cilist io___47 = { 0, 0, 0, fmt_9993, 0 }; static cilist io___48 = { 0, 0, 1, 0, 0 }; static cilist io___49 = { 0, 0, 0, 0, 0 }; static cilist io___51 = { 0, 0, 0, 0, 0 }; static cilist io___52 = { 0, 0, 0, 0, 0 }; static cilist io___53 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___54 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___55 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___56 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___57 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___58 = { 0, 0, 0, fmt_9994, 0 }; static cilist io___59 = { 0, 0, 0, fmt_9992, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DDRVSX checks the nonsymmetric eigenvalue (Schur form) problem */ /* expert driver DGEESX. */ /* DDRVSX uses both test matrices generated randomly depending on */ /* data supplied in the calling sequence, as well as on data */ /* read from an input file and including precomputed condition */ /* numbers to which it compares the ones it computes. */ /* When DDRVSX is called, a number of matrix "sizes" ("n's") and a */ /* number of matrix "types" are specified. For each size ("n") */ /* and each type of matrix, one matrix will be generated and used */ /* to test the nonsymmetric eigenroutines. For each matrix, 15 */ /* tests will be performed: */ /* (1) 0 if T is in Schur form, 1/ulp otherwise */ /* (no sorting of eigenvalues) */ /* (2) | A - VS T VS' | / ( n |A| ulp ) */ /* Here VS is the matrix of Schur eigenvectors, and T is in Schur */ /* form (no sorting of eigenvalues). */ /* (3) | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues). */ /* (4) 0 if WR+sqrt(-1)*WI are eigenvalues of T */ /* 1/ulp otherwise */ /* (no sorting of eigenvalues) */ /* (5) 0 if T(with VS) = T(without VS), */ /* 1/ulp otherwise */ /* (no sorting of eigenvalues) */ /* (6) 0 if eigenvalues(with VS) = eigenvalues(without VS), */ /* 1/ulp otherwise */ /* (no sorting of eigenvalues) */ /* (7) 0 if T is in Schur form, 1/ulp otherwise */ /* (with sorting of eigenvalues) */ /* (8) | A - VS T VS' | / ( n |A| ulp ) */ /* Here VS is the matrix of Schur eigenvectors, and T is in Schur */ /* form (with sorting of eigenvalues). */ /* (9) | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues). */ /* (10) 0 if WR+sqrt(-1)*WI are eigenvalues of T */ /* 1/ulp otherwise */ /* If workspace sufficient, also compare WR, WI with and */ /* without reciprocal condition numbers */ /* (with sorting of eigenvalues) */ /* (11) 0 if T(with VS) = T(without VS), */ /* 1/ulp otherwise */ /* If workspace sufficient, also compare T with and without */ /* reciprocal condition numbers */ /* (with sorting of eigenvalues) */ /* (12) 0 if eigenvalues(with VS) = eigenvalues(without VS), */ /* 1/ulp otherwise */ /* If workspace sufficient, also compare VS with and without */ /* reciprocal condition numbers */ /* (with sorting of eigenvalues) */ /* (13) if sorting worked and SDIM is the number of */ /* eigenvalues which were SELECTed */ /* If workspace sufficient, also compare SDIM with and */ /* without reciprocal condition numbers */ /* (14) if RCONDE the same no matter if VS and/or RCONDV computed */ /* (15) if RCONDV the same no matter if VS and/or RCONDE computed */ /* The "sizes" are specified by an array NN(1:NSIZES); the value of */ /* each element NN(j) specifies one size. */ /* The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */ /* if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */ /* Currently, the list of possible types is: */ /* (1) The zero matrix. */ /* (2) The identity matrix. */ /* (3) A (transposed) Jordan block, with 1's on the diagonal. */ /* (4) A diagonal matrix with evenly spaced entries */ /* 1, ..., ULP and random signs. */ /* (ULP = (first number larger than 1) - 1 ) */ /* (5) A diagonal matrix with geometrically spaced entries */ /* 1, ..., ULP and random signs. */ /* (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */ /* and random signs. */ /* (7) Same as (4), but multiplied by a constant near */ /* the overflow threshold */ /* (8) Same as (4), but multiplied by a constant near */ /* the underflow threshold */ /* (9) A matrix of the form U' T U, where U is orthogonal and */ /* T has evenly spaced entries 1, ..., ULP with random signs */ /* on the diagonal and random O(1) entries in the upper */ /* triangle. */ /* (10) A matrix of the form U' T U, where U is orthogonal and */ /* T has geometrically spaced entries 1, ..., ULP with random */ /* signs on the diagonal and random O(1) entries in the upper */ /* triangle. */ /* (11) A matrix of the form U' T U, where U is orthogonal and */ /* T has "clustered" entries 1, ULP,..., ULP with random */ /* signs on the diagonal and random O(1) entries in the upper */ /* triangle. */ /* (12) A matrix of the form U' T U, where U is orthogonal and */ /* T has real or complex conjugate paired eigenvalues randomly */ /* chosen from ( ULP, 1 ) and random O(1) entries in the upper */ /* triangle. */ /* (13) A matrix of the form X' T X, where X has condition */ /* SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP */ /* with random signs on the diagonal and random O(1) entries */ /* in the upper triangle. */ /* (14) A matrix of the form X' T X, where X has condition */ /* SQRT( ULP ) and T has geometrically spaced entries */ /* 1, ..., ULP with random signs on the diagonal and random */ /* O(1) entries in the upper triangle. */ /* (15) A matrix of the form X' T X, where X has condition */ /* SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP */ /* with random signs on the diagonal and random O(1) entries */ /* in the upper triangle. */ /* (16) A matrix of the form X' T X, where X has condition */ /* SQRT( ULP ) and T has real or complex conjugate paired */ /* eigenvalues randomly chosen from ( ULP, 1 ) and random */ /* O(1) entries in the upper triangle. */ /* (17) Same as (16), but multiplied by a constant */ /* near the overflow threshold */ /* (18) Same as (16), but multiplied by a constant */ /* near the underflow threshold */ /* (19) Nonsymmetric matrix with random entries chosen from (-1,1). */ /* If N is at least 4, all entries in first two rows and last */ /* row, and first column and last two columns are zero. */ /* (20) Same as (19), but multiplied by a constant */ /* near the overflow threshold */ /* (21) Same as (19), but multiplied by a constant */ /* near the underflow threshold */ /* In addition, an input file will be read from logical unit number */ /* NIUNIT. The file contains matrices along with precomputed */ /* eigenvalues and reciprocal condition numbers for the eigenvalue */ /* average and right invariant subspace. For these matrices, in */ /* addition to tests (1) to (15) we will compute the following two */ /* tests: */ /* (16) |RCONDE - RCDEIN| / cond(RCONDE) */ /* RCONDE is the reciprocal average eigenvalue condition number */ /* computed by DGEESX and RCDEIN (the precomputed true value) */ /* is supplied as input. cond(RCONDE) is the condition number */ /* of RCONDE, and takes errors in computing RCONDE into account, */ /* so that the resulting quantity should be O(ULP). cond(RCONDE) */ /* is essentially given by norm(A)/RCONDV. */ /* (17) |RCONDV - RCDVIN| / cond(RCONDV) */ /* RCONDV is the reciprocal right invariant subspace condition */ /* number computed by DGEESX and RCDVIN (the precomputed true */ /* value) is supplied as input. cond(RCONDV) is the condition */ /* number of RCONDV, and takes errors in computing RCONDV into */ /* account, so that the resulting quantity should be O(ULP). */ /* cond(RCONDV) is essentially given by norm(A)/RCONDE. */ /* Arguments */ /* ========= */ /* NSIZES (input) INTEGER */ /* The number of sizes of matrices to use. NSIZES must be at */ /* least zero. If it is zero, no randomly generated matrices */ /* are tested, but any test matrices read from NIUNIT will be */ /* tested. */ /* NN (input) INTEGER array, dimension (NSIZES) */ /* An array containing the sizes to be used for the matrices. */ /* Zero values will be skipped. The values must be at least */ /* zero. */ /* NTYPES (input) INTEGER */ /* The number of elements in DOTYPE. NTYPES must be at least */ /* zero. If it is zero, no randomly generated test matrices */ /* are tested, but and test matrices read from NIUNIT will be */ /* tested. If it is MAXTYP+1 and NSIZES is 1, then an */ /* additional type, MAXTYP+1 is defined, which is to use */ /* whatever matrix is in A. This is only useful if */ /* DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* If DOTYPE(j) is .TRUE., then for each size in NN a */ /* matrix of that size and of type j will be generated. */ /* If NTYPES is smaller than the maximum number of types */ /* defined (PARAMETER MAXTYP), then types NTYPES+1 through */ /* MAXTYP will not be generated. If NTYPES is larger */ /* than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */ /* will be ignored. */ /* ISEED (input/output) INTEGER array, dimension (4) */ /* On entry ISEED specifies the seed of the random number */ /* generator. The array elements should be between 0 and 4095; */ /* if not they will be reduced mod 4096. Also, ISEED(4) must */ /* be odd. The random number generator uses a linear */ /* congruential sequence limited to small integers, and so */ /* should produce machine independent random numbers. The */ /* values of ISEED are changed on exit, and can be used in the */ /* next call to DDRVSX to continue the same random number */ /* sequence. */ /* THRESH (input) DOUBLE PRECISION */ /* A test will count as "failed" if the "error", computed as */ /* described above, exceeds THRESH. Note that the error */ /* is scaled to be O(1), so THRESH should be a reasonably */ /* small multiple of 1, e.g., 10 or 100. In particular, */ /* it should not depend on the precision (single vs. double) */ /* or the size of the matrix. It must be at least zero. */ /* NIUNIT (input) INTEGER */ /* The FORTRAN unit number for reading in the data file of */ /* problems to solve. */ /* NOUNIT (input) INTEGER */ /* The FORTRAN unit number for printing out error messages */ /* (e.g., if a routine returns INFO not equal to 0.) */ /* A (workspace) DOUBLE PRECISION array, dimension (LDA, max(NN)) */ /* Used to hold the matrix whose eigenvalues are to be */ /* computed. On exit, A contains the last matrix actually used. */ /* LDA (input) INTEGER */ /* The leading dimension of A, and H. LDA must be at */ /* least 1 and at least max( NN ). */ /* H (workspace) DOUBLE PRECISION array, dimension (LDA, max(NN)) */ /* Another copy of the test matrix A, modified by DGEESX. */ /* HT (workspace) DOUBLE PRECISION array, dimension (LDA, max(NN)) */ /* Yet another copy of the test matrix A, modified by DGEESX. */ /* WR (workspace) DOUBLE PRECISION array, dimension (max(NN)) */ /* WI (workspace) DOUBLE PRECISION array, dimension (max(NN)) */ /* The real and imaginary parts of the eigenvalues of A. */ /* On exit, WR + WI*i are the eigenvalues of the matrix in A. */ /* WRT (workspace) DOUBLE PRECISION array, dimension (max(NN)) */ /* WIT (workspace) DOUBLE PRECISION array, dimension (max(NN)) */ /* Like WR, WI, these arrays contain the eigenvalues of A, */ /* but those computed when DGEESX only computes a partial */ /* eigendecomposition, i.e. not Schur vectors */ /* WRTMP (workspace) DOUBLE PRECISION array, dimension (max(NN)) */ /* WITMP (workspace) DOUBLE PRECISION array, dimension (max(NN)) */ /* More temporary storage for eigenvalues. */ /* VS (workspace) DOUBLE PRECISION array, dimension (LDVS, max(NN)) */ /* VS holds the computed Schur vectors. */ /* LDVS (input) INTEGER */ /* Leading dimension of VS. Must be at least max(1,max(NN)). */ /* VS1 (workspace) DOUBLE PRECISION array, dimension (LDVS, max(NN)) */ /* VS1 holds another copy of the computed Schur vectors. */ /* RESULT (output) DOUBLE PRECISION array, dimension (17) */ /* The values computed by the 17 tests described above. */ /* The values are currently limited to 1/ulp, to avoid overflow. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The number of entries in WORK. This must be at least */ /* max(3*NN(j),2*NN(j)**2) for all j. */ /* IWORK (workspace) INTEGER array, dimension (max(NN)*max(NN)) */ /* INFO (output) INTEGER */ /* If 0, successful exit. */ /* <0, input parameter -INFO is incorrect */ /* >0, DLATMR, SLATMS, SLATME or DGET24 returned an error */ /* code and INFO is its absolute value */ /* ----------------------------------------------------------------------- */ /* Some Local Variables and Parameters: */ /* ---- ----- --------- --- ---------- */ /* ZERO, ONE Real 0 and 1. */ /* MAXTYP The number of types defined. */ /* NMAX Largest value in NN. */ /* NERRS The number of tests which have exceeded THRESH */ /* COND, CONDS, */ /* IMODE Values to be passed to the matrix generators. */ /* ANORM Norm of A; passed to matrix generators. */ /* OVFL, UNFL Overflow and underflow thresholds. */ /* ULP, ULPINV Finest relative precision and its inverse. */ /* RTULP, RTULPI Square roots of the previous 4 values. */ /* The following four arrays decode JTYPE: */ /* KTYPE(j) The general type (1-10) for type "j". */ /* KMODE(j) The MODE value to be passed to the matrix */ /* generator for type "j". */ /* KMAGN(j) The order of magnitude ( O(1), */ /* O(overflow^(1/2) ), O(underflow^(1/2) ) */ /* KCONDS(j) Selectw whether CONDS is to be 1 or */ /* 1/sqrt(ulp). (0 means irrelevant.) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. Arrays in Common .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --nn; --dotype; --iseed; ht_dim1 = *lda; ht_offset = 1 + ht_dim1; ht -= ht_offset; h_dim1 = *lda; h_offset = 1 + h_dim1; h__ -= h_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --wr; --wi; --wrt; --wit; --wrtmp; --witmp; vs1_dim1 = *ldvs; vs1_offset = 1 + vs1_dim1; vs1 -= vs1_offset; vs_dim1 = *ldvs; vs_offset = 1 + vs_dim1; vs -= vs_offset; --result; --work; --iwork; --bwork; /* Function Body */ /* .. */ /* .. Executable Statements .. */ s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "SX", (ftnlen)2, (ftnlen)2); /* Check for errors */ ntestt = 0; ntestf = 0; *info = 0; /* Important constants */ badnn = FALSE_; /* 12 is the largest dimension in the input file of precomputed */ /* problems */ nmax = 12; i__1 = *nsizes; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = nmax, i__3 = nn[j]; nmax = max(i__2,i__3); if (nn[j] < 0) { badnn = TRUE_; } /* L10: */ } /* Check for errors */ if (*nsizes < 0) { *info = -1; } else if (badnn) { *info = -2; } else if (*ntypes < 0) { *info = -3; } else if (*thresh < 0.) { *info = -6; } else if (*niunit <= 0) { *info = -7; } else if (*nounit <= 0) { *info = -8; } else if (*lda < 1 || *lda < nmax) { *info = -10; } else if (*ldvs < 1 || *ldvs < nmax) { *info = -20; } else /* if(complicated condition) */ { /* Computing MAX */ /* Computing 2nd power */ i__3 = nmax; i__1 = nmax * 3, i__2 = i__3 * i__3 << 1; if (max(i__1,i__2) > *lwork) { *info = -24; } } if (*info != 0) { i__1 = -(*info); xerbla_("DDRVSX", &i__1); return 0; } /* If nothing to do check on NIUNIT */ if (*nsizes == 0 || *ntypes == 0) { goto L150; } /* More Important constants */ unfl = dlamch_("Safe minimum"); ovfl = 1. / unfl; dlabad_(&unfl, &ovfl); ulp = dlamch_("Precision"); ulpinv = 1. / ulp; rtulp = sqrt(ulp); rtulpi = 1. / rtulp; /* Loop over sizes, types */ nerrs = 0; i__1 = *nsizes; for (jsize = 1; jsize <= i__1; ++jsize) { n = nn[jsize]; if (*nsizes != 1) { mtypes = min(21,*ntypes); } else { mtypes = min(22,*ntypes); } i__2 = mtypes; for (jtype = 1; jtype <= i__2; ++jtype) { if (! dotype[jtype]) { goto L130; } /* Save ISEED in case of an error. */ for (j = 1; j <= 4; ++j) { ioldsd[j - 1] = iseed[j]; /* L20: */ } /* Compute "A" */ /* Control parameters: */ /* KMAGN KCONDS KMODE KTYPE */ /* =1 O(1) 1 clustered 1 zero */ /* =2 large large clustered 2 identity */ /* =3 small exponential Jordan */ /* =4 arithmetic diagonal, (w/ eigenvalues) */ /* =5 random log symmetric, w/ eigenvalues */ /* =6 random general, w/ eigenvalues */ /* =7 random diagonal */ /* =8 random symmetric */ /* =9 random general */ /* =10 random triangular */ if (mtypes > 21) { goto L90; } itype = ktype[jtype - 1]; imode = kmode[jtype - 1]; /* Compute norm */ switch (kmagn[jtype - 1]) { case 1: goto L30; case 2: goto L40; case 3: goto L50; } L30: anorm = 1.; goto L60; L40: anorm = ovfl * ulp; goto L60; L50: anorm = unfl * ulpinv; goto L60; L60: dlaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda); iinfo = 0; cond = ulpinv; /* Special Matrices -- Identity & Jordan block */ /* Zero */ if (itype == 1) { iinfo = 0; } else if (itype == 2) { /* Identity */ i__3 = n; for (jcol = 1; jcol <= i__3; ++jcol) { a[jcol + jcol * a_dim1] = anorm; /* L70: */ } } else if (itype == 3) { /* Jordan Block */ i__3 = n; for (jcol = 1; jcol <= i__3; ++jcol) { a[jcol + jcol * a_dim1] = anorm; if (jcol > 1) { a[jcol + (jcol - 1) * a_dim1] = 1.; } /* L80: */ } } else if (itype == 4) { /* Diagonal Matrix, [Eigen]values Specified */ dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[n + 1], &iinfo); } else if (itype == 5) { /* Symmetric, eigenvalues specified */ dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, &anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], &iinfo); } else if (itype == 6) { /* General, eigenvalues specified */ if (kconds[jtype - 1] == 1) { conds = 1.; } else if (kconds[jtype - 1] == 2) { conds = rtulpi; } else { conds = 0.; } *(unsigned char *)&adumma[0] = ' '; dlatme_(&n, "S", &iseed[1], &work[1], &imode, &cond, &c_b32, adumma, "T", "T", "T", &work[n + 1], &c__4, &conds, & n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1], &iinfo); } else if (itype == 7) { /* Diagonal, random eigenvalues */ dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, &c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[( n << 1) + 1], &c__1, &c_b32, "N", idumma, &c__0, & c__0, &c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[ 1], &iinfo); } else if (itype == 8) { /* Symmetric, random eigenvalues */ dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, &c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[( n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, & c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else if (itype == 9) { /* General, random eigenvalues */ dlatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, &c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[( n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, & c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); if (n >= 4) { dlaset_("Full", &c__2, &n, &c_b18, &c_b18, &a[a_offset], lda); i__3 = n - 3; dlaset_("Full", &i__3, &c__1, &c_b18, &c_b18, &a[a_dim1 + 3], lda); i__3 = n - 3; dlaset_("Full", &i__3, &c__2, &c_b18, &c_b18, &a[(n - 1) * a_dim1 + 3], lda); dlaset_("Full", &c__1, &n, &c_b18, &c_b18, &a[n + a_dim1], lda); } } else if (itype == 10) { /* Triangular, random eigenvalues */ dlatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, &c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[( n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &c__0, & c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else { iinfo = 1; } if (iinfo != 0) { io___32.ciunit = *nounit; s_wsfe(&io___32); do_fio(&c__1, "Generator", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); return 0; } L90: /* Test for minimal and generous workspace */ for (iwk = 1; iwk <= 2; ++iwk) { if (iwk == 1) { nnwork = n * 3; } else { /* Computing MAX */ i__3 = n * 3, i__4 = (n << 1) * n; nnwork = max(i__3,i__4); } nnwork = max(nnwork,1); dget24_(&c_false, &jtype, thresh, ioldsd, nounit, &n, &a[ a_offset], lda, &h__[h_offset], &ht[ht_offset], &wr[1] , &wi[1], &wrt[1], &wit[1], &wrtmp[1], &witmp[1], &vs[ vs_offset], ldvs, &vs1[vs1_offset], &rcdein, &rcdvin, &nslct, islct, &result[1], &work[1], &nnwork, &iwork[ 1], &bwork[1], info); /* Check for RESULT(j) > THRESH */ ntest = 0; nfail = 0; for (j = 1; j <= 15; ++j) { if (result[j] >= 0.) { ++ntest; } if (result[j] >= *thresh) { ++nfail; } /* L100: */ } if (nfail > 0) { ++ntestf; } if (ntestf == 1) { io___41.ciunit = *nounit; s_wsfe(&io___41); do_fio(&c__1, path, (ftnlen)3); e_wsfe(); io___42.ciunit = *nounit; s_wsfe(&io___42); e_wsfe(); io___43.ciunit = *nounit; s_wsfe(&io___43); e_wsfe(); io___44.ciunit = *nounit; s_wsfe(&io___44); e_wsfe(); io___45.ciunit = *nounit; s_wsfe(&io___45); do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof( doublereal)); e_wsfe(); io___46.ciunit = *nounit; s_wsfe(&io___46); e_wsfe(); ntestf = 2; } for (j = 1; j <= 15; ++j) { if (result[j] >= *thresh) { io___47.ciunit = *nounit; s_wsfe(&io___47); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof( doublereal)); e_wsfe(); } /* L110: */ } nerrs += nfail; ntestt += ntest; /* L120: */ } L130: ; } /* L140: */ } L150: /* Read in data from file to check accuracy of condition estimation */ /* Read input data until N=0 */ jtype = 0; L160: io___48.ciunit = *niunit; i__1 = s_rsle(&io___48); if (i__1 != 0) { goto L200; } i__1 = do_lio(&c__3, &c__1, (char *)&n, (ftnlen)sizeof(integer)); if (i__1 != 0) { goto L200; } i__1 = do_lio(&c__3, &c__1, (char *)&nslct, (ftnlen)sizeof(integer)); if (i__1 != 0) { goto L200; } i__1 = e_rsle(); if (i__1 != 0) { goto L200; } if (n == 0) { goto L200; } ++jtype; iseed[1] = jtype; if (nslct > 0) { io___49.ciunit = *niunit; s_rsle(&io___49); i__1 = nslct; for (i__ = 1; i__ <= i__1; ++i__) { do_lio(&c__3, &c__1, (char *)&islct[i__ - 1], (ftnlen)sizeof( integer)); } e_rsle(); } i__1 = n; for (i__ = 1; i__ <= i__1; ++i__) { io___51.ciunit = *niunit; s_rsle(&io___51); i__2 = n; for (j = 1; j <= i__2; ++j) { do_lio(&c__5, &c__1, (char *)&a[i__ + j * a_dim1], (ftnlen)sizeof( doublereal)); } e_rsle(); /* L170: */ } io___52.ciunit = *niunit; s_rsle(&io___52); do_lio(&c__5, &c__1, (char *)&rcdein, (ftnlen)sizeof(doublereal)); do_lio(&c__5, &c__1, (char *)&rcdvin, (ftnlen)sizeof(doublereal)); e_rsle(); dget24_(&c_true, &c__22, thresh, &iseed[1], nounit, &n, &a[a_offset], lda, &h__[h_offset], &ht[ht_offset], &wr[1], &wi[1], &wrt[1], &wit[1], &wrtmp[1], &witmp[1], &vs[vs_offset], ldvs, &vs1[vs1_offset], & rcdein, &rcdvin, &nslct, islct, &result[1], &work[1], lwork, & iwork[1], &bwork[1], info); /* Check for RESULT(j) > THRESH */ ntest = 0; nfail = 0; for (j = 1; j <= 17; ++j) { if (result[j] >= 0.) { ++ntest; } if (result[j] >= *thresh) { ++nfail; } /* L180: */ } if (nfail > 0) { ++ntestf; } if (ntestf == 1) { io___53.ciunit = *nounit; s_wsfe(&io___53); do_fio(&c__1, path, (ftnlen)3); e_wsfe(); io___54.ciunit = *nounit; s_wsfe(&io___54); e_wsfe(); io___55.ciunit = *nounit; s_wsfe(&io___55); e_wsfe(); io___56.ciunit = *nounit; s_wsfe(&io___56); e_wsfe(); io___57.ciunit = *nounit; s_wsfe(&io___57); do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(doublereal)); e_wsfe(); io___58.ciunit = *nounit; s_wsfe(&io___58); e_wsfe(); ntestf = 2; } for (j = 1; j <= 17; ++j) { if (result[j] >= *thresh) { io___59.ciunit = *nounit; s_wsfe(&io___59); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(doublereal)); e_wsfe(); } /* L190: */ } nerrs += nfail; ntestt += ntest; goto L160; L200: /* Summary */ dlasum_(path, nounit, &nerrs, &ntestt); return 0; /* End of DDRVSX */ } /* ddrvsx_ */