*
************************************************************************
*
SUBROUTINE ECGBMV( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX,
$ BETA, Y, INCY )
* .. Scalar Arguments ..
COMPLEX ALPHA, BETA
INTEGER INCX, INCY, KL, KU, LDA, M, N
CHARACTER*1 TRANS
* .. Array Arguments ..
COMPLEX*16 Y( * )
COMPLEX A( LDA, * ), X( * )
* ..
*
* Purpose
* =======
*
* ECGBMV performs one of the matrix-vector operations
*
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
*
* y := alpha*conjg( A' )*x + beta*y,
*
* where alpha and beta are scalars, x and y are vectors and A is an
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
* Additional precision arithmetic is used in the computation.
*
* Parameters
* ==========
*
* TRANS - CHARACTER*1.
* On entry, TRANS specifies the operation to be performed as
* follows:
*
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
*
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
*
* TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
*
* Unchanged on exit.
*
* M - INTEGER.
* On entry, M specifies the number of rows of the matrix A.
* M must be at least zero.
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the number of columns of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* KL - INTEGER.
* On entry, KL specifies the number of sub-diagonals of the
* matrix A. KL must satisfy 0 .le. KL.
* Unchanged on exit.
*
* KU - INTEGER.
* On entry, KU specifies the number of super-diagonals of the
* matrix A. KU must satisfy 0 .le. KU.
* Unchanged on exit.
*
* ALPHA - COMPLEX .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* A - COMPLEX array of DIMENSION ( LDA, n ).
* Before entry, the leading ( kl + ku + 1 ) by n part of the
* array A must contain the matrix of coefficients, supplied
* column by column, with the leading diagonal of the matrix in
* row ( ku + 1 ) of the array, the first super-diagonal
* starting at position 2 in row ku, the first sub-diagonal
* starting at position 1 in row ( ku + 2 ), and so on.
* Elements in the array A that do not correspond to elements
* in the band matrix (such as the top left ku by ku triangle)
* are not referenced.
* The following program segment will transfer a band matrix
* from conventional full matrix storage to band storage:
*
* DO 20, J = 1, N
* K = KU + 1 - J
* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
* A( K + I, J ) = matrix( I, J )
* 10 CONTINUE
* 20 CONTINUE
*
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* ( kl + ku + 1 ).
* Unchanged on exit.
*
* X - COMPLEX array of DIMENSION at least
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
* and at least
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
* Before entry, the incremented array X must contain the
* vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* BETA - COMPLEX .
* On entry, BETA specifies the scalar beta. When BETA is
* supplied as zero then Y need not be set on input.
* Unchanged on exit.
*
* Y - COMPLEX*16 array of DIMENSION at least
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
* and at least
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
* Before entry, the incremented array Y must contain the
* vector y. On exit, Y is overwritten by the updated vector y.
* At least double precision arithmetic is used in the
* computation of y.
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
*
* Level 2 Blas routine.
*
* -- Written on 20-July-1986.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
*
* .. Parameters ..
COMPLEX ONE
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
COMPLEX ZERO
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
* .. Local Scalars ..
COMPLEX*16 TEMP
INTEGER I, INFO, IX, IY, J, JX, JY, K, KUP1, KX, KY,
$ LENX, LENY
LOGICAL NOCONJ
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL XERBLA
* .. Intrinsic Functions ..
INTRINSIC DCMPLX, MAX, MIN, CONJG
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF ( .NOT.LSAME( TRANS, 'N' ).AND.
$ .NOT.LSAME( TRANS, 'T' ).AND.
$ .NOT.LSAME( TRANS, 'C' ) ) THEN
INFO = 1
ELSE IF ( M.LT.0 ) THEN
INFO = 2
ELSE IF ( N.LT.0 ) THEN
INFO = 3
ELSE IF ( KL.LT.0 ) THEN
INFO = 4
ELSE IF ( KU.LT.0 ) THEN
INFO = 5
ELSE IF ( LDA.LT.( KL + KU + 1 ) ) THEN
INFO = 8
ELSE IF ( INCX.EQ.0 ) THEN
INFO = 10
ELSE IF ( INCY.EQ.0 ) THEN
INFO = 13
END IF
IF( INFO.NE.0 )THEN
CALL XERBLA( 'ECGBMV', INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
$ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
$ RETURN
*
NOCONJ = LSAME( TRANS, 'T' )
*
* Set LENX and LENY, the lengths of the vectors x and y.
*
IF( LSAME( TRANS, 'N' ) )THEN
LENX = N
LENY = M
ELSE
LENX = M
LENY = N
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through the band part of A.
*
* First form y := beta*y and set up the start points in X and Y
* if the increments are not both unity.
*
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
IF( BETA.NE.ONE )THEN
IF( BETA.EQ.ZERO )THEN
DO 10, I = 1, LENY
Y( I ) = ZERO
10 CONTINUE
ELSE
DO 20, I = 1, LENY
Y( I ) = BETA*Y( I )
20 CONTINUE
END IF
END IF
ELSE
IF( INCX.GT.0 )THEN
KX = 1
ELSE
KX = 1 - ( LENX - 1 )*INCX
END IF
IF( INCY.GT.0 )THEN
KY = 1
ELSE
KY = 1 - ( LENY - 1 )*INCY
END IF
IF( BETA.NE.ONE )THEN
IY = KY
IF( BETA.EQ.ZERO )THEN
DO 30, I = 1, LENY
Y( IY ) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40, I = 1, LENY
Y( IY ) = BETA*Y( IY )
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
IF( ALPHA.EQ.ZERO )
$ RETURN
KUP1 = KU + 1
IF( LSAME( TRANS, 'N' ) )THEN
*
* Form y := alpha*A*x + y.
*
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
DO 60, J = 1, N
IF( X( J ).NE.ZERO )THEN
TEMP = DCMPLX( ALPHA )*X( J )
K = KUP1 - J
DO 50, I = MAX( 1, J - KU ), MIN( M, J + KL )
Y( I ) = Y( I ) + TEMP*A( K + I, J )
50 CONTINUE
END IF
60 CONTINUE
ELSE
JX = KX
DO 80, J = 1, N
IF( X( JX ).NE.ZERO )THEN
TEMP = DCMPLX( ALPHA )*X( JX )
IY = KY
K = KUP1 - J
DO 70, I = MAX( 1, J - KU ), MIN( M, J + KL )
Y( IY ) = Y( IY ) + TEMP*A( K + I, J )
IY = IY + INCY
70 CONTINUE
END IF
JX = JX + INCX
IF( J.GT.KU )
$ KY = KY + INCY
80 CONTINUE
END IF
ELSE
*
* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y.
*
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
DO 110, J = 1, N
TEMP = ZERO
K = KUP1 - J
IF( NOCONJ )THEN
DO 90, I = MAX( 1, J - KU ), MIN( M, J + KL )
TEMP = TEMP + A( K + I, J )*DCMPLX( X( I ) )
90 CONTINUE
ELSE
DO 100, I = MAX( 1, J - KU ), MIN( M, J + KL )
TEMP = TEMP +
$ CONJG( A( K + I, J ) )*DCMPLX( X( I ) )
100 CONTINUE
END IF
Y( J ) = Y( J ) + ALPHA*TEMP
110 CONTINUE
ELSE
JY = KY
DO 140, J = 1, N
TEMP = ZERO
IX = KX
K = KUP1 - J
IF( NOCONJ )THEN
DO 120, I = MAX( 1, J - KU ), MIN( M, J + KL )
TEMP = TEMP + A( K + I, J )*DCMPLX( X( IX ) )
IX = IX + INCX
120 CONTINUE
ELSE
DO 130, I = MAX( 1, J - KU ), MIN( M, J + KL )
TEMP = TEMP +
$ CONJG( A( K + I, J ) )*DCMPLX( X( IX ) )
IX = IX + INCX
130 CONTINUE
END IF
Y( JY ) = Y( JY ) + ALPHA*TEMP
JY = JY + INCY
IF( J.GT.KU )
$ KX = KX + INCX
140 CONTINUE
END IF
END IF
*
RETURN
*
* End of ECGBMV.
*
END