Next:
List of Contributors
 
Contents
 
Index
Templates for the Solution of Algebraic Eigenvalue Problems:
a Practical Guide
Edited by
Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst
List of Contributors
How to Use This Book
How to Cite This Book
Acknowledgments
Contents
List of Symbols and Acronyms
Symbols
Acronyms
List of Direct Algorithms
List of Figures
List of Tables
Introduction
Why Eigenvalue Templates?
Intended Readership
Using the Decision Tree to Choose a Template
What Is a Template?
Organization of the Book
A Brief Tour of Eigenproblems
Introduction
Numerical Stability and Conditioning
Hermitian Eigenproblems
J. Demmel
Eigenvalues and Eigenvectors
Invariant Subspaces
Equivalences (Similarities)
Eigendecompositions
Conditioning
Specifying an Eigenproblem
Related Eigenproblems
Example
Generalized Hermitian Eigenproblems
J. Demmel
Eigenvalues and Eigenvectors
Eigenspaces
Equivalences (Congruences)
Eigendecompositions
Conditioning
Specifying an Eigenproblem
Related Eigenproblems
Example
Singular Value Decomposition
J. Demmel
Singular Values and Singular Vectors
Singular Subspaces
Equivalences
Decompositions
Conditioning
Specifying a Singular Value Problem
Related Singular Value Problems
Example
Non-Hermitian Eigenproblems
J. Demmel
Eigenvalues and Eigenvectors
Invariant Subspaces
Equivalences (Similarities)
Eigendecompositions
Conditioning
Specifying an Eigenproblem
Related Eigenproblems
Example
Generalized Non-Hermitian Eigenproblems
J. Demmel
Eigenvalues and Eigenvectors
Deflating Subspaces
Equivalences
Eigendecompositions
Conditioning
Specifying an Eigenproblem
Related Eigenproblems
Example
Singular Case
More Generalized Eigenproblems
Nonlinear Eigenproblems
J. Demmel
An Introduction to Iterative Projection Methods
Introduction
Basic Ideas
Y. Saad
Spectral Transformations
R. Lehoucq and D. Sorensen
Hermitian Eigenvalue Problems
Introduction
Direct Methods
Single- and Multiple-Vector Iterations
M. Gu
Power Method
Inverse Iteration
Rayleigh Quotient Iteration
Subspace Iteration
Software Availability
Lanczos Method
A. Ruhe
Algorithm
Convergence Properties
Spectral Transformation
Reorthogonalization
Software Availability
Numerical Examples
Implicitly Restarted Lanczos Method
R. Lehoucq and D. Sorensen
Implicit Restart
Shift Selection
Lanczos Method in GEMV Form
Convergence Properties
Computational Costs and Tradeoffs
Deflation and Stopping Rules
Orthogonal Deflating Transformation
Implementation of Locking and Purging
Software Availability
Band Lanczos Method
R. Freund
The Need for Deflation
Basic Properties
Algorithm
Variants
Jacobi-Davidson Methods
G. Sleijpen and H. van der Vorst
Basic Theory
Basic Algorithm
Restart and Deflation
Computing Interior Eigenvalues
Software Availability
Numerical Example
Stability and Accuracy Assessments
Z. Bai and R. Li
Generalized Hermitian Eigenvalue Problems
Introduction
Transformation to Standard Problem
Direct Methods
Single- and Multiple-Vector Iterations
M. Gu
Lanczos Methods
A. Ruhe
Jacobi-Davidson Methods
G. Sleijpen and H. van der Vorst
Stability and Accuracy Assessments
Z. Bai and R. Li
Positive Definite
Some Combination of
and
is Positive Definite
Singular Value Decomposition
Introduction
Direct Methods
Iterative Algorithms
J. Demmel
What Operations Can One Afford to Perform?
Which Singular Values and Vectors Are Desired?
Golub-Kahan-Lanczos Method
Software Availability
Numerical Example
Related Problems
J. Demmel
Non-Hermitian Eigenvalue Problems
Introduction
Balancing Matrices
T. Chen and J. Demmel
Direct Balancing
Krylov Balancing Algorithms
Accuracy of Eigenvalues Computed after Balancing
Direct Methods
Single- and Multiple-Vector Iterations
M. Gu
Power Method
Inverse Iteration
Subspace Iteration
Software Availability
Arnoldi Method
Y. Saad
Basic Algorithm
Variants
Explicit Restarts
Deflation
Implicitly Restarted Arnoldi Method
R. Lehoucq and D. Sorensen
Arnoldi Procedure in GEMV Form
Implicit Restart
Convergence Properties
Numerical Stability
Computational Costs and Tradeoffs
Deflation and Stopping Rules
Orthogonal Deflating Transformation
Eigenvector Computation with Spectral Transformation
Software Availability
Block Arnoldi Method
R. Lehoucq and K. Maschhoff
Block Arnoldi Reductions
Practical Algorithm
Software Availability
Notes and References
Lanczos Method
Z. Bai and D. Day
Algorithm
Convergence Properties
Software Availability
Notes and References
Block Lanczos Methods
Z. Bai and D. Day
Basic Algorithm
An Adaptively Blocked Lanczos Method
Software Availability
Notes and References
Band Lanczos Method
R. Freund
Deflation
Basic Properties
Algorithm
Application to Reduced-Order Modeling
Variants
Lanczos Method for Complex Symmetric Eigenproblems
R. Freund
Properties of Complex Symmetric Matrices
Properties of the Algorithm
Algorithm
Solving the Reduced Eigenvalue Problems
Software Availability
Notes and References
Jacobi-Davidson Methods
G. Sleijpen and H. van der Vorst
Generalization of Hermitian Case
Schur Form and Restart
Computing Interior Eigenvalues
Software Availability
Numerical Example
Stability and Accuracy Assessments
Z. Bai and R. Li
Generalized Non-Hermitian Eigenvalue Problems
Introduction
Direct Methods
Transformation to Standard Problems
Jacobi-Davidson Method
G. Sleijpen and H. van der Vorst
Basic Theory
Deflation and Restart
Algorithm
Software Availability
Numerical Example
Rational Krylov Subspace Method
A. Ruhe
Symmetric Indefinite Lanczos Method
Z. Bai, T. Ericsson, and T. Kowalski
Some Properties of Symmetric Indefinite Matrix Pairs
Algorithm
Stopping Criteria and Accuracy Assessment
Singular
Software Availability
Numerical Examples
Notes and References
Singular Matrix Pencils
B. Kågström
Regular Versus Singular Problems
Kronecker Canonical Form
Generic and Nongeneric Kronecker Structures
Ill-Conditioning
Generalized Schur-Staircase Form
GUPTRI Algorithm
Software Availability
More on GUPTRI and Numerical Examples
Notes and References
Stability and Accuracy Assessments
Z. Bai and R. Li
Nonlinear Eigenvalue Problems
Introduction
Quadratic Eigenvalue Problems
Z. Bai, G. Sleijpen, and H. van der Vorst
Introduction
Transformation to Linear Form
Spectral Transformations for QEP
Numerical Methods for Solving Linearized Problems
Jacobi-Davidson Method
Notes and References
Higher Order Polynomial Eigenvalue Problems
Nonlinear Eigenvalue Problems with Orthogonality Constraints
R. Lippert and A. Edelman
Introduction
MATLAB Templates
Sample Problems and Their Differentials
The Procrustes Problem
Nearest-Jordan Structure
Trace Minimization
Trace Minimization with a Nonlinear Term
Simultaneous Schur Decomposition Problem
Simultaneous Diagonalization
Numerical Examples
A Sample Procrustes Problem
A Sample Jordan Block Problem
A Sample Trace Minimization Problem
A Sample LDA Toy Problem (Trace Minimization with Nonlinear Term)
A Sample Simultaneous Schur Decomposition Problem
A Sample Diagonalization Problem
Modifying the Templates
Subroutine Dependencies
Under the Hood
What to Modify
Geometric Technicalities
Manifolds
The Difference Between a Tangent and a Differential
Inner Products, Gradients, and Differentials
Getting Around
Covariant Differentiation
Inverting the Covariant Hessian (Technical Considerations)
Common Issues
Sparse Matrix Storage Formats
J. Dongarra
Compressed Row Storage
Compressed Column Storage
Block Compressed Row Storage
Compressed Diagonal Storage
Jagged Diagonal Storage
Skyline Storage
Matrix-Vector and Matrix-Matrix Multiplications
J. Dongarra, P. Koev, and X. Li
BLAS
Sparse BLAS
CRS Matrix-Vector Product
CDS Matrix-Vector Product
Fast Matrix-Vector Multiplication for Structured Matrices
A Brief Survey of Direct Linear Solvers
J. Demmel, P. Koev, and X. Li
Direct Solvers for Dense Matrices
Direct Solvers for Band Matrices
Direct Solvers for Sparse Matrices
Direct Solvers for Structured Matrices
A Brief Survey of Iterative Linear Solvers
H. van der Vorst
Parallelism
J. Dongarra and X. Li
Preconditioning Techniques
Introduction
Inexact Methods
K. Meerbergen and R. Morgan
Matrix Transformations
Inexact Matrix Transformations
Arnoldi Method with Inexact Cayley Transform
Davidson Method
Jacobi-Davidson Method with Cayley Transform
Preconditioned Lanczos Method
Inexact Rational Krylov Method
Inexact Shift-and-Invert
Preconditioned Eigensolvers
A. Knyazev
Introduction
General Framework of Preconditioning
Preconditioned Shifted Power Method
Preconditioned Steepest Ascent/Descent Methods
Preconditioned Lanczos Methods
Davidson Method
Methods with Preconditioned Inner Iterations
Preconditioned Conjugate Gradient Methods
Preconditioned Simultaneous Iterations
Software Availability
Bibliography
Index
About this document ...
Susan Blackford 2000-11-20