
Journal of Computational Science xxx (xxxx) xxx

Please cite this article as: Jack Dongarra, Journal of Computational Science, https://doi.org/10.1016/j.jocs.2020.101216

Available online 18 September 2020
1877-7503/© 2020 Elsevier B.V. All rights reserved.

Translational process: Mathematical software perspective

Jack Dongarra a,b,c,*, Mark Gates a, Piotr Luszczek a, Stanimire Tomov a

a University of Tennessee, United States
b Oak Ridge National Laboratory, United States
c University of Manchester, United Kingdom

A R T I C L E I N F O

Keywords:
DATAFLOW scheduling runtimes
Hardware accelerators
Communication avoiding algorithms

A B S T R A C T

Each successive generation of computer architecture has brought new challenges to achieving high performance
mathematical solvers, necessitating development and analysis of new algorithms, which are then embodied in
software libraries. These libraries hide architectural details from applications, allowing them to achieve a level of
portability across platforms from desktops to world-class high performance computing (HPC) systems. Thus there
has been an informal translational computer science process of developing algorithms and distributing them in
open source software libraries for adoption by applications and vendors. With the move to exascale, increasing
intentionality about this process will benefit the long-term sustainability of the scientific software stack.

1. Introduction

High-performance computers continue to increase in speed and ca
pacity, with exascale machines expected to be delivered in 2021.
Alongside these developments, architectures are becoming progres
sively more complex, with multi-socket, multi-core central processing
units (CPUs), multiple graphics processing unit (GPU) accelerators, and
multiple network interfaces per node. This new complexity leaves
existing software unable to make efficient use of the increased pro
cessing power.

For decades, processor performance has been improving in each
generation consistent with Moore’s Law doubling transistor counts
every two years and Dennard Scaling enabling increases in clock fre
quency. Combined, these doubled peak performance every 18 months.
Since Dennard Scaling ceased around 2006 due to physical limits, the
push has been to multi-core architectures. Instead of getting improved
performance for free, software had to be adapted to parallel, multi-
threaded architectures.

In addition to multi-threaded CPU architectures, hybrid computing
has also become a popular approach to increasing parallelism, with the
introduction of CUDA in 2007 and OpenCL in 2009. Hybrid computing
couples heavyweight CPU cores (using out-of-order execution, branch
prediction, hardware prefetching, etc.) with comparatively lighter
weight (using in-order execution) but heavily vectorized GPU acceler
ator cores. There is also heterogeneity in memory: large, relatively slow

CPU DDR memory coupled with smaller but faster GPU memory such as
3-D stacked high-bandwidth memory (HBM). To take advantage of these
capabilities, modern software has to explicitly program for multi-core
CPUs and GPU accelerators while also managing data movement be
tween CPU and GPU memories and across the network to multiple
nodes.

The compute speed, memory and network bandwidth, and memory
and network latency increase at different exponential rates, leading to
an increasing gap between data movement speeds and computation
speeds. For decades, the machine balance of compute speed to memory
bandwidth has increased 15–30% per year (Fig. 1). Hiding communi
cation costs is thus becoming increasingly more difficult. Instead of just
relying on hardware caches, new algorithms must be designed to
minimize and hide communication, sometimes at the expense of dupli
cating memory and computation.

Very high levels of parallelism also mean that synchronization be
comes increasingly expensive. With processors at around 1–2 GHz,
exascale machines, with 1018 floating point operations per second, must
have billion-way parallelism. This is currently anticipated to be ach
ieved by roughly 1.5 GHz × 10,000 nodes × 100,000 thread-level and
vector-level parallelism. Thus parallelism must become asynchronous
and dynamically scheduled.

Mathematical libraries are, historically, among the first software
adapted to the hardware changes occurring over time, both because
these low-level workhorses are critical to the accuracy and performance

* Corresponding author at: University of Tennessee, United States.
E-mail addresses: dongarra@icl.utk.edu (J. Dongarra), mgates3@icl.utk.edu (M. Gates), luszczek@icl.utk.edu (P. Luszczek), tomov@icl.utk.edu (S. Tomov).
URL: http://www.netlib.org/utk/people/JackDongarra (J. Dongarra), http://www.icl.utk.edu/~luszczek (P. Luszczek).

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

https://doi.org/10.1016/j.jocs.2020.101216
Received 12 May 2020; Received in revised form 6 August 2020; Accepted 25 August 2020

mailto:dongarra@icl.utk.edu
mailto:mgates3@icl.utk.edu
mailto:luszczek@icl.utk.edu
mailto:tomov@icl.utk.edu
http://www.netlib.org/utk/people/JackDongarra
http://www.icl.utk.edu/~luszczek
www.sciencedirect.com/science/journal/18777503
https://www.elsevier.com/locate/jocs
https://doi.org/10.1016/j.jocs.2020.101216
https://doi.org/10.1016/j.jocs.2020.101216
https://doi.org/10.1016/j.jocs.2020.101216

Journal of Computational Science xxx (xxxx) xxx

2

of many different types of applications, and because they have proved to
be outstanding vehicles for finding and implementing solutions to the
problems that novel architectures pose. We have seen architectures
change from scalar to vector to symmetric multiprocessing to distributed
parallel to heterogeneous hybrid designs over the last 40 years. Each of
these changes has forced the underlying implementations of the math
ematical libraries to change. Vector computers used Level 1 and Level 2
basic linear algebra subprograms (BLAS); with the change to cache-
based memory hierarchies, algorithms were reformulated with block
operations using Level 3 BLAS matrix multiply. Task-based scheduling
has addressed multicore CPUs, while more recently—as the compute-
speed-to-bandwidth ratio increases—algorithms have again been refor
mulated as communication avoiding. In all of these cases, ideas that
were first expressed in research papers were subsequently implemented
in open-source software, to be integrated into scientific and engineering
applications, both open-source and commercial.

Developing numerical libraries that enable a broad spectrum of ap
plications to exploit the power of next-generation hardware platforms is
a mission-critical challenge for scientific computing generally, and for
HPC specifically. But this challenge raises a variety of difficult issues. For
instance, programming models and hardware architectures are still in a
state of flux, and this uncertainty is bound to inhibit the development of
libraries as new configurations and abstractions are tried. At the same
time, it seems prudent, if possible, to build on top of existing libraries

instead of developing entirely new ones, since this will amortize some of
the software maintenance costs, provide backward compatibility, and
make transition for applications easier; and yet including radically
different algorithms and methods at a low level, without radically
altering usage characteristics of familiar packages at a high level, is a
difficult software engineering problem. Moreover, many HPC applica
tions will need to run on platforms ranging from leadership-class ma
chines to smaller-scale clusters and workstations. These architectural
changes have come every decade or so, thereby creating a need to
rewrite or refractor the software for the emerging architectures. Scien
tific libraries have long provided a large and growing resource for high-
quality, reusable software components upon which applications can be
rapidly constructed—with improved robustness, portability, and
sustainability.

This process of writing new generations of numerical software for
new architectures has, informally, led to the translational process
illustrated in Fig. 2, which starts with basic research to develop high
performance, numerically stable methods. This research grew out of a
motivation to have efficient and stable algorithms on state-of-the-art
architectures. Out of that research comes new mathematical algo
rithms that are developed into robust software libraries that are portable
across platforms and include an extensive testing suite and documen
tation. Applications start to use these libraries, which are eventually
adopted by system vendors such as AMD, Cray, IBM, and Intel for inclusion
in their system software. Ideally, software goes through a standardization
process, as in the case of MPI and BLAS, while other software becomes a
de facto standard, like LAPACK. With this standardization comes wide
spread acceptance. Throughout this process, feedback is exchanged be
tween the math library developers, application developers, and vendors.
Underlying this process is an environment that includes: community
involvement; an emphasis on high performance, efficiency, and porta
bility; development of software that is freely available under a liberal
open-source license; and ongoing software maintenance of the libraries.
This general translational process was published by Abramson and
Parashar [2]. Here, basic research and robust software corresponds to
the lab in their concept; early adoption by applications and vendors
corresponds to the locale, and standardization and widespread accep
tance corresponds to the community. In this paper, we will look at how
this translational research has affected the development of mathemat
ical software libraries.

2. Background

Today’s scientists often tackle problems that are too difficult to parse
theoretically, or too difficult or dangerous to tackle experimentally. How

Fig. 1. Processor and machine balance increasing, making communication
relatively more expensive. Data from vendor specs and STREAM bench
mark [1].

Fig. 2. Translational approach for mathematical software.

J. Dongarra et al.

Journal of Computational Science xxx (xxxx) xxx

3

can a researcher peer inside a star to see exactly how it explodes? Or how
can one predict impacts of climate change with so many variables?

At the application level, science must be captured in mathematical
models, which are expressed algorithmically and ultimately encoded as
software. Accordingly, much of the grant funding goes to support this
modeling, which requires intimate collaboration among domain scien
tists, computer scientists, and applied mathematicians. This process re
lies on a large infrastructure of mathematical libraries, protocols, and
system software that has taken years to build up and must be main
tained, ported, and enhanced for many years to come in order to pre
serve and extend the value of the application codes that depend on it.
The software that encapsulates all this time, energy, and thought
routinely outlasts (usually by years, sometimes by decades) the hard
ware it was originally designed to run on, as well as the individuals who
designed and developed it.

2.1. Standards

Standards are critical for software development. Research has always
benefited from the open exchange of ideas and the opportunity to build
on the achievements of others. While single implementations have the
advantage of rapid development and implementation, widely embraced
standards (e.g., MPI, BLAS, IEEE floating point standards, and numerical
libraries) are based on the experience of a wider community and are
often required by application groups.

2.1.1. BLAS
Since the early days of HPC, the Level 1, Level 2, and Level 3 BLAS

standards [3–7] abstracted away the low-level hardware details from
scientific library developers by encoding high-level mathematical con
cepts like vector, matrix-vector, and matrix-matrix products.

The key to using a high-performance computer effectively is to avoid
unnecessary memory movement, providing considerable motivation to
devise algorithms to minimize data movement. Along these lines, much
activity in the past 30 years has involved the redesign of basic routines in
linear algebra, using block algorithms based on matrix-matrix tech
niques [8]. These have proved effective on a variety of modern computer
architectures with vector processing or parallel-processing capabilities,
on which high performance can potentially be degraded by excessive
transfer of data between different levels of memory (e.g., registers,
cache, main memory, and solid-state disks).

By organizing the computation into blocks, we provide for full reuse
of data while each block is held in cache or local memory, avoiding
excessive movement of data and giving a surface-to-volume effect for the
ratio of data movement to arithmetic operations, i.e., O(n2) data
movement to O(n3) arithmetic operations. In addition, parallelism can
be exploited in two ways: (1) operations on distinct blocks may be
performed in parallel; and (2) within the operations on each block,
scalar or vector operations may be performed in parallel.

2.1.2. Batched Basic Linear Algebra Subprograms (BBLAS)
On new hardware and with new algorithms, BLAS started showing its

age as application developers expressed their compute needs in the form
of multiple BLAS calls for relatively small problem sizes. Batched BLAS
fills this performance need by, on one hand, abstracting away low-level
details; and, on the other hand, extending the original interface to ex
press the computational needs of the application in a hardware-friendly
way [9,10].

2.2. Software PACKs

Delivering specialized scientific software in the form of packages,
such as EISPACK [11], LINPACK [12], LAPACK [8], ScaLAPACK [13],
and others (see Appendix A), continues to be essential for delivering
robust solvers that enable portable performance across ever more
specialized hardware systems.

The portability of software library code has always been an impor
tant consideration, made much more difficult by diverse modern hard
ware designs and the corresponding flourishing of a diverse
programming language landscape. Understandably, scientific teams do
not wish to invest significant effort to port large-scale application codes
to each new machine, when they are focused on science results rather
than software engineering. Our answer to this glaring problem has al
ways been the development of performance-portable software libraries
that hide the majority of machine-specific details yet allow automated
adaptation to the user’s platform of choice.

LAPACK [8] is an example of a mathematical software package
wherein the highest-level components are portable, while machine de
pendencies are hidden in lower-level modules. Such a hierarchical
approach is probably the closest one can come to software portability
across diverse parallel architectures. The BLAS that LAPACK heavily
relies on provide a portable, efficient, and flexible standard for appli
cation programmers.

Maintaining scalability of parallel algorithms over a wide range of
architectures and numerous processors will likely require the granu
larity of computation to be adjustable to suit the particular circum
stances in which the software executes. Our approach to this problem is
block algorithms with adjustable block sizes. In addition, a suite of al
gorithms may be required to deal with the full range of architectural
diversity and processor multiplicity likely to be available.

2.3. Portable performance layers

The layered approach to performance portability is indispensable for
building ever more intricate libraries on top of a less complex portability
layer with desirable performance characteristics. The first mathematical
subroutine library for a computer was written by Maurice V. Wilkes,
David J. Wheeler, and Stanley Gill for the EDSAC at the University of
Cambridge in England in 1951 [14]. The programs were written in
machine language, and certainly no thought was given to portability; to
have a library at all was remarkable. Intuitively, our notion of portable
numerical software is quite clear: portable applications successfully run
on a variety of computer architectures and configurations.

Examples of different computer architectures include: single pro
cessor with uniform random-access memory, pipeline or vector com
puters, parallel computers, and heterogeneous or hybrid computers, to
name a few. Different versions of a library routine may be written for
different architectures, where each version has the same calling
sequence interface. Or, the library routine may have the ability to
determine which architecture it is running on and make a dynamic de
cision on which path to take to successfully and efficiently execute on
the underlying architecture. Applications use these numerical libraries,
and it is these libraries we expect to be portable across different
architectures.

2.4. Specific techniques and approaches

2.4.1. Dataflow scheduling
In the late 1970s, dataflow scheduling was realized for mapping

programs represented as a direct acyclic graph (DAG) of tasks to a
specialized hardware configuration of systolic arrays [15]. In the ensuing
decades, a large number of task-based runtime systems have been pro
posed and remain active [16–22] with an overarching purpose to
address programmability and management of parallelism in the context
of HPC. The next step is to turn the dataflow scheduling approach into a
standard akin to MPI.

2.4.2. Communication avoiding algorithms
The new normal in HPC may be summarized as follows: compute

time depends on memory accesses and not on total operation count. In
other words, the number of arithmetic instructions executed no longer
directly reflects the wall clock time spent in running the program; the

J. Dongarra et al.

Journal of Computational Science xxx (xxxx) xxx

4

type of operation is the essential aspect to consider. Opting for higher
complexity algorithms may be preferable if the operations map better to
the hardware and transfer less data across the modern memory hierar
chy and on-node interconnects [23,24]. To better represent the execu
tion time of software, the performance model must be a function of both
computation and communication costs. To address the
computation-communication imbalance, several communication-
avoiding (CA) algorithms have been developed by redesigning existing
methods to obtain the minimum theoretical communication cost for a
particular solver [25,26], including CALU and CAQR factorization al
gorithms [27]. After basic research established their advantages,
communication avoiding algorithms are now being integrated into
various libraries such as LAPACK, MAGMA, ELPA, SLATE, and vendor
libraries, continuing the translational process.

2.4.3. Mixed precision
The emergence of deep learning as a leading computational work

load on large-scale cloud infrastructure installations has led to a
plethora of heavily specialized hardware accelerators that can tackle
these types of problems much more efficiently. These new platforms
offer new 16-bit floating-point formats with reduced mantissa precision
and exponent range at significantly higher throughput rates, which
makes them attractive in terms of improved performance and energy
consumption. Mixed-precision algorithms are being developed to
leverage these significant advances in computational power, while still
maintaining accuracy and stability on par with the classic single or
double precision formats through careful consideration of the numerical
effects of half precision. Even though research on mixed-precision al
gorithms has been presented in papers and conferences over the last
couple of decades, these techniques mostly remained in aprototype state
and rarely made it into production code. Recently, the US Department of
Energy (DOE) Exascale Computing Project (ECP) has allocated resources
to bring these techniques into production.

2.4.4. Approximate, randomized, and probabilistic approaches
In the past, the main goals for robust high-performance numerical

libraries were accuracy first and efficiency second. The current outlook,
informed by application needs, has been transforming rapidly: accuracy
itself is often a tunable parameter. It is now one of the major contribu
tors to excessive computation, and is therefore directly at odds with
speed. In a wide range of applications, from high performance data
analytics (HPDA) to machine/deep learning, and from edge sensors
producing extreme amounts of data (including redundant or faulty data)
to large data stores, the modern requirement for various optimizations is
to establish a “best” solution in a limited time period. This realignment
of priority motivates the development of algorithms that call for ap
proximations, randomization, probabilistic accuracy, and convergence
bounds. The preferred algorithms compute quickly while still being
sufficiently accurate through non-traditional, innovative approaches.
Here we see a distinct feedback from application needs back to the
development of new algorithms.

2.4.5. Machine learning/autotuning
Although Moore’s law is still in effect, the multicore and accelerator

revolution has initiated a processor design trend of moving away from
architectural features that do not directly contribute to processing
throughput. This means a preference toward shallow pipelines with in-
order execution and cutting down on branch prediction and speculative
execution. On top of that, virtually all modern architectures require
some form of vectorization to achieve top performance, whether it be
short-vector, single instruction, multiple data (SIMD) extensions of CPU
cores or single instruction, multiple threads (SIMT) pipelines of GPU
accelerators. With the landscape of future HPC populated with complex,
hybrid vector architectures, automated software tuning could provide a
path toward portable performance without heroic programming efforts.

3. Translational process and moving forward

Given the relatively small community of supercomputing re
searchers, international collaborations are particularly important. First
and foremost, the magnitude of the technical challenges that new ar
chitectures and systems bring with them—and the corresponding sweep
of changes required for HPC software infrastructure—are formidable. In
terms of feasibility, the task of recreating this infrastructure to meet the
new realities of advanced scientific computing is simply too large for any
one country, or small consortium of countries, to undertake on its own.
Second, the complex web of interdependencies and side effects that exist
among the software components of advanced computing infrastructure
means that making sweeping changes to this infrastructure will require a
high degree of coordination and collaboration. Moreover, the HPC
software infrastructure serves scientific communities that include global
collaborations working on problems of global significance and
leveraging resources in transnational configurations.

Historically, HPC software has been developed and maintained by
national laboratories, universities, hardware vendors, and small, inde
pendent companies. Notably, though, an increasing amount of the
software used in supercomputing is developed in an open-source model.
Indeed, over the last 30 years, the open source community has provided
much of the software infrastructure on which the world’s HPC systems,
ranging from supercomputers to campus clusters, have depended for
their performance and productivity. It has invested billions of dollars
and years of effort to build most of the key components, including math
libraries (e.g., LAPACK [8] and PETSc [28]), low-level performance
counter interfaces (e.g., PAPI [29,30]), MPI, GNU tools, and many
others.

Although the investments in these separate software elements have
been tremendously valuable, a great deal of productivity has also been
lost because of the lack of planning, coordination, and key integration of
technologies necessary to make them work together smoothly and effi
ciently, both within individual HPC systems and between different
systems. Open-source development within a single project can be co
ordinated by a repository gatekeeper and an email discussion list, but
there is no global mechanism working across the community to identify
critical holes in the overall software environment, spot opportunities for
beneficial integration, or specify requirements for more careful coordi
nation. It seems clear that this completely uncoordinated development
model will not provide the software needed to support the unprece
dented parallelism required for peta/exascale computation on millions
of cores or the flexibility required to exploit new hardware models and
features, such as transactional memory, speculative execution, and
GPUs and other accelerators. What is needed is an international effort to
coordinate research activities to gain more. However, such an effort is
hard to manage and co-fund.

Moreover, the successful evolution and maintenance of complex
software systems are critically dependent on institutional memory—that
is, on the continuous involvement of the few key developers who un
derstand the software design—and stability and continuity are essential
to preserving institutional memory. Whatever support model is used, it
should enable stable organizations with decades-long lifetimes to
maintain and evolve the software.

In any case, experience shows that the creation of a new, high-quality
software stack for scientific computing, one which can meet both the
diverse requirements of future applications and the rigors of peta/
exascale hardware architectures, will demand investment on an un
precedented scale. To avoid significant disruptions in critical research
agendas, we need to leverage the collective resources of the global
community. Even leaving the magnitude of the investment required
aside, the software infrastructure that must be created is intended to
serve a very broad spectrum of science and engineering communities, all
of which are international in scope and need to leverage resources at a
variety of scales.

J. Dongarra et al.

Journal of Computational Science xxx (xxxx) xxx

5

4. Impact and lessons learned

4.1. Measuring impact

Even if expertly developed and superbly polished, software is
worthless unless it has an impact in the hands of the end user. It is not
enough to make users aware of a software’s existence, though that is a
difficult task in itself, as users must overcome their reluctance to modify
their existing software stack. They must be convinced that the software
they are currently using is inferior enough to endanger their work, and
that the new software will remove that danger.

The ultimate measure of impact stems from indications of usage.
Ideally, it is best if impact measurements are easy to factor and objec
tive. Some possible metrics include: growth of the contributor base,
number of users, number of software releases, number of downloads and
citations, level of user satisfaction, level of vendor adoption, number of
research groups using the resources, percentage of reasonably resolved
tickets, time-to-resolve tickets, number of publications citing or using
the resource, and subjective user experience reports.

Calculating metrics for LAPACK, for example, we see there have been
around 6.4 million downloads of LAPACK and 1.5 million downloads
from ScaLAPACK per year, averaged over the last 29 years for LAPACK
and over the last 25 years for ScaLAPACK [31]. This is for the packages
as well as various components from the packages. These packages are
also included in software products like Matlab, Julia, and MKL, which
we cannot easily count.

As much of the scientific software stack is open source, one can also
look into different package managers (e.g., Spack [32]) to measure de
pendencies and usage, or use sites that do this automatically (e.g., lib
raries.io monitors close to 5 million open-source packages across 37
different package managers). However, usage typically needs to be
compared to other developments, quality and quantity is also important,
and measurements become more difficult and subjective. Although there
are a number of measures of impact that can be used for software, they
are not well established nor supported, which stands in contrast to the
number of citations or h-index calculated for publications.

A measure of impact that combines both objective and subjective
measures can be obtained if we look into particular areas. For example,
in the area of algorithms and numerical libraries for current and up
coming HPC hardware, a good example is the DOE’s ECP effort, which is
a large-scale development and deployment project for a comprehensive,
integrated software stack and exascale hardware technology develop
ment and its translation into DOE mission-critical applications. ECP
applications, and their associated exascale challenge problems, were
reviewed by external experts and carefully selected in 2016 based on key

DOE criteria, including: significance and requirement of exascale re
sources, alignment with DOE mission and strategic priorities, impact to
both DOE and the broader community, and experience of the teams in
leveraging HPC systems [33]. The software technologies in ECP and the
number of ECP applications that depend on each technology are shown
in Fig. 3.

There are 64 applications and 64 software technology projects in the
ECP effort, ordered in Fig. 3 on the x-axis by the number of applications
that critically depend on them. Note, for example, that Spack [32] rea
ches the maximum of 64 dependencies, as all applications use Spack as
their package manager to simplify and unify installation. After that, the
software projects with the most dependents are the ones related to the
programming model, namely: MPI, OpenMP, and C++ (in that order).
The next projects with most critical dependents (17) are the LAPACK
numerical library and the HDF5 open source file format for large,
complex, heterogeneous data. Other notable software projects with a
relatively large number of dependents are CUDA (programming for
NVIDIA GPUs), Kokkos (portable programming model), BLAS, and
ALPINE (scientific visualization).

4.2. Licensing for users and manufacturers

An important lesson learned for scientific software and its translation
process is the significance of its licensing. Much of the scientific software
is open source, frequently using a Berkeley Software Distribution (BSD)-
derived license, which originated in the BSD Unix OS. The modified or 3-
clause BSD license states: Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copy
right notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

(3) Neither the name of the Corporation nor the names of the con
tributors may be used to endorse or promote products derived
from this software without specific prior written permission.

The BSD license is a permissive, free software license, imposing
minimal restrictions on the use and redistribution of covered software. A
BSD style license is a good choice for long duration research or other
projects that require a development environment that has near zero cost
for end users, will evolve over a long period of time, and permits anyone

Fig. 3. Number of application dependents for each of the software technologies in DOE’s ECP project. There are a total of 64 applications and 64 software tech
nologies in ECP.

J. Dongarra et al.

http://libraries.io
http://libraries.io

Journal of Computational Science xxx (xxxx) xxx

6

to retain the option of commercializing final results with minimal legal
issues.

The success of the scientific software stack can, in part, be attributed
to the choice of software licensing. Not only is the software, in general,
of high quality, well tested, portable, and actively maintained, it is also
capable of being incorporated into other software applications with
minimal restrictions on the use and redistribution of the application
software; in other words, the license is not a hindrance and allows users
to employ the software how they see fit.

4.3. Funding for research and development

With the development of mathematical software the process begins
with a sound foundation in mathematics that expresses the correctness
and stability of the computation. A numerical algorithm is then devel
oped that expresses the mathematics as an algorithm that encompasses
the various cases the mathematics takes into account. A more complete
picture would be:

• the development and analysis of algorithms for standard mathe
matical problems which occur in a wide variety of applications;

• the practical implementation of mathematical algorithms on
computing devices, including study of interactions with particular
hardware and software systems;

• the environment for the construction of mathematical software, such
as computer arithmetic systems, languages, and related software
development tools;

• software design for mathematical computation systems, including
user interfaces;

• testing and evaluation of mathematical software, including meth
odologies, tools, testbeds, and studies of particular systems;

• issues related to the dissemination and maintenance of software.

Each of these items requires an investment of time and funding to suc
cessfully accomplish its task. The National Science Foundation and the
Department of Energy have contributed to the promotion of various
aspects of this overall research and development process.

4.4. Personnel for long running projects

Training and retention of a cadre of young people to engage in long
term translational projects are critical. A strong research program
cannot be established without a complementary education component,
which is as important as adequate infrastructure support. A continuing
supply of high-quality computational scientists available for work in our
field is critical. This starts with graduate students, who contribute to the
software development, and continues with post-docs who care about the
development and help with the research directions, as well as research
professors and colleagues, who contribute to the overall effort. Without
a continuous effort full of qualified people at these levels, such long-term
projects cannot be carried out at our universities. Students and post-docs
are with the project for only a short time. It is critical that the design is
well documented and the documentation is faithful to the software that
is developed. For the student, it can lead to a thesis or dissertation. For
post-docs, it can solidify their interest in the field and lead to new
research areas.

Traditionally, individual researchers working alone or in pairs have
characterized the style of much of the work in the sciences. This situa
tion is different in computational science where increasingly a multi
disciplinary team approach is required. There are several compelling
reasons for this. First and foremost, problems in modern scientific
computing transcend the boundaries of a single discipline. In general,
the computational approach has made science more interdisciplinary
than ever before. There is a unity among the various steps of the overall
modeling process from the formulation of a scientific or engineering
problem to the construction of appropriate mathematical models, the

design of suitable numerical methods, their computational imple
mentation, and, last but not least, the validation and interpretation of
the computed results. For most of today’s complex scientific or tech
nological computing problems a team approach is required involving
scientists, engineers, applied and numerical mathematicians, statisti
cians, and computer scientists.

Unlike theoretical mathematics, computational mathematics, by its
very nature, has a strong experimental component. As a result, research
work proceeds in part in a laboratory mode similar to that in the
experimental sciences. The laboratory equipment required for modern
scientific computing ranges from local workstations to mainframe ma
chines of various sizes, and supercomputers. This hardware is com
plemented by appropriate software systems and libraries.

Clearly, the investment costs, as well as the longer duration of typical
computational projects—especially when extensive software develop
ment is involved—necessitate a certain continuity and stability of the
entire research infrastructure.

4.5. Roadblocks for ECP translation process

A major and valuable investment for a supercomputing ecosystem is
its investment in people. The technology is maintained, exploited, and
enhanced by the collective know-how of a relatively small cadre of
supercomputing professionals—from those who design and build the
hardware and system software to those who develop the algorithms and
write the applications and programs. Their expertise is the product of
years of experience. As supercomputing becomes a smaller fraction of
research and development in information technology, there is a greater
chance that those professionals will move out of supercomputing related
employment and into more lucrative jobs. For example, their systems
skills could be reused at Google, Facebook, or NVIDIA, and their algo
rithms skills would be useful on Wall Street.

5. Conclusions

Advancing to the next stage of growth for computational simulation
and modeling will require us to solve basic research problems in com
puter science and applied mathematics, at the same time as we create
and promulgate a new paradigm for the development of scientific soft
ware. To make progress on both fronts simultaneously will require a
level of sustained, interdisciplinary collaboration among the core
research communities that requires a translational approach.

Existing numerical libraries will need to be rewritten and extended in
light of emerging architectural changes. The technology drivers will
necessitate the redesign of existing libraries and will force re-
engineering and implementation of new algorithms. Because of the
enhanced levels of concurrency on future systems, algorithms will need
to embrace asynchrony to generate the number of required independent
operations.

As we enter an era of great change, strategic clarity and vision will be
essential. Technology disruptions will also require innovative new ideas
in mathematics and computer science. We need sustained investments in
creative individuals and high-risk concepts.

The community has long struggled to settle on a good model for
sustained support for key elements of the software ecosystem. This issue
will become more acute as we move to exascale and beyond. The com
munity needs to recognize that software is really a scientific facility that
requires long-term investments in maintenance and support.

Conflict of interest

The authors declare no conflict of interest.

Declaration of Competing Interest

The authors report no declarations of interest.

J. Dongarra et al.

Journal of Computational Science xxx (xxxx) xxx

7

Appendix A. PACKs over decades

Project Year Authors

NATS Project 1971 Boyle, et al.
FUNPACK 1972 Cody
EISPACK 1972 Smith, et al.
RFK45 1977 Shampine &Watts
SLATEC 1977 DOE Community
LINPACK 1978 Dongarra, et al.
Level 1 BLAS 1978 Lawson, et al.
MINPACK 1979 More’, et al.
DEPAC 1980 Shampine &Watts
DASSL 1982 Petzold
ODEPACK &SUNDIALS 1983 Hindmarsh
IEEE floating point 1985 Kahan et al.
Netlib 1985 Dongarra &Gross
Level 2 BLAS 1988 Dongarra et al.
PVM 1989 Geist, et al.
Level 3 BLAS 1990 Dongarra, et al.
PETSc 1991 Smith, et al.
ADIFOR 1992 Hovland, et al.
MPI 1992 Community
MPICH 1992 Gropp &Lusk
LAPACK 1992 Anderson, et al.
ScaLAPACK 1997 Blackford, et al.
SuperLU 1997 Li, et al.
Hypre 1998 Falgout, et al.
ARPACK 1998 Sorensen
ATLAS 2000 Whaley &Dongarra
PAPI 2000 Browne, et al.
Trilinos 2001 Heroux, et al.
Open MPI 2005 Community
IESP 2009 Community
PLASMA 2007 Kurzak, et al.
MAGMA 2009 Tomov, et al.
SLATE 2017 Gates, et al.

References

[1] J.D. McCalpin, et al., Memory bandwidth and machine balance in current high
performance computers, IEEE Comput. Soc. Tech. Comm. Comput. Archit. (TCCA)
Newsl. 2 (19–25) (1995). https://www.cs.virginia.edu/stream/.

[2] D. Abramson, M. Parashar, Translational research in computer science, Computer
52 (9) (2019) 16–23.

[3] C.L. Lawson, R.J. Hanson, D. Kincaid, F.T. Krogh, Basic linear algebra subprograms
for FORTRAN usage, ACM Trans. Math. Soft. 5 (1979) 308–323.

[4] J.J. Dongarra, J.D. Croz, S. Hammarling, R. Hanson, An extended set of FORTRAN
basic linear algebra subprograms, ACM Trans. Math. Softw. 14 (1988) 1–17.

[5] J.J. Dongarra, J.D. Croz, S. Hammarling, R. Hanson, Algorithm 656: an extended
set of FORTRAN basic linear algebra subprograms, ACM Trans. Math. Softw. 14
(1988) 18–32.

[6] J.J. Dongarra, J.D. Croz, I.S. Duff, S. Hammarling, Algorithm 679: a set of level 3
basic linear algebra subprograms, ACM Trans. Math. Softw. 16 (1990) 1–17.

[7] J.J. Dongarra, J.D. Croz, I.S. Duff, S. Hammarling, A set of level 3 basic linear
algebra subprograms, ACM Trans. Math. Softw. 16 (1990) 18–28.

[8] E. Anderson, Z. Bai, C. Bischof, S.L. Blackford, J.W. Demmel, J.J. Dongarra, J.
D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, D.C. Sorensen, LAPACK
User’s Guide, Third Edition, Society for Industrial and Applied Mathematics,
Philadelphia, 1999.

[9] J. Dongarra, I. Duff, M. Gates, A. Haidar, S. Hammarling, N.J. Higham, J. Hogg,
P. Valero-Lara, S.D. Relton, S. Tomov, M. Zounon, A Proposed API for Batched
Basic Linear Algebra Subprograms, MIMS EPrint 2016. 25, Manchester Institute for
Mathematical Sciences, The University of Manchester, UK, 2016. http://eprints.
ma.man.ac.uk/2464/.

[10] J. Dongarra, I. Duff, M. Gates, A. Haidar, S. Hammarling, N.J. Higham, J. Hogg, P.
V. Lara, P. Luszczek, M. Zounon, S.D. Relton, S. Tomov, T. Costa, S. Knepper,
Batched Blas (Basic Linear Algebra Subprograms) 2018 Specification (2018–07
2018), 2018.

[11] B.S. Garbow, J.M. Boyle, C.B. Moler, J. Dongarra, Matrix Eigensystem Routines –
EISPACK Guide Extension, Vol. 51 of Lecture Notes in Computer Science, Springer,
Berlin, 1977, https://doi.org/10.1007/3-540-08254-9.

[12] J. Dongarra, J.R. Bunch, C.B. Moler, G.W. Stewart, LINPACK Users’ Guide, SIAM,
Philadelphia, 1979, https://doi.org/10.1137/1.9781611971811.

[13] Y. Choi, J.J. Dongarra, R. Pozo, D.W. Walker, ScaLAPACK: a scalable linear algebra
library for distributed memory concurrent computers, in: Proceedings of the Fourth
Symposium on the Frontiers of Massively Parallel Computation (Frontiers’92),
McLean, Virginia, October 19–21, 1992, 1992, pp. 120–127.

[14] M.V. Wilkes, D.J. Wheeler, S. Gill, The Preparation of Programs for an Electronic
Digital Computer (Charles Babbage Institute Reprint), The MIT Press, 1984.

[15] H.T. Kung, C.E. Leiserson, Systolic arrays (for VLSI), Sparse Matrix Proceedings,
Society for Industrial and Applied Mathematics (1978) 256–282. ISBN:
0898711606.

[16] M. Bauer, S. Treichler, E. Slaughter, A. Aiken, Legion: expressing locality and
independence with logical regions, International Conference for High Performance
Computing, Networking, Storage and Analysis, SC (2012), https://doi.org/
10.1109/SC.2012.71.

[17] E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost, M. Sergent,
S. Thibault, Harnessing Supercomputers with a Sequential Task-based Runtime
System, 13(9, 2014, pp. 1–14.

[18] T. Heller, H. Kaiser, K. Iglberger, Application of the ParalleX execution model to
stencil-based problems, Comput. Sci. – Res. Dev. 28 (2–3) (2013) 253–261, https://
doi.org/10.1007/s00450-012-0217-1.

[19] J. Dokulil, M. Sandrieser, S. Benkner, Implementing the open community runtime
for shared-memory and distributed-memory systems, Proceedings – 24th
Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing, PDP 2016 (2016) 364–368, https://doi.org/10.1109/PDP.2016.81.

[20] J. Bueno, J. Planas, A. Duran, R.M. Badia, X. Martorell, E. Ayguadé, J. Labarta,
Productive programming of GPU clusters with OmpSs, Proceedings of the 2012
IEEE 26th International Parallel and Distributed Processing Symposium, IPDPS
2012 (2012) 557–568, https://doi.org/10.1109/IPDPS.2012.58.

[21] OpenMP 5.0 Complete Specifications, 2018. https://www.openmp.org/wp-conte
nt/uploads/OpenMP-API-Specification-5.0.pdf.

[22] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, J. Dongarra, PaRSEC: a
programming paradigm exploiting heterogeneity for enhancing scalability,
Comput. Sci. Eng. 99 (2013) 1, https://doi.org/10.1109/MCSE.2013.98. http://hal
.inria.fr/hal-00930217.

[23] A. Haidar, P. Luszczek, J. Dongarra, New algorithm for computing eigenvectors of
the symmetric eigenvalue problem, in: Workshop on Parallel and Distributed
Scientific and Engineering Computing, IPDPS 2014 (Best Paper), IEEE, IEEE,
Phoenix, AZ, 2014, https://doi.org/10.1109/IPDPSW.2014.130.

[24] A. Haidar, J. Kurzak, P. Luszczek, An improved parallel singular value algorithm
and its implementation for multicore hardware, Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis
(2013) 90.

[25] G. Ballard, J. Demmel, O. Holtz, O. Schwartz, Minimizing communication in
numerical linear algebra, SIAM J. Matrix Anal. Appl. 32 (3) (2011) 866–901.

J. Dongarra et al.

https://www.cs.virginia.edu/stream/
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0010
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0010
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0015
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0015
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0020
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0020
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0025
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0025
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0025
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0030
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0030
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0035
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0035
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0040
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0040
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0040
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0040
http://eprints.ma.man.ac.uk/2464/
http://eprints.ma.man.ac.uk/2464/
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0050
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0050
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0050
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0050
https://doi.org/10.1007/3-540-08254-9
https://doi.org/10.1137/1.9781611971811
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0065
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0065
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0065
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0065
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0070
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0070
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0075
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0075
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0075
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1109/SC.2012.71
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0085
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0085
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0085
https://doi.org/10.1007/s00450-012-0217-1
https://doi.org/10.1007/s00450-012-0217-1
https://doi.org/10.1109/PDP.2016.81
https://doi.org/10.1109/IPDPS.2012.58
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1109/MCSE.2013.98
http://hal.inria.fr/hal-00930217
http://hal.inria.fr/hal-00930217
https://doi.org/10.1109/IPDPSW.2014.130
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0120
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0120
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0120
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0120
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0125
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0125

Journal of Computational Science xxx (xxxx) xxx

8

[26] M. Mohiyuddin, M. Hoemmen, J. Demmel, K. Yelick, Minimizing communication
in sparse matrix solvers, Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (2009) 36.

[27] J. Demmel, L. Grigori, M. Hoemmen, J. Langou, Communication-optimal parallel
and sequential QR and LU factorizations, SIAM J. Sci. Comput. 34 (1) (2012)
A206–A239, https://doi.org/10.1137/080731992.

[28] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
A. Dener, V. Eijkhout, W.D. Gropp, D. Karpeyev, D. Kaushik, M.G. Knepley, D.
A. May, L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith,
S. Zampini, H. Zhang, H. Zhang, PETSc Users Manual, Tech. Rep. ANL-95/11 –
Revision 3.13, Argonne National Laboratory, 2020. https://www.mcs.anl.
gov/petsc.

[29] H. Jagode, A. Danalis, H. Anzt, J. Dongarra, PAPI software-defined events for in-
depth performance analysis, Int. J. High Perform. Comput. Appl. 33 (6) (2019)
1113–1127.

[30] A. Danalis, H. Jagode, T. Herault, P. Luszczek, J. Dongarra, Software-defined
events through PAPI, in: 2019 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), Rio de Janeiro, Brazil, Brazil, 2019,
pp. 363–372, https://doi.org/10.1109/IPDPSW.2019.00069.

[31] University of Tennessee, Oak Ridge National Laboratory, Netlib Libraries Access
Counts, http://www.netlib.org/master_counts2.html.

[32] T. Gamblin, M.P. LeGendre, M.R. Collette, G.L. Lee, A. Moody, B.R. de Supinski,
S. Futral, in: J. Kern, J.S. Vetter (Eds.), The Spack Package Manager: Bringing
Order to HPC Software Chaos, SC, ACM, 2015, pp. 40:1–40:12. http://dblp.uni-tri
er.de/db/conf/sc/sc2015.html#GamblinLCLMSF15.

[33] F. Alexander, A. Almgren, J. Bell, A. Bhattacharjee, J. Chen, P. Colella, D. Daniel,
J. DeSlippe, L. Diachin, E. Draeger, A. Dubey, T. Dunning, T. Evans, I. Foster,
M. Francois, T. Germann, M. Gordon, S. Habib, M. Halappanavar, S. Hamilton,
W. Hart, Z. Huang, A. Hungerford, D. Kasen, P.R.C. Kent, T. Kolev, D.B. Kothe,
A. Kronfeld, Y. Luo, P. Mackenzie, D. McCallen, B. Messer, S. Mniszewski,
C. Oehmen, A. Perazzo, D. Perez, D. Richards, W.J. Rider, R. Rieben, K. Roche,
A. Siegel, M. Sprague, C. Steefel, R. Stevens, M. Syamlal, M. Taylor, J. Turner, J.-
L. Vay, A.F. Voter, T.L. Windus, K. Yelick, Exascale applications: skin in the game,
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378 (2166) (2020), https://doi.org/
10.1098/rsta.2019.0056.

Jack Dongarra He specializes in numerical algorithms in
linear algebra, parallel computing, the use of advanced-
computer architectures, programming methodology, and
tools for parallel computers. His research includes the devel
opment, testing and documentation of high quality mathe
matical software. He has contributed to the design and
implementation of the following open source software pack
ages and systems: EISPACK, LINPACK, the BLAS, LAPACK,
ScaLAPACK, Netlib, PVM, MPI, NetSolve, Top500, ATLAS, and
PAPI. He has published over 400 articles, papers, reports and
technical memoranda and he is coauthor of several books. He
was awarded the IEEE Sid Fernbach Award in 2004 for his
contributions in the application of high performance com
puters using innovative approaches; in 2008 he was the
recipient of the first IEEE Medal of Excellence in Scalable
Computing; in 2010 he was the first recipient of the SIAM
Special Interest Group on Supercomputing’s award for Career
Achievement; in 2011 he was the recipient of the IEEE Charles
Babbage Award; in 2013 he was the recipient of the ACM/IEEE
Ken Kennedy Award for his leadership in designing and pro
moting standards for mathematical software used to solve nu
merical problems common to high performance computing, in
2019 he was awarded the SIAM/ACM Prize in Computational
Science and Engineering, and in 2020 he received the IEEE
Computer Pioneer Award for leadership in the area of high-
performance mathematical software. He is a Fellow of the
AAAS, ACM, IEEE, and SIAM and a Foreign Member of the
Russian Academy of Sciences, a Foreign Fellow of the British
Royal Society, and a Member of the US National Academy of
Engineering.

Mark Gates is a research scientist at the Innovative Computing
Laboratory at the University of Tennessee, Knoxville. His
research is in the solution of linear algebra problems on mod
ern computers with multi-core and GPU architectures, as part
of the SLATE, PLASMA, and MAGMA projects. He received my
Ph.D. in computer science from the University of Illinois at
Urbana-Champaign, where my research investigated the par
allel implementation of digital volume correlation, a method
used in mechanical engineering. Previously, he worked at the
National Center for Supercomputing Applications (NCSA),
researching high-performance wide-area networking, and at
Lawrence Livermore National Lab (LLNL), investigating ODE
solvers and parallel sparse linear algebra methods.

Piotr Luszczek received PhD for sparse direct and iterative
methods for linear systems of equations with optimized
computational kernels. Subsequently, he worked on out-of-
core linear solvers, self-adaptation and autotuning software.
He co-designed parallel programming languages in industrial
and governmental lab positions. He publishes conferences and
journal articles as well as books chapters and patents. The
major themes of his research work are performance modeling
and evaluation in the context of tuning of parallelizing com
pilers as well as energy-conscious aspects of heterogeneous and
embedded computing. Throughout his professional career,
Luszczek is the principal developer of established industry
benchmarks: HPL, HPCC, and HPCG.

Stanimire (Stan) Tomov, Ph.D., is a Research Director in the
Innovative Computing Laboratory (ICL) and Research Assistant
Professor in the Electrical Engineering and Computer Science
Department at the University of Tennessee, Knoxville. Tomov’s
research interests are in parallel algorithms, numerical anal
ysis, and high-performance scientific computing (HPC). He has
been involved in the development of numerical algorithms and
software tools in a variety of fields ranging from scientific
visualization and data mining to accurate and efficient nu
merical solution of PDEs. Currently, his work is concentrated
on the development of numerical linear algebra libraries for
emerging architectures for HPC, such as heterogeneous multi
core processors, graphics processing units (GPUs), and Many
Integrated Core (MIC) architectures. In particular, he is leading
the development of the Matrix Algebra on GPU and Multicore
Architectures (MAGMA) libraries, targeting to provide
LAPACK/ScaLAPACK functionality on the next-generation of
architectures. Tomov is also a Principal Investigator of the
CUDA Center of Excellence (CCOE) at UTK, and Co-PI of the
Intel Parallel Computing Center (IPCC) at ICL.

J. Dongarra et al.

http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0130
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0130
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0130
https://doi.org/10.1137/080731992
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0145
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0145
http://refhub.elsevier.com/S1877-7503(20)30516-0/sbref0145
https://doi.org/10.1109/IPDPSW.2019.00069
http://dblp.uni-trier.de/db/conf/sc/sc2015.html#GamblinLCLMSF15
http://dblp.uni-trier.de/db/conf/sc/sc2015.html#GamblinLCLMSF15
https://doi.org/10.1098/rsta.2019.0056
https://doi.org/10.1098/rsta.2019.0056

	Translational process: Mathematical software perspective
	1 Introduction
	2 Background
	2.1 Standards
	2.1.1 BLAS
	2.1.2 Batched Basic Linear Algebra Subprograms (BBLAS)

	2.2 Software PACKs
	2.3 Portable performance layers
	2.4 Specific techniques and approaches
	2.4.1 Dataflow scheduling
	2.4.2 Communication avoiding algorithms
	2.4.3 Mixed precision
	2.4.4 Approximate, randomized, and probabilistic approaches
	2.4.5 Machine learning/autotuning

	3 Translational process and moving forward
	4 Impact and lessons learned
	4.1 Measuring impact
	4.2 Licensing for users and manufacturers
	4.3 Funding for research and development
	4.4 Personnel for long running projects
	4.5 Roadblocks for ECP translation process

	5 Conclusions
	Conflict of interest
	Declaration of Competing Interest
	Appendix A PACKs over decades
	References

