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A B S T R A C T   

Each successive generation of computer architecture has brought new challenges to achieving high performance 
mathematical solvers, necessitating development and analysis of new algorithms, which are then embodied in 
software libraries. These libraries hide architectural details from applications, allowing them to achieve a level of 
portability across platforms from desktops to world-class high performance computing (HPC) systems. Thus there 
has been an informal translational computer science process of developing algorithms and distributing them in 
open source software libraries for adoption by applications and vendors. With the move to exascale, increasing 
intentionality about this process will benefit the long-term sustainability of the scientific software stack.   

1. Introduction 

High-performance computers continue to increase in speed and ca
pacity, with exascale machines expected to be delivered in 2021. 
Alongside these developments, architectures are becoming progres
sively more complex, with multi-socket, multi-core central processing 
units (CPUs), multiple graphics processing unit (GPU) accelerators, and 
multiple network interfaces per node. This new complexity leaves 
existing software unable to make efficient use of the increased pro
cessing power. 

For decades, processor performance has been improving in each 
generation consistent with Moore’s Law doubling transistor counts 
every two years and Dennard Scaling enabling increases in clock fre
quency. Combined, these doubled peak performance every 18 months. 
Since Dennard Scaling ceased around 2006 due to physical limits, the 
push has been to multi-core architectures. Instead of getting improved 
performance for free, software had to be adapted to parallel, multi- 
threaded architectures. 

In addition to multi-threaded CPU architectures, hybrid computing 
has also become a popular approach to increasing parallelism, with the 
introduction of CUDA in 2007 and OpenCL in 2009. Hybrid computing 
couples heavyweight CPU cores (using out-of-order execution, branch 
prediction, hardware prefetching, etc.) with comparatively lighter 
weight (using in-order execution) but heavily vectorized GPU acceler
ator cores. There is also heterogeneity in memory: large, relatively slow 

CPU DDR memory coupled with smaller but faster GPU memory such as 
3-D stacked high-bandwidth memory (HBM). To take advantage of these 
capabilities, modern software has to explicitly program for multi-core 
CPUs and GPU accelerators while also managing data movement be
tween CPU and GPU memories and across the network to multiple 
nodes. 

The compute speed, memory and network bandwidth, and memory 
and network latency increase at different exponential rates, leading to 
an increasing gap between data movement speeds and computation 
speeds. For decades, the machine balance of compute speed to memory 
bandwidth has increased 15–30% per year (Fig. 1). Hiding communi
cation costs is thus becoming increasingly more difficult. Instead of just 
relying on hardware caches, new algorithms must be designed to 
minimize and hide communication, sometimes at the expense of dupli
cating memory and computation. 

Very high levels of parallelism also mean that synchronization be
comes increasingly expensive. With processors at around 1–2 GHz, 
exascale machines, with 1018 floating point operations per second, must 
have billion-way parallelism. This is currently anticipated to be ach
ieved by roughly 1.5 GHz × 10,000 nodes × 100,000 thread-level and 
vector-level parallelism. Thus parallelism must become asynchronous 
and dynamically scheduled. 

Mathematical libraries are, historically, among the first software 
adapted to the hardware changes occurring over time, both because 
these low-level workhorses are critical to the accuracy and performance 
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of many different types of applications, and because they have proved to 
be outstanding vehicles for finding and implementing solutions to the 
problems that novel architectures pose. We have seen architectures 
change from scalar to vector to symmetric multiprocessing to distributed 
parallel to heterogeneous hybrid designs over the last 40 years. Each of 
these changes has forced the underlying implementations of the math
ematical libraries to change. Vector computers used Level 1 and Level 2 
basic linear algebra subprograms (BLAS); with the change to cache- 
based memory hierarchies, algorithms were reformulated with block 
operations using Level 3 BLAS matrix multiply. Task-based scheduling 
has addressed multicore CPUs, while more recently—as the compute- 
speed-to-bandwidth ratio increases—algorithms have again been refor
mulated as communication avoiding. In all of these cases, ideas that 
were first expressed in research papers were subsequently implemented 
in open-source software, to be integrated into scientific and engineering 
applications, both open-source and commercial. 

Developing numerical libraries that enable a broad spectrum of ap
plications to exploit the power of next-generation hardware platforms is 
a mission-critical challenge for scientific computing generally, and for 
HPC specifically. But this challenge raises a variety of difficult issues. For 
instance, programming models and hardware architectures are still in a 
state of flux, and this uncertainty is bound to inhibit the development of 
libraries as new configurations and abstractions are tried. At the same 
time, it seems prudent, if possible, to build on top of existing libraries 

instead of developing entirely new ones, since this will amortize some of 
the software maintenance costs, provide backward compatibility, and 
make transition for applications easier; and yet including radically 
different algorithms and methods at a low level, without radically 
altering usage characteristics of familiar packages at a high level, is a 
difficult software engineering problem. Moreover, many HPC applica
tions will need to run on platforms ranging from leadership-class ma
chines to smaller-scale clusters and workstations. These architectural 
changes have come every decade or so, thereby creating a need to 
rewrite or refractor the software for the emerging architectures. Scien
tific libraries have long provided a large and growing resource for high- 
quality, reusable software components upon which applications can be 
rapidly constructed—with improved robustness, portability, and 
sustainability. 

This process of writing new generations of numerical software for 
new architectures has, informally, led to the translational process 
illustrated in Fig. 2, which starts with basic research to develop high 
performance, numerically stable methods. This research grew out of a 
motivation to have efficient and stable algorithms on state-of-the-art 
architectures. Out of that research comes new mathematical algo
rithms that are developed into robust software libraries that are portable 
across platforms and include an extensive testing suite and documen
tation. Applications start to use these libraries, which are eventually 
adopted by system vendors such as AMD, Cray, IBM, and Intel for inclusion 
in their system software. Ideally, software goes through a standardization 
process, as in the case of MPI and BLAS, while other software becomes a 
de facto standard, like LAPACK. With this standardization comes wide
spread acceptance. Throughout this process, feedback is exchanged be
tween the math library developers, application developers, and vendors. 
Underlying this process is an environment that includes: community 
involvement; an emphasis on high performance, efficiency, and porta
bility; development of software that is freely available under a liberal 
open-source license; and ongoing software maintenance of the libraries. 
This general translational process was published by Abramson and 
Parashar [2]. Here, basic research and robust software corresponds to 
the lab in their concept; early adoption by applications and vendors 
corresponds to the locale, and standardization and widespread accep
tance corresponds to the community. In this paper, we will look at how 
this translational research has affected the development of mathemat
ical software libraries. 

2. Background 

Today’s scientists often tackle problems that are too difficult to parse 
theoretically, or too difficult or dangerous to tackle experimentally. How 

Fig. 1. Processor and machine balance increasing, making communication 
relatively more expensive. Data from vendor specs and STREAM bench
mark [1]. 

Fig. 2. Translational approach for mathematical software.  
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can a researcher peer inside a star to see exactly how it explodes? Or how 
can one predict impacts of climate change with so many variables? 

At the application level, science must be captured in mathematical 
models, which are expressed algorithmically and ultimately encoded as 
software. Accordingly, much of the grant funding goes to support this 
modeling, which requires intimate collaboration among domain scien
tists, computer scientists, and applied mathematicians. This process re
lies on a large infrastructure of mathematical libraries, protocols, and 
system software that has taken years to build up and must be main
tained, ported, and enhanced for many years to come in order to pre
serve and extend the value of the application codes that depend on it. 
The software that encapsulates all this time, energy, and thought 
routinely outlasts (usually by years, sometimes by decades) the hard
ware it was originally designed to run on, as well as the individuals who 
designed and developed it. 

2.1. Standards 

Standards are critical for software development. Research has always 
benefited from the open exchange of ideas and the opportunity to build 
on the achievements of others. While single implementations have the 
advantage of rapid development and implementation, widely embraced 
standards (e.g., MPI, BLAS, IEEE floating point standards, and numerical 
libraries) are based on the experience of a wider community and are 
often required by application groups. 

2.1.1. BLAS 
Since the early days of HPC, the Level 1, Level 2, and Level 3 BLAS 

standards [3–7] abstracted away the low-level hardware details from 
scientific library developers by encoding high-level mathematical con
cepts like vector, matrix-vector, and matrix-matrix products. 

The key to using a high-performance computer effectively is to avoid 
unnecessary memory movement, providing considerable motivation to 
devise algorithms to minimize data movement. Along these lines, much 
activity in the past 30 years has involved the redesign of basic routines in 
linear algebra, using block algorithms based on matrix-matrix tech
niques [8]. These have proved effective on a variety of modern computer 
architectures with vector processing or parallel-processing capabilities, 
on which high performance can potentially be degraded by excessive 
transfer of data between different levels of memory (e.g., registers, 
cache, main memory, and solid-state disks). 

By organizing the computation into blocks, we provide for full reuse 
of data while each block is held in cache or local memory, avoiding 
excessive movement of data and giving a surface-to-volume effect for the 
ratio of data movement to arithmetic operations, i.e., O(n2) data 
movement to O(n3) arithmetic operations. In addition, parallelism can 
be exploited in two ways: (1) operations on distinct blocks may be 
performed in parallel; and (2) within the operations on each block, 
scalar or vector operations may be performed in parallel. 

2.1.2. Batched Basic Linear Algebra Subprograms (BBLAS) 
On new hardware and with new algorithms, BLAS started showing its 

age as application developers expressed their compute needs in the form 
of multiple BLAS calls for relatively small problem sizes. Batched BLAS 
fills this performance need by, on one hand, abstracting away low-level 
details; and, on the other hand, extending the original interface to ex
press the computational needs of the application in a hardware-friendly 
way [9,10]. 

2.2. Software PACKs 

Delivering specialized scientific software in the form of packages, 
such as EISPACK [11], LINPACK [12], LAPACK [8], ScaLAPACK [13], 
and others (see Appendix A), continues to be essential for delivering 
robust solvers that enable portable performance across ever more 
specialized hardware systems. 

The portability of software library code has always been an impor
tant consideration, made much more difficult by diverse modern hard
ware designs and the corresponding flourishing of a diverse 
programming language landscape. Understandably, scientific teams do 
not wish to invest significant effort to port large-scale application codes 
to each new machine, when they are focused on science results rather 
than software engineering. Our answer to this glaring problem has al
ways been the development of performance-portable software libraries 
that hide the majority of machine-specific details yet allow automated 
adaptation to the user’s platform of choice. 

LAPACK [8] is an example of a mathematical software package 
wherein the highest-level components are portable, while machine de
pendencies are hidden in lower-level modules. Such a hierarchical 
approach is probably the closest one can come to software portability 
across diverse parallel architectures. The BLAS that LAPACK heavily 
relies on provide a portable, efficient, and flexible standard for appli
cation programmers. 

Maintaining scalability of parallel algorithms over a wide range of 
architectures and numerous processors will likely require the granu
larity of computation to be adjustable to suit the particular circum
stances in which the software executes. Our approach to this problem is 
block algorithms with adjustable block sizes. In addition, a suite of al
gorithms may be required to deal with the full range of architectural 
diversity and processor multiplicity likely to be available. 

2.3. Portable performance layers 

The layered approach to performance portability is indispensable for 
building ever more intricate libraries on top of a less complex portability 
layer with desirable performance characteristics. The first mathematical 
subroutine library for a computer was written by Maurice V. Wilkes, 
David J. Wheeler, and Stanley Gill for the EDSAC at the University of 
Cambridge in England in 1951 [14]. The programs were written in 
machine language, and certainly no thought was given to portability; to 
have a library at all was remarkable. Intuitively, our notion of portable 
numerical software is quite clear: portable applications successfully run 
on a variety of computer architectures and configurations. 

Examples of different computer architectures include: single pro
cessor with uniform random-access memory, pipeline or vector com
puters, parallel computers, and heterogeneous or hybrid computers, to 
name a few. Different versions of a library routine may be written for 
different architectures, where each version has the same calling 
sequence interface. Or, the library routine may have the ability to 
determine which architecture it is running on and make a dynamic de
cision on which path to take to successfully and efficiently execute on 
the underlying architecture. Applications use these numerical libraries, 
and it is these libraries we expect to be portable across different 
architectures. 

2.4. Specific techniques and approaches 

2.4.1. Dataflow scheduling 
In the late 1970s, dataflow scheduling was realized for mapping 

programs represented as a direct acyclic graph (DAG) of tasks to a 
specialized hardware configuration of systolic arrays [15]. In the ensuing 
decades, a large number of task-based runtime systems have been pro
posed and remain active [16–22] with an overarching purpose to 
address programmability and management of parallelism in the context 
of HPC. The next step is to turn the dataflow scheduling approach into a 
standard akin to MPI. 

2.4.2. Communication avoiding algorithms 
The new normal in HPC may be summarized as follows: compute 

time depends on memory accesses and not on total operation count. In 
other words, the number of arithmetic instructions executed no longer 
directly reflects the wall clock time spent in running the program; the 
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type of operation is the essential aspect to consider. Opting for higher 
complexity algorithms may be preferable if the operations map better to 
the hardware and transfer less data across the modern memory hierar
chy and on-node interconnects [23,24]. To better represent the execu
tion time of software, the performance model must be a function of both 
computation and communication costs. To address the 
computation-communication imbalance, several communication- 
avoiding (CA) algorithms have been developed by redesigning existing 
methods to obtain the minimum theoretical communication cost for a 
particular solver [25,26], including CALU and CAQR factorization al
gorithms [27]. After basic research established their advantages, 
communication avoiding algorithms are now being integrated into 
various libraries such as LAPACK, MAGMA, ELPA, SLATE, and vendor 
libraries, continuing the translational process. 

2.4.3. Mixed precision 
The emergence of deep learning as a leading computational work

load on large-scale cloud infrastructure installations has led to a 
plethora of heavily specialized hardware accelerators that can tackle 
these types of problems much more efficiently. These new platforms 
offer new 16-bit floating-point formats with reduced mantissa precision 
and exponent range at significantly higher throughput rates, which 
makes them attractive in terms of improved performance and energy 
consumption. Mixed-precision algorithms are being developed to 
leverage these significant advances in computational power, while still 
maintaining accuracy and stability on par with the classic single or 
double precision formats through careful consideration of the numerical 
effects of half precision. Even though research on mixed-precision al
gorithms has been presented in papers and conferences over the last 
couple of decades, these techniques mostly remained in aprototype state 
and rarely made it into production code. Recently, the US Department of 
Energy (DOE) Exascale Computing Project (ECP) has allocated resources 
to bring these techniques into production. 

2.4.4. Approximate, randomized, and probabilistic approaches 
In the past, the main goals for robust high-performance numerical 

libraries were accuracy first and efficiency second. The current outlook, 
informed by application needs, has been transforming rapidly: accuracy 
itself is often a tunable parameter. It is now one of the major contribu
tors to excessive computation, and is therefore directly at odds with 
speed. In a wide range of applications, from high performance data 
analytics (HPDA) to machine/deep learning, and from edge sensors 
producing extreme amounts of data (including redundant or faulty data) 
to large data stores, the modern requirement for various optimizations is 
to establish a “best” solution in a limited time period. This realignment 
of priority motivates the development of algorithms that call for ap
proximations, randomization, probabilistic accuracy, and convergence 
bounds. The preferred algorithms compute quickly while still being 
sufficiently accurate through non-traditional, innovative approaches. 
Here we see a distinct feedback from application needs back to the 
development of new algorithms. 

2.4.5. Machine learning/autotuning 
Although Moore’s law is still in effect, the multicore and accelerator 

revolution has initiated a processor design trend of moving away from 
architectural features that do not directly contribute to processing 
throughput. This means a preference toward shallow pipelines with in- 
order execution and cutting down on branch prediction and speculative 
execution. On top of that, virtually all modern architectures require 
some form of vectorization to achieve top performance, whether it be 
short-vector, single instruction, multiple data (SIMD) extensions of CPU 
cores or single instruction, multiple threads (SIMT) pipelines of GPU 
accelerators. With the landscape of future HPC populated with complex, 
hybrid vector architectures, automated software tuning could provide a 
path toward portable performance without heroic programming efforts. 

3. Translational process and moving forward 

Given the relatively small community of supercomputing re
searchers, international collaborations are particularly important. First 
and foremost, the magnitude of the technical challenges that new ar
chitectures and systems bring with them—and the corresponding sweep 
of changes required for HPC software infrastructure—are formidable. In 
terms of feasibility, the task of recreating this infrastructure to meet the 
new realities of advanced scientific computing is simply too large for any 
one country, or small consortium of countries, to undertake on its own. 
Second, the complex web of interdependencies and side effects that exist 
among the software components of advanced computing infrastructure 
means that making sweeping changes to this infrastructure will require a 
high degree of coordination and collaboration. Moreover, the HPC 
software infrastructure serves scientific communities that include global 
collaborations working on problems of global significance and 
leveraging resources in transnational configurations. 

Historically, HPC software has been developed and maintained by 
national laboratories, universities, hardware vendors, and small, inde
pendent companies. Notably, though, an increasing amount of the 
software used in supercomputing is developed in an open-source model. 
Indeed, over the last 30 years, the open source community has provided 
much of the software infrastructure on which the world’s HPC systems, 
ranging from supercomputers to campus clusters, have depended for 
their performance and productivity. It has invested billions of dollars 
and years of effort to build most of the key components, including math 
libraries (e.g., LAPACK [8] and PETSc [28]), low-level performance 
counter interfaces (e.g., PAPI [29,30]), MPI, GNU tools, and many 
others. 

Although the investments in these separate software elements have 
been tremendously valuable, a great deal of productivity has also been 
lost because of the lack of planning, coordination, and key integration of 
technologies necessary to make them work together smoothly and effi
ciently, both within individual HPC systems and between different 
systems. Open-source development within a single project can be co
ordinated by a repository gatekeeper and an email discussion list, but 
there is no global mechanism working across the community to identify 
critical holes in the overall software environment, spot opportunities for 
beneficial integration, or specify requirements for more careful coordi
nation. It seems clear that this completely uncoordinated development 
model will not provide the software needed to support the unprece
dented parallelism required for peta/exascale computation on millions 
of cores or the flexibility required to exploit new hardware models and 
features, such as transactional memory, speculative execution, and 
GPUs and other accelerators. What is needed is an international effort to 
coordinate research activities to gain more. However, such an effort is 
hard to manage and co-fund. 

Moreover, the successful evolution and maintenance of complex 
software systems are critically dependent on institutional memory—that 
is, on the continuous involvement of the few key developers who un
derstand the software design—and stability and continuity are essential 
to preserving institutional memory. Whatever support model is used, it 
should enable stable organizations with decades-long lifetimes to 
maintain and evolve the software. 

In any case, experience shows that the creation of a new, high-quality 
software stack for scientific computing, one which can meet both the 
diverse requirements of future applications and the rigors of peta/ 
exascale hardware architectures, will demand investment on an un
precedented scale. To avoid significant disruptions in critical research 
agendas, we need to leverage the collective resources of the global 
community. Even leaving the magnitude of the investment required 
aside, the software infrastructure that must be created is intended to 
serve a very broad spectrum of science and engineering communities, all 
of which are international in scope and need to leverage resources at a 
variety of scales. 
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4. Impact and lessons learned 

4.1. Measuring impact 

Even if expertly developed and superbly polished, software is 
worthless unless it has an impact in the hands of the end user. It is not 
enough to make users aware of a software’s existence, though that is a 
difficult task in itself, as users must overcome their reluctance to modify 
their existing software stack. They must be convinced that the software 
they are currently using is inferior enough to endanger their work, and 
that the new software will remove that danger. 

The ultimate measure of impact stems from indications of usage. 
Ideally, it is best if impact measurements are easy to factor and objec
tive. Some possible metrics include: growth of the contributor base, 
number of users, number of software releases, number of downloads and 
citations, level of user satisfaction, level of vendor adoption, number of 
research groups using the resources, percentage of reasonably resolved 
tickets, time-to-resolve tickets, number of publications citing or using 
the resource, and subjective user experience reports. 

Calculating metrics for LAPACK, for example, we see there have been 
around 6.4 million downloads of LAPACK and 1.5 million downloads 
from ScaLAPACK per year, averaged over the last 29 years for LAPACK 
and over the last 25 years for ScaLAPACK [31]. This is for the packages 
as well as various components from the packages. These packages are 
also included in software products like Matlab, Julia, and MKL, which 
we cannot easily count. 

As much of the scientific software stack is open source, one can also 
look into different package managers (e.g., Spack [32]) to measure de
pendencies and usage, or use sites that do this automatically (e.g., lib 
raries.io monitors close to 5 million open-source packages across 37 
different package managers). However, usage typically needs to be 
compared to other developments, quality and quantity is also important, 
and measurements become more difficult and subjective. Although there 
are a number of measures of impact that can be used for software, they 
are not well established nor supported, which stands in contrast to the 
number of citations or h-index calculated for publications. 

A measure of impact that combines both objective and subjective 
measures can be obtained if we look into particular areas. For example, 
in the area of algorithms and numerical libraries for current and up
coming HPC hardware, a good example is the DOE’s ECP effort, which is 
a large-scale development and deployment project for a comprehensive, 
integrated software stack and exascale hardware technology develop
ment and its translation into DOE mission-critical applications. ECP 
applications, and their associated exascale challenge problems, were 
reviewed by external experts and carefully selected in 2016 based on key 

DOE criteria, including: significance and requirement of exascale re
sources, alignment with DOE mission and strategic priorities, impact to 
both DOE and the broader community, and experience of the teams in 
leveraging HPC systems [33]. The software technologies in ECP and the 
number of ECP applications that depend on each technology are shown 
in Fig. 3. 

There are 64 applications and 64 software technology projects in the 
ECP effort, ordered in Fig. 3 on the x-axis by the number of applications 
that critically depend on them. Note, for example, that Spack [32] rea
ches the maximum of 64 dependencies, as all applications use Spack as 
their package manager to simplify and unify installation. After that, the 
software projects with the most dependents are the ones related to the 
programming model, namely: MPI, OpenMP, and C++ (in that order). 
The next projects with most critical dependents (17) are the LAPACK 
numerical library and the HDF5 open source file format for large, 
complex, heterogeneous data. Other notable software projects with a 
relatively large number of dependents are CUDA (programming for 
NVIDIA GPUs), Kokkos (portable programming model), BLAS, and 
ALPINE (scientific visualization). 

4.2. Licensing for users and manufacturers 

An important lesson learned for scientific software and its translation 
process is the significance of its licensing. Much of the scientific software 
is open source, frequently using a Berkeley Software Distribution (BSD)- 
derived license, which originated in the BSD Unix OS. The modified or 3- 
clause BSD license states: Redistribution and use in source and binary 
forms, with or without modification, are permitted provided that the 
following conditions are met:  

(1) Redistributions of source code must retain the above copyright 
notice, this list of conditions and the following disclaimer. 

(2) Redistributions in binary form must reproduce the above copy
right notice, this list of conditions and the following disclaimer in 
the documentation and/or other materials provided with the 
distribution. 

(3) Neither the name of the Corporation nor the names of the con
tributors may be used to endorse or promote products derived 
from this software without specific prior written permission. 

The BSD license is a permissive, free software license, imposing 
minimal restrictions on the use and redistribution of covered software. A 
BSD style license is a good choice for long duration research or other 
projects that require a development environment that has near zero cost 
for end users, will evolve over a long period of time, and permits anyone 

Fig. 3. Number of application dependents for each of the software technologies in DOE’s ECP project. There are a total of 64 applications and 64 software tech
nologies in ECP. 
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to retain the option of commercializing final results with minimal legal 
issues. 

The success of the scientific software stack can, in part, be attributed 
to the choice of software licensing. Not only is the software, in general, 
of high quality, well tested, portable, and actively maintained, it is also 
capable of being incorporated into other software applications with 
minimal restrictions on the use and redistribution of the application 
software; in other words, the license is not a hindrance and allows users 
to employ the software how they see fit. 

4.3. Funding for research and development 

With the development of mathematical software the process begins 
with a sound foundation in mathematics that expresses the correctness 
and stability of the computation. A numerical algorithm is then devel
oped that expresses the mathematics as an algorithm that encompasses 
the various cases the mathematics takes into account. A more complete 
picture would be: 

• the development and analysis of algorithms for standard mathe
matical problems which occur in a wide variety of applications;  

• the practical implementation of mathematical algorithms on 
computing devices, including study of interactions with particular 
hardware and software systems;  

• the environment for the construction of mathematical software, such 
as computer arithmetic systems, languages, and related software 
development tools;  

• software design for mathematical computation systems, including 
user interfaces; 

• testing and evaluation of mathematical software, including meth
odologies, tools, testbeds, and studies of particular systems;  

• issues related to the dissemination and maintenance of software. 

Each of these items requires an investment of time and funding to suc
cessfully accomplish its task. The National Science Foundation and the 
Department of Energy have contributed to the promotion of various 
aspects of this overall research and development process. 

4.4. Personnel for long running projects 

Training and retention of a cadre of young people to engage in long 
term translational projects are critical. A strong research program 
cannot be established without a complementary education component, 
which is as important as adequate infrastructure support. A continuing 
supply of high-quality computational scientists available for work in our 
field is critical. This starts with graduate students, who contribute to the 
software development, and continues with post-docs who care about the 
development and help with the research directions, as well as research 
professors and colleagues, who contribute to the overall effort. Without 
a continuous effort full of qualified people at these levels, such long-term 
projects cannot be carried out at our universities. Students and post-docs 
are with the project for only a short time. It is critical that the design is 
well documented and the documentation is faithful to the software that 
is developed. For the student, it can lead to a thesis or dissertation. For 
post-docs, it can solidify their interest in the field and lead to new 
research areas. 

Traditionally, individual researchers working alone or in pairs have 
characterized the style of much of the work in the sciences. This situa
tion is different in computational science where increasingly a multi
disciplinary team approach is required. There are several compelling 
reasons for this. First and foremost, problems in modern scientific 
computing transcend the boundaries of a single discipline. In general, 
the computational approach has made science more interdisciplinary 
than ever before. There is a unity among the various steps of the overall 
modeling process from the formulation of a scientific or engineering 
problem to the construction of appropriate mathematical models, the 

design of suitable numerical methods, their computational imple
mentation, and, last but not least, the validation and interpretation of 
the computed results. For most of today’s complex scientific or tech
nological computing problems a team approach is required involving 
scientists, engineers, applied and numerical mathematicians, statisti
cians, and computer scientists. 

Unlike theoretical mathematics, computational mathematics, by its 
very nature, has a strong experimental component. As a result, research 
work proceeds in part in a laboratory mode similar to that in the 
experimental sciences. The laboratory equipment required for modern 
scientific computing ranges from local workstations to mainframe ma
chines of various sizes, and supercomputers. This hardware is com
plemented by appropriate software systems and libraries. 

Clearly, the investment costs, as well as the longer duration of typical 
computational projects—especially when extensive software develop
ment is involved—necessitate a certain continuity and stability of the 
entire research infrastructure. 

4.5. Roadblocks for ECP translation process 

A major and valuable investment for a supercomputing ecosystem is 
its investment in people. The technology is maintained, exploited, and 
enhanced by the collective know-how of a relatively small cadre of 
supercomputing professionals—from those who design and build the 
hardware and system software to those who develop the algorithms and 
write the applications and programs. Their expertise is the product of 
years of experience. As supercomputing becomes a smaller fraction of 
research and development in information technology, there is a greater 
chance that those professionals will move out of supercomputing related 
employment and into more lucrative jobs. For example, their systems 
skills could be reused at Google, Facebook, or NVIDIA, and their algo
rithms skills would be useful on Wall Street. 

5. Conclusions 

Advancing to the next stage of growth for computational simulation 
and modeling will require us to solve basic research problems in com
puter science and applied mathematics, at the same time as we create 
and promulgate a new paradigm for the development of scientific soft
ware. To make progress on both fronts simultaneously will require a 
level of sustained, interdisciplinary collaboration among the core 
research communities that requires a translational approach. 

Existing numerical libraries will need to be rewritten and extended in 
light of emerging architectural changes. The technology drivers will 
necessitate the redesign of existing libraries and will force re- 
engineering and implementation of new algorithms. Because of the 
enhanced levels of concurrency on future systems, algorithms will need 
to embrace asynchrony to generate the number of required independent 
operations. 

As we enter an era of great change, strategic clarity and vision will be 
essential. Technology disruptions will also require innovative new ideas 
in mathematics and computer science. We need sustained investments in 
creative individuals and high-risk concepts. 

The community has long struggled to settle on a good model for 
sustained support for key elements of the software ecosystem. This issue 
will become more acute as we move to exascale and beyond. The com
munity needs to recognize that software is really a scientific facility that 
requires long-term investments in maintenance and support. 
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Appendix A. PACKs over decades  

Project Year Authors 

NATS Project 1971 Boyle, et al. 
FUNPACK 1972 Cody 
EISPACK 1972 Smith, et al. 
RFK45 1977 Shampine &Watts 
SLATEC 1977 DOE Community 
LINPACK 1978 Dongarra, et al. 
Level 1 BLAS 1978 Lawson, et al. 
MINPACK 1979 More’, et al. 
DEPAC 1980 Shampine &Watts 
DASSL 1982 Petzold 
ODEPACK &SUNDIALS 1983 Hindmarsh 
IEEE floating point 1985 Kahan et al. 
Netlib 1985 Dongarra &Gross 
Level 2 BLAS 1988 Dongarra et al. 
PVM 1989 Geist, et al. 
Level 3 BLAS 1990 Dongarra, et al. 
PETSc 1991 Smith, et al. 
ADIFOR 1992 Hovland, et al. 
MPI 1992 Community 
MPICH 1992 Gropp &Lusk 
LAPACK 1992 Anderson, et al. 
ScaLAPACK 1997 Blackford, et al. 
SuperLU 1997 Li, et al. 
Hypre 1998 Falgout, et al. 
ARPACK 1998 Sorensen 
ATLAS 2000 Whaley &Dongarra 
PAPI 2000 Browne, et al. 
Trilinos 2001 Heroux, et al. 
Open MPI 2005 Community 
IESP 2009 Community 
PLASMA 2007 Kurzak, et al. 
MAGMA 2009 Tomov, et al. 
SLATE 2017 Gates, et al.  
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