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Abstract—With NVIDA Tegra Jetson X1 and Pascal P100
GPUs, NVIDIA introduced hardware-based computation on
FP16 numbers also called half-precision arithmetic. In this talk,
we will introduce the steps required to build a viable benchmark
for this new arithmetic format. This will include the connections
to established IEEE floating point standards and existing HPC
benchmarks. The discussion will focus on performance and
numerical stability issues that are important for this kind of
benchmarking and how they relate to NVIDIA platforms.

I. INTRODUCTION

Iterative refinement has been known for many decades as an
effective tool for increasing accuracy of a solution of a set of
simultaneous linear equations [1], [2], [3]. The requirement for
improvement is accumulation of the residual b — Ax in higher-
precision arithmetic which is often possible through already
available hardware or, absent that, software-based techniques.

If it is possible to customize the working precision, as is the
case on FPGAs, then this scheme can be exploited by creating
a custom floating-point units [4]. Alternatively, it is possible to
exploit system matrix conditioning and use iterative refinement
as a method of accessing faster hardware capabilities [5].
This allows a solver to run at the speed of lower-precision
arithmetic and deliver working-precision answer. This may
deliver two-fold speed up on majority of hardware platforms
and occasionally as much as 10-fold increase on less common
systems. Modern GPUs may offer an even greater benefit as
some consumer grade gaming cards feature only a rudimentary
support for double precision arithmetic that ends being 32
times slower than its single precision counter part.

The current state of silicon chip market, often referred as
post-Dennard and post-Moore era, precipitated emergence of
accelerators and specialized compute options such as FPGAs,
SOCs, and TPUs. In the software layer this resulted in
codesign efforts with representative mini-applications to drive
the effort [6]. A regular linear system solve with a dense matrix
and the optimal algorithm no longer looks uniform granted
these hardware advances. Therefore, there is a need for more
nuanced look and specialization of the algorithmic choices
which we attempt in this writing.

II. BACKGROUND

While solving a system of linear equations of the form:

Ax=b (1)
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TABLE I
SUMMARY OF IEEE 754 (2008) FLOATING POINT.

Precision Mantissa  Exponent Epsilon Max
Quadruple 112 15 01073 0(10*3?)
Extended 64 15 0(1071%)  0(10°%)
Double 52 11 0(1071%)  0(10°%)
Single 23 8 0(1077)  0(10%)
Half" 10 5 0(1073) 65504

T defined only for storage

where A € R™" and x,b € R"™. Taking advantage of the
structure of A in Eq. (1) is commonly used in computational sci-
ence. For dense matrices, switching between LU, Cholesky [7],
and QR factorizations is an option, which depends on the
numerical properties of the matrices. Further exploitation of
rank structure of A may take form of 9H-matrices [8], [9],
[10], H>*-matrices [11], [12], [13], quasi-separable matrices
[14], [15], semiseparable matrices [16], [17], and multilevel
low-rank structures [18]. Lacking such structure and not being
able to exploit low-rank properties, a matrix may still offer
an opportunity for faster solver if the condition number is
low enough and the speed of lower-precision may be utilized
by the available hardware. The exploitation of the condition
number of the L and U factors to tackle least squares problems
can also be taken advantage of as long as regularization is
involved [19].

Table I shows IEEE floating point standard formats that are
currently supported by the hardware available on the market.

III. ITERATIVE ALGORITHM AND ITS NUMERICAL
ANALYSIS PROPERTIES

Note that LU contains multiple stages that can be targeted
by appropriate precision based on the final precision bounds on
the numerical properties. The pivoting in the LU factorization
maintains L well conditioned (to the extent possible) and pushes
the unbound pivot growth into U. Implementations commonly
push this one step farther and produce U that is singular if
A is singular in exact arithmetic, i.e., k(A) = co, or only
singular in the working precision: k (A(Wp)) = Inf. In the
least squares minimization context, note that it might be more
preferable to numerically find min ||b — Ly||22 rather than more
computationally involved min ||b — Ay||§ if the L factor is
better conditioned than the original system matrix A [20]. The



Algorithm 1: Mixed precision iterative refinement with
the 16-bit factorization and 64-bit corrections.
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conditioning of the system matrix A depends on the originating
application but in a benchmarking context, k(A) can be a
controlled quantity. A known results states that x(A) ~ v/n if
the entries of A are normally distributed around zero: x;; =
N(0,1) [21] and this can be guaranteed in practice through
the correct choice of the pseudo random number generator
(PRNG) for the system matrix A. In fact, the High Performance
LINPACK benchmark uses a uniform distribution around zero:
U (O, %) [22] which is sufficient in practice to bound the
condition number at reasonable level while still force excessive
pivot growth when at least partial pivoting is not used by a
non-conforming implementation.

The Algorithm 1 shows an iterative refinement adopted
from the 32/64 bit formulation [23], [24], [25] to the 16/64
scenario. The algorithm solves the system from Eq. (1) by
introducing representation of matrices and vectors in fixed-
precision arithmetic:

A6 ,(64) _ p(64) 2
where A4 p(64) (64) represent A, b, x of Eq. (1) but in 64-bit
precision floating-point arithmetic. To describe the application
of an inverse of a matrix we use the backslash notation with
the symbol “\” borrowed from the programming systems for
computational algebra such as Julia, MATLAB, Octave, and
SciLab. While in infinite precision arithmetic x « A~'b
is equivalent to x < A\b, in finite precision floating-point
representation the latter is more accurate because it does not
explicitly form A~! which results in larger round-off error
than the decompositional approach of triangular factorization
PA = LU followed by triangular system solves with L and
U, respectively. And with our triangular factors represented in
the much lower precision, minimizing the round-off errors is
essential.

Note that only line 1 of Algorithm 1 has complexity O (n3)
and this is the key to taking advantage of the available hardware
and performing this step with the fastest method. In our case,
this is done through the use of 16-bit floating-point arithmetic
that is the fastest on the hardware where it is available. To be
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more precise, with higher-order terms only, the time to solution
may be stated analytically in the form:

t(n) o (—n +0(n ))XT(]6)+0(n2)XT(64) 3)

where 719 and 7 are the products of throughput rates
of the execution units and the clock cycle length for 16-
and 64-bit arithmetic, respectively. On most of the hardware
platforms currently available on the market the ratio of
o (16)
the two quantities is 4: ﬁ = 4. However, due to the
importance of 16-bit arithmetic, this is projected to be much
higher. For example, the announced NVIDIA Volta GPU
accelerators will have this ratio as high as 10 which makes
this hardware so much more important from the perspective
of raw performance and performance-per-watt perspectives.
Furthermore, the Volta cards are announced to include 16-
bit arithmetic with 32-bit accumulation — a critical feature
for numerical issues surrounding limited precision formats.
This kind of intermediate increase in precision is already used
in hardware-based implementations of the fused-multiply-add
(FMA) instruction across almost all commercially available
computing platforms as speicified by the IEEE 754 floating
point standard [26]. This intermediate accumulation at higher
precision may be used in in handling some of the quantities

of the algorithims, for example, r(64) (16) (64)

as well as I
(16)

and T

and rp

The iterative process from Algorithm 1 is called a Richardson
iteration and due to round-off error may be considered a form of
Newton method. The iteration count in line 5 is left unspecified
and can be established experimentally or through the analysis
of the Newton’s algorithm that is known to double the number
of significant digits in the solution as long as the initial guess
Xo is in the basin of quadratic convergence [27]. Consequently,
we conducted relevant experiments to establish numerically
the convergence properties with respect to three precisions
and matrix sizes. Figure 1 shows the resulting convergence
charts with the iteration count on the horizontal axis and the
residual 2-norm ||b — Ax|| on the vertical axis. The figure
clearly indicates that convergence rate for 16-bit starting vector
and the L/U factors is much slower than the corresponding
rates for the 32-bit format. This cannot be explained by the
condition number alone that we keep constant for a given
matrix size n and small enough to guarantee existence of non-
singular L and U factors when partial pivoting is used during
the factorization. Instead, the convergence is slowed down by
the underflow rounding due to limited representation range
of the half-precision numbers especially when residual norm
becomes small. Figure 2 shows extension of Figure 1 for the
matrix when the rounding causes the iteration count to increase
above 60.

IV. IMPLEMENTATION NOTES

The code implementing algorithms in this paper relies on
the support of various floating-point precisions in the compiler.
The half precision is not supported in the C/C++ family of
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Fig. 1. Convergence rate of iterative refinement for various matrix sizes and
precisions. The horizontal axis indicates iteration step and the vertical axis
shows ||b — Ax||co.
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Fig. 2. Convergence rate of iterative refinement for n = 1000 and 16/64
refinement precision. The horizontal axis indicates iteration step and the vertical
axis shows ||b — Ax||co.

languages unlike the 80/128-, 64-, and 32-bit formats as long
double, double, float, respectively. Hence, while programming
with the CUDA toolkit the cuda_fp16.h header is required to
make the __half and vectorized __half2 data types available
with the utility functions. Note, however, that they are only
available in the device code and cause compilation error in the
host code. A portable implementation could use the standard C
library functions frexp(), frexpl(), and frexpf() to provide a fall-
back for the half-precision data type in software including the
compute and the necessary conversion routines. Open source
implementations of half-precision arithmetic and conversions
are also available in some packages including Eigen and
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OpenVZ.

In Fortran, half-precision data type has been available real*2
in addition to the more familiar real*4, real*8, and real*16.
This support continues in the modern compilers. In fact, it is
the real*2 that made the half-precision data type available in
the MPI standard that had to be able to not just communicate
all Fortran data types but also compute on the reductions that
require support for all the standard arithmetic operators as well
as the Fortran’s intrinsic functions.

On the CPU side, the support for half-precision data type is
very limited because most of the processor offer instructions
only for conversion between 32-bit and 16-bit floating-point
data types. ARM NEON VFP specification includes conversions
in version 8.2-A as vld1_f16, vst1_f16, and vevt f16_f32
instructions. The x86 instruction set includes scalar and vector
instructions for conversions to/from the 32-bit floating-point
formats. They are available through the intrinsic functions
declared in the x86intrin.h header file and include scalar
_mm_cvtph_ps() and _mm_cvtps_ph() as well as vector
_mm256_cvtph_ps() and _mm256_cvtps_ph().

The NVIDIA tool chain generates generates PTX instructions
for the half-precision instructions as cvt.f16.* for conversions
and fma.f16x2 vector FMA computation.

At the higher abstraction level, programming environments
include support for half-precision. In Julia programming
language, Float16 data type is available and many of the
builtin libraries support computation on this type including
dense linear algebra routines relevant to this paper. In Python’s
numerical extension package numpy, float16 data type is
available and many functions in that package work as expected
with this type. However, the dense linear algebra subpackage
numpy.linalg does not support the objects of this type because
it calls to LAPACK routines that do not have half-precision
versions.

V. PERFORMANCE RESULTS

Algorithm 2 shows a blocked implementation of the LU
factorization that is the basis of the code used in the LAPACK,
ScaLAPACK, and MAGMA libraries. Given this formulation,
there are multiple ways to get at high performance rates
on NVIDIA accelerators for computations required for the
LU factorization. All of the Schur’s complement operations
combined of the form A,, « Ay X Ai'l X Ay, require
(0] (n3) operations are performed. It can accomplished with the
following calls to the NVIDIA cuBlas library:

o cublasHgemm() — half-precision matrix-matrix multiply,

« cublasHgemmBatched() — half-precision batched matrix-

matrix multiply,

« cublasHgemmStridedBatched - half-precision batched

matrix-matrix multiply with a stride,

« cublasXgemm() — type-generic matrix-matrix multiply.
Based on our tests, the first one: cublasHgemm(), gave
the based performance across a wide range of matrix sizes
and block sizes for 16-bit precision. Next we performed an
autotuning sweep across blocking sizes n; and precisions.
Figure 3 shows the results of all of these automating runs
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Fig. 3. Performance of the LU factorization in three precisions with for all block sizes using cublasHgemm().
Algorithm 2: Blocked implementation of the LU
factorization in terms of Level 3 BLAS calls to trsm()
and gemm() s short_float nb=400 sesesBesnaven®iece
.
P—1// ith id i i 12000 float nb=400 aeon®™’
1 start with i1dentity permutation +  double nb=400 oo
. .
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wi
. Al Az g
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Ay Az g s
w o
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9 trsm(Al,l,Al,z) // triangular solve 5000 10000 15000 20000 25000 30000 35000
10 gemm(Ay,1A12422) // Schur’s complement Matrix size
11 return A, P

and Figure 4 shows the optimal performance for the three
precisions when ny 400. The maximum performance
reached was approximately 3900 Gflop/s, 7550 Gflop/s, and
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Fig. 4. Performance of the LU in three precisions factorization with optimal
block size ng = 400 using cublasHgemm().

13760 Gflop/s for double precision, single precision and half
precision, respectively. This corresponds to 96% efficiency
of going from double to single precision and 88% efficiency



when going from double to half precision. These numbers are
expected to improve with newer version of NVIDIA CUDA
toolkit, cuBlas library, and our own autotuned kernels.

VI. CONCLUSIONS AND FUTURE WORK

We have shown in this paper the numerical and implemen-
tation building blocks of benchmarking procedures capable
of assessing the potential of the half-precision data type on
modern accelerator hardware.

Our future will focus on the implementation details on
a Jetson X1 board that takes advantage of the specialized
shared memory available in the system and the ARM processor
optimizations with respect to the routines that can be performed
on the host. Similarly, an implementation targeting IBM Minsky
platform is of great interest with support for both the Pascal
card and the IBM POWERS processor directly connected with
the NVLink interface for much higher bandwidth and lower
latency when compared to GPU cards connected through the
PClexpress bus.

In a more distant future, we would like to focus on NVIDIA
Volta and its new instruction set additions referred to as Tensor
Core which give an additional performance advantage to the
half-precision performance.

Another interesting extension is to see the potential of the
half precision complex variant of the code that can achieve
even higher performance levels due to the higher floating-point
intensity.
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