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ABSTRACT
We investigate a new task-based implementation of the polar decom-

position on massively parallel systems augmented with multiple

GPUs using SLATE. We implement the iterative QR Dynamically-

Weighted Halley (QDWH) algorithm, whose building blocks mainly

consist of compute-bound matrix operations, allowing for high lev-

els of parallelism to be exploited on various hardware architectures,

such as NVIDIA, AMD, and Intel GPU-based systems. To achieve

both performance and portability, we implement our QDWH-based

polar decomposition in the SLATE library, which uses efficient

techniques in dense linear algebra, such as 2D block cyclic data

distribution and communication-avoiding algorithms, as well as

modern parallel programming approaches, such as dynamic sched-

uling and communication overlapping, and uses OpenMP tasks to

track data dependencies.

We report numerical accuracy and performance results. The

benchmarking campaign reveals up to an 18-fold performance

speedup of the GPU accelerated implementation compared to the

existing state-of-the-art implementation for the polar decomposi-

tion.

CCS CONCEPTS
•Mathematics of computing→ Solvers;Mathematical soft-
ware performance.
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1 INTRODUCTION
With today’s move to exascale computing, traditional numerical

algorithms confront severe challenges, mainly due to the increased

cost of communication relative to computation. Leveraging new

algorithms geared to efficiently take advantage of the extreme levels

of concurrency in exascale systems becomes mission-critical for

pushing the edge of what is possible for science and engineering.

This redesign comes with a cost – algorithms tailored for extreme

parallelism, at the cost of extra floating-point operations.

This paper investigates the performance of a novel task-based

implementation of the polar decomposition (PD) based on the iter-

ative QR-based Dynamically Weighted Halley (QDWH) iteration

on GPU-accelerated supercomputers. The polar decomposition of a

matrix 𝐴 ∈ C𝑚×𝑛 (𝑚 ≥ 𝑛) is

𝐴 = 𝑈𝑝𝐻,

where 𝑈𝑝 is a unitary matrix and 𝐻 =
√
𝐴⊤𝐴 is a symmetric pos-

itive semidefinite matrix. The polar decomposition has multiple

applications, such as aerospace computations [5] and factor analy-

sis [35], and can be used as a pre-processing step to calculate the

singular value decomposition (SVD) of a general matrix or to solve

the eigenvalue problem of a Hermitian matrix [31]. While the cost

of QDWH in floating point operations (flops) is high compared to

other PD algorithms such as the SVD-based PD, it is based on highly

parallel kernels, and so can take better advantage of the available

parallel hardware. A synergistic set of advanced dense linear alge-

bra kernels is used to implement the QDWH algorithm, namely QR

and Cholesky factorizations and solvers, matrix-matrix multiplica-

tion, matrix norm estimation, and condition number estimation. To

this end, we rely on the SLATE library [13] to employ the asynchro-

nous task-based hybrid MPI + OpenMP programming paradigm to

maximize performance. SLATE uses OpenMP to seamlessly build

the directed acyclic graph (DAG) of tasks, pipelines tasks, and track

data dependencies during the iterative QDWH algorithm. SLATE

employs proven techniques in dense linear algebra, such as a 2D

block cyclic data distribution and communication-avoiding algo-

rithms, as well as modern parallel programming approaches, such
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as dynamic scheduling and communication overlapping. In addi-

tion, it employs lookahead techniques to further expose parallelism

while actively pursuing the critical path.

We conduct a comprehensive performance analysis using ill-

conditioned matrices on distributed memory multi-GPU systems

and assess the scalability of the QDWH-based polar decomposition

using SLATE. The benchmarking campaign reveals up to an 18×
performance speedup using hardware accelerators against the ex-

isting state-of-the-art CPU-only implementation, demonstrating

the extreme scale applicability of our implementation.

The remainder of the paper is organized as follows. Section 2

highlights the contributions of this paper. Section 3 provides a

literature survey on the latest polar decomposition developments,

while Section 4 briefly recalls the QDWH-based PD algorithm. An

overview of SLATE is in Section 5. Section 6 explains our massively

parallel implementation of the resulting task-based QDWH-PD

algorithm using SLATE, while Section 7 demonstrates the numerical

robustness and reports on the thorough performance benchmarking

and profiling campaigns. We conclude in Section 8.

2 CONTRIBUTIONS
Our main contributions are:

• We deploy the first distributed and GPU-accelerated QDWH-

based PD algorithm. This is implemented in the open source

SLATE library.

• We develop the first QDWH-based PD implementation that

supports all four standard data types: float, float complex,

double, and double complex; and that supports rectangular

matrices (𝑚 ≥ 𝑛).

• We implement a matrix 2-norm estimator based on power

iteration and a condition number estimator for general and

triangular matrices.

• We conduct performance comparisons against the state-of-

the-art ScaLAPACK implementation of QDWH-based PD

from POLAR [39], and demonstrate the performance scala-

bility on up to 32 nodes and 192 GPUs.

• We demonstrate portability across NVIDIA CUDA and AMD

HIP GPU architectures. SLATE also supports SYCL for Intel

GPUs on the upcoming Aurora system.

3 RELATEDWORK
Polar decomposition (PD) algorithms have been studied over the

last four decades, with theoretical analysis providing error bounds

that guarantee a high degree of accuracy [7, 12, 20, 21, 23, 24]. A

framework to compute the SVD and eigenvalue decomposition

(EVD) based on the polar decomposition has been suggested by

Higham and Papadimitriou [18, 19]. The main steps to compute the

SVD through the polar decomposition starts by finding the polar

decomposition 𝐴 = 𝑈𝑝𝐻 , then the EVD of 𝐻 = 𝑉Λ𝑉⊤
, therefore,

𝐴 = (𝑈𝑝𝑉 )Λ𝑉⊤ = 𝑈Λ𝑉⊤
, where 𝑈 and 𝑉 are the singular vectors

and Λ contains the singular values. Moreover, a light-weight ver-

sion of the polar decomposition can be employed to extract the

most significant singular values/vectors [26] and the negative eigen

values/vectors [36].

Conversely, the polar decomposition can be derived from the

SVD [15, 42] as follows:

𝐴 = 𝑈 Σ𝑉⊤ = 𝑈𝑉⊤𝑉 Σ𝑉⊤ = 𝑈𝑝𝑉 Σ𝑉⊤ = 𝑈𝑝𝐻.

The PD can also be computed utilizing an iterative approach such as

Newton’s method, but this can result in numerical instability due to

the need for an explicit matrix inversion at each step. An algorithm

based on Halley’s iteration (DWH) [22, 28] was developed with a

cubic rate of convergence in arriving at the final polar factor but,

like Newton’s method, involves matrix inversions at every iteration.

To solve the numerical accuracy issues due to the matrix in-

version, an inverse-free QR-based dynamically-weighted Halley

algorithm (QDWH)was proposed byNakatsukasa et. al [29, 30]. The

QDWH-based PD algorithm relies on compute-bound matrix oper-

ations, which makes this algorithm a unique candidate to highly

utilize the underlying hardware architecture. The QDWH-based

PD algorithm has been implemented on both shared memory and

distributed memory systems. The first high-performance imple-

mentation of the QDWH-based polar decomposition was demon-

strated on a shared-memory system with multiple GPUs [41] us-

ing the MAGMA library [27], as an accelerated implementation

of LAPACK [3]. This implementation adopts the fork-join para-

digm. A distributed memory implementation of the QDWH-based

PD was later provided by the POLAR library [39], with further

improvements in performance based on a topology-aware grid

of processors [37]. The high performance implementation of the

QDWH-based PD presented in POLAR is based on the ScaLAPACK

library [6], which is an extension of LAPACK for distributed mem-

ory systems, inheriting the fork-join paradigm. POLAR has been

fully integrated into the Cray Scientific and Math Libraries (Lib-

Sci) [9] since v17. The Elemental library [34] provides another

distributed memory implementation of the QDWH-based PD. The

Elemental numerical library is a framework for highly efficient

implementations of dense and sparse matrix algorithms. Elemental

utilizes an elemental distribution, which fixes the distribution block

size to one, thus making it distinct from the algorithmic block size.

Previous work [37] demonstrated that the POLAR QDWH imple-

mentation for the polar decomposition outperforms the SVD-based

implementation by up to 5× on ill-conditioned matrices. Addition-

ally, POLAR achieved up to 4× speedup compared to the Elemental

implementation of the QDWH [37].

The POLAR implementation is limited in terms of its high con-

currency, due to the lookahead techniques being impractical with

the bulk synchronous fork-join paradigm used in the ScaLAPACK

library. This may lead to reduced hardware occupancy, particularly

in a strong scaling mode of operation. To address this bottleneck,

the first asynchronous task-based QDWH-based PD implemen-

tation [38] was presented, achieving improved performance on

various shared-memory systems. This implementation, based on

tile algorithms [1, 2, 8], used the Chameleon [1] library, which

relies on the StarPU [4] dynamic runtime system to pipeline and

track the data dependencies of the various fine-grained tasks on

homogeneous and heterogeneous architectures. Although StarPU

runs on distributed memory environments, the QDWH implemen-

tation in Chameleon is limited to a single node. This was due to

limitations in StarPU’s sequential task flow (STF) programming

model to efficiently support collective communications.
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Later, another asynchronous task-based implementation of the

QDWH-based PD algorithm on distributed memory architectures

was introduced [40], based on the DPLASMA library using the

PaRSEC dynamic runtime system [10]. PaRSEC utilizes a Domain

Specific Language (DSL) called Job Data Flow (JDF) to express the

algorithm as a Parameterized Task Graph (PTG), which allows for

expressing collective communications directly with the language.

This PD implementation runs on CPU architectures exclusively; it

is not GPU accelerated. Unfortunately, due to significant changes

in the PaRSEC runtime, this research implementation of PD no

longer works with the latest PaRSEC, which is required to work on

Summit and Frontier.

4 QDWH-BASED POLAR DECOMPOSITION
We rely on the inverse-free QDWH-based iterative procedure [28,

30]. to calculate the polar factors 𝑈𝑝𝐻 . To make this paper algo-

rithmically self-contained, we first review the practical QDWH

iterative algorithm. Initialize

𝐴0 = 𝐴/∥𝐴∥
2
,

then iterate until 𝐴𝑘 converges:[
𝑄1

𝑄2

]
𝑅 =

[√
𝑐𝑘𝐴𝑘

𝐼

]
,

𝐴𝑘+1 =
𝑏𝑘

𝑐𝑘
𝐴𝑘 + 1

√
𝑐𝑘

(
𝑎𝑘 − 𝑏𝑘

𝑐𝑘

)
𝑄1𝑄

⊤
2
,

(1)

for scalars 𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 as defined in Algorithm 1. At convergence,

𝑈𝑝 = 𝐴𝑘+1 and𝐻 = 𝑈𝑇
𝑝 𝐴. When𝐴𝑘 becomes well-conditioned, it is

possible to replace Eq. (1) with a Cholesky-based iteration variant

as follows:

𝑊𝑘 = chol(𝑍𝑘 ), 𝑍𝑘 = 𝐼 + 𝑐𝑘𝐴⊤
𝑘
𝐴𝑘 ,

𝐴𝑘+1 =
𝑏𝑘

𝑐𝑘
𝐴𝑘 +

(
𝑎𝑘 − 𝑏𝑘

𝑐𝑘

)
(𝐴𝑘𝑊

−1
𝑘

𝑊 −⊤
𝑘

) .
(2)

The main computational stages in the QDWH-based PD algo-

rithm are summarized as follows: (1) Estimate the condition number,

which can be computed either using the 𝐿𝑈 factorization followed

by a condition number estimator, or by using the 𝑄𝑅 factorization

followed by a condition number estimator of the upper triangular

matrix 𝑅. (2) The QR-based QDWH iteration, which requires the

𝑄𝑅 factorization as well as building the orthogonal matrix 𝑄 . (3)

The Cholesky-based QDWH iteration. (4) The calculation of the

symmetric positive semi-definite polar factor 𝐻 .

The iterative QDWH-based PD procedure relies primarily upon

communication-friendly and compute-intensive matrix operations,

such as QR and Cholesky factorizations and matrix-matrix multipli-

cation, which make the QDWH-based PD formulation an attractive

and practical algorithm to implement. This is in contrast to an SVD-

based algorithm, where it is challenging to remove memory-bound

Level 2 BLAS operations, and data dependencies prevent a looka-

head technique to overlap communication and computation [11].

The number of iterations is determined by the matrix condi-

tion number estimation. The theoretical analysis in [30, 31] shows

that the upper-bound for the number of iterations is six, assuming

double precision arithmetic.

The overall algorithmic complexity of the QDWH-based PD,

assuming square matrices for simplicity, is given by:

4

3
𝑛3 + (8 + 2

3
)𝑛3 × #𝑖𝑡𝑄𝑅 + (4 + 1

3
)𝑛3 × #𝑖𝑡𝐶ℎ𝑜𝑙 + 2𝑛3,

where #𝑖𝑡𝑄𝑅 and #𝑖𝑡𝐶ℎ𝑜𝑙 are the number of QR-based and

Cholesky-based iterations, respectively. Experimentally, testing ill-

conditioned matrices requires three QR and three Cholesky-based

iterations, while well-conditioned matrices need two Cholesky-

based and no QR-based iterations.

5 SLATE: SOFTWARE FOR LINEAR ALGEBRA
TARGETING EXASCALE

SLATE delivers fundamental dense linear algebra capabilities for

current and upcoming distributed memory systems, including GPU-

accelerated systems as well as more traditional multi-core CPU-

only systems. SLATE provides coverage of existing ScaLAPACK

functionality, including parallel implementations of Basic Linear

Algebra Subroutines (BLAS), linear systems solvers, least squares

solvers, and singular value and eigenvalue solvers, plus new al-

gorithms such as the polar decomposition. In this respect, SLATE

serves as a replacement for ScaLAPACK, which, after almost three

decades of operation, cannot be adequately retrofitted for modern,

GPU-accelerated architectures.

SLATE is built on top of the C++17, MPI, and OpenMP standards,

as well as de facto industry standard solutions such as NVIDIA

CUDA, AMD HIP, and SYCL, with the goal to create a portable,

high-performance library [14]. SLATE also relies on high perfor-

mance implementations of numerical kernels from vendor libraries,

such as Intel MKL, IBM ESSL, NVIDIA cuBLAS, and AMD rocBLAS.

SLATE interacts with these libraries through the BLAS++ and LA-

PACK++ portability layer. SLATE aims to extract the full perfor-

mance potential andmaximum scalability frommodern, many-node

HPC machines with large numbers of cores and multiple hardware

accelerators per node.

SLATE can use GPU-aware MPI if available to directly commu-

nicate tiles from one GPU’s memory across the network to another

GPU’s memory. This has proved especially beneficial on Frontier,

the first exascale class machine operated by the U.S. Dept. of Energy,

where the network interface card (NIC) is attached to the GPUs

rather than the CPUs.

6 HIGH PERFORMANCE IMPLEMENTATION
6.1 Implementation Details
Algorithm 1 shows the computational stages of QDWH PD using

SLATE. First, an estimation of the matrix two-norm is required to

scale the matrix, which is essential to improve the convergence rate

(lines 11 to 13). Then, the condition number is estimated based on

the 𝑄𝑅 factorization of the matrix (lines 15 to 19). We implement

norm2est and trcondest in SLATE to provide these matrix metrics.

After that, lines 22 to 50 show the main computational steps to com-

pute the orthogonal polar factor𝑈 . At each iteration, the parameters

𝑎, 𝑏, 𝑐, 𝐿𝑖 are updated. Based on the variable 𝑐 at line 29, which is de-

rived from the condition number of thematrix, the loop enters either

the QR-based iteration at line 30, or the Cholesky-based iteration at

line 39. This algorithmic change to using a Cholesky-based iteration

when the matrix becomes well-conditioned has lower algorithmic
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Algorithm 1 Pseudo-code for the QDWH-based PD algorithm.

1: procedure qdwh( Matrix 𝐴 ∈ C𝑚×𝑛
, Matrix 𝐻 ∈ C𝑛×𝑛 )

2: // On output, 𝐴 is overwritten by unitary matrix𝑈𝑝

3: // and 𝐻 is positive semidefinite matrix
4: // Allocate distributed matrix workspaces

5: Matrix𝑊 =

[
𝑊1

𝑊2

]
,𝑊1 ∈ C𝑚×𝑛,𝑊2 ∈ C𝑛×𝑛

6: Matrix𝑄 =

[
𝑄1

𝑄2

]
,𝑄1 ∈ C𝑚×𝑛,𝑄2 ∈ C𝑛×𝑛

7: // Backup A in Acpy to compute H
8: copy( 𝐴, 𝐴cpy )

9: Anorm = norm( Norm::One, 𝐴 ) ⊲ ∥𝐴∥
1

10: // Estimate the two-norm.
11: 𝛼 = norm2est( 𝐴 ) ⊲ 𝛼 ≈ ∥𝐴∥

2

12: // 𝑨 stores 𝑨𝑘 , which converges to 𝑼𝑝

13: scale( 1./𝛼 , 𝐴 ) ⊲ 𝐴0 = 𝐴/𝛼
14: // Estimate the condition number
15: copy( 𝐴,𝑊1 )

16: geqrf(𝑊1 ) ⊲ 𝐴 = 𝑄𝑅 factorization

17: Rcondest = trcondest(𝑊1 ) ⊲ ≈ cond1 (𝑅)
18: Rnorm = norm(𝑊1 ) ⊲ ≈ ∥𝑅 ∥

1

19: 𝑙0 = Anorm*Rcondest /
√
𝑛

20: // The polar decomposition iterations
21: 𝑘 = 1, 𝐿𝑖 = 𝑙0, conv = 100

22: while (conv ≥ 3
√
5𝜖 or |𝐿𝑖 − 1 | ≥ 5𝜖 ) do

23: 𝐿2 = 𝐿2
𝑖
, 𝑑𝑑 = 3

√︃
(4(1 − 𝐿2 )/𝐿2

2
)

24: 𝑠𝑞𝑑 =
√
1 + 𝑑𝑑

25: 𝑎1 = 𝑠𝑞𝑑 +
√︁
8 − 4 × 𝑑𝑑 + 8(2 − 𝐿2 )/(𝐿2 × 𝑠𝑞𝑑 ) )/2

26: 𝑎 = real(𝑎1) ; 𝑏 = (𝑎 − 1)2/4; 𝑐 = 𝑎 + 𝑏 − 1

27: 𝐿𝑖 = 𝐿𝑖 (𝑎 + 𝑏 × 𝐿2 )/(1 + 𝑐𝐿2 )
28: // Compute 𝐴𝑘 from 𝐴𝑘−1
29: if 𝑐 > 100 then

30: set𝑊 =

[
𝑊1

𝑊2

]
=

[√
𝑐𝐴𝑘−1
𝐼

]
31: geqrf(𝑊 ) ⊲𝑊 =

[
𝑄1

𝑄2

]
𝑅 factorization

32: unmqr(𝑊 ,𝑄 ) ⊲ generate𝑄 explicitly

33: copy( 𝐴,𝑊1 ) ⊲ Save𝑊1 = 𝐴𝑘−1 for conv

34: 𝜃 = 1√
𝑐

(
𝑎 − 𝑏

𝑐

)
; 𝛽 = 𝑏

𝑐

35: gemm( 𝜃 ,𝑄1,𝑄
⊤
2
, 𝛽 , 𝐴 )

36: ⊲ 𝐴𝑘 = 1√
𝑐

(
𝑎 − 𝑏

𝑐

)
𝑄1𝑄

⊤
2
+ 𝑏

𝑐
𝐴𝑘−1

37: else
38: copy( 𝐴,𝑊1 ) ⊲ Save𝑊1 = 𝐴𝑘−1
39: set𝑊2 = Identity

40: herk( −𝑐 , 𝐴, one,𝑊2 ) ⊲𝑊2 = 𝐼 − 𝑐𝐴⊤
𝑘−1𝐴𝑘−1

41: posv(𝑊2, 𝐴
⊤
) ⊲ Solve𝑊2𝑋 = 𝐴⊤

𝑘−1,
42: ⊲ 𝑋 overwrites 𝐴

43: 𝜃 = 𝑏
𝑐
; 𝛽 =

(
𝑎 − 𝑏

𝑐

)
44: add( 𝜃 ,𝑊1, 𝛽 , 𝐴 )

45: ⊲ 𝐴𝑘 = 𝑏
𝑐
𝐴𝑘−1 +

(
𝑎 − 𝑏

𝑐

)
(𝐴𝑘−1𝑊 −1

2
𝑊 −𝑇

2
)

46: end if
47: add( one, 𝐴, −one,𝑊1 ) ⊲𝑊1 = 𝐴𝑘 − 𝐴𝑘−1
48: conv = norm( Norm::Fro,𝑊1 ) ⊲ ∥𝐴𝑘 − 𝐴𝑘−1 ∥𝐹
49: 𝑘 = 𝑘 + 1

50: end while
51: // Compute 𝐻
52: gemm( one, 𝐴, 𝐴cpy, zero, 𝐻 ) ⊲ 𝐻 = 𝑈 ⊤

𝑝 𝐴

53: end procedure

complexity than the QR-based iteration, while still maintaining

numerical stability. The convergence tolerance used in QDWH

line 22 and for other cubically convergent methods are summarized

in [29]. Finally, the symmetric positive semi-definite polar factor 𝐻

is computed in line 52, after exiting the main computational loop.

6.2 The Two Norm Estimation
The two-norm matrix estimator identifies the largest singular value

of the matrix. We employed the power iteration method [17] as

our approach to estimate the two-norm of the matrix. Algorithm 2

presents our implementation of the two-norm matrix estimator

norm2est in SLATE. The initial vector to start the computational loop

consists of the sum of each matrix column, which is computed on

line 6. We call internal::norm to calculate the column sums that are

local to each processor, then we utilize MPI Allreduce to find the

global column sums. The iterations involve the multiplication of

the matrix 𝐴 and 𝐴⊤
by vectors as shown in lines 18 and 19. To

carry out the matrix-vector multiplication involved in norm2est, we

develop gemmA, which is a variant of gemm that optimizes the data

movements and performance when the 𝐴 matrix is large relative

to the 𝐶 matrix. To minimize the amount of data movement, tiles

of 𝐵 are sent to where the tiles of 𝐴 reside to compute partial

results using tile multiplications, then the final result is computed

by performing a parallel reduction to where the output𝐶 tiles reside.

The convergence tolerance used to estimate the matrix two norm

is 0.1, where approximations accurate to a factor of 5, for example,

are entirely satisfactory, and QDWH converges within 6 iterations

as explained in [31].

6.3 Condition Number Estimate
Estimating the condition number of matrix is an important step

towards determining the number of iterations required for con-

vergence, as well as calculating the 𝑎, 𝑏, 𝑐 parameters that help to

achieve cubic convergence during the QDWH iteration. In partic-

ular, the value of 𝑐 determines whether a QR-based or Cholesky-

based needs to be performed during the iterative loop. The recipro-

cal of the 1-norm condition number estimate of matrix 𝐴 is rcond

= 1

∥𝐴∥1×∥𝐴−1 ∥1 . We implemented norm1est to approximate ∥𝐴−1∥1
based on Hager’s algorithm [16]. As in (Sca)LAPACK, the algorithm

uses reverse communication to evaluate matrix-vector products

and solves, allowing for a single implementation of the 1-norm

estimate to evaluate the condition number for any possible ma-

trix factorization. We provide gecondest to compute the condition

number of a matrix given its 𝐿𝑈 factorization, and trcondest to
compute the condition number of a triangular matrix. In QDWH,

we call trcondest on the triangular matrix 𝑅 from 𝐴 = 𝑄𝑅.

7 NUMERICAL RESULTS AND ANALYSIS
7.1 Environment Settings
Our experiments were conducted on the IBM POWER9 system

Summit and the HPE Cray EX system Frontier at Oak Ridge Na-

tional Laboratory. Summit has 4,608 compute nodes; each node

contains two 22-core IBM POWER9 CPUs and 6 NVIDIA Volta

V100 GPUs, connected by NVIDIA’s high-speed NVLink, with 512

GiB DDR4 CPU RAM and 96 GiB high bandwidth memory (HBM2)
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Algorithm 2 Pseudo-code for the two-norm estimation.

1: function norm2est( Matrix 𝐴 ∈ C𝑚×𝑛
)

2: // Create SLATE distributed vectors
3: Vector 𝑋 ∈ C𝑛
4: Vector 𝐴𝑋 ∈ C𝑚
5: // Compute local sum of all columns
6: internal::norm( Norm::One, A, local_sum )

7: // Reduce local sum to get global sum of all cols in 𝑋

8: MPI_Allreduce( local_sum, 𝑋 , 𝑛, ... )

9: // Compute initial estimate 𝑒
10: 𝑒 = norm( Norm::Fro, 𝑋 )

11: 𝑒0 = 0

12: normX = 𝑒

13: tol = 0.1

14: while |𝑒 − 𝑒0 | > tol∗𝑒 do
15: 𝑒0 = 𝑒

16: scale( 1/normX, 𝑋 )

17: // Compute Ax = A * sx
18: gemmA( one, 𝐴,𝑋 , zero, 𝐴𝑋 )

19: gemmA( one, 𝐴⊤, 𝐴𝑋 , zero, 𝑋 )

20: // Update 𝑒
21: normX = norm( Norm::Fro, X )

22: normAX = norm( Norm::Fro, AX )

23: 𝑒 = normX / normAX

24: end while
25: return 𝑒

26: end function

GPU RAM per node. Two cores per node are reserved for the OS.

Nodes are connected by a dual-rail Mellanox EDR 100G InfiniBand

network [33]. Executables were generated with the GNU g++ com-

piler and IBM Spectrum MPI. We used gcc v9.1.0, cuda v11.5.2, essl

v6.3.0 and spectrum-mpi v10.4.0.3-20210112 to compile and run

tests on Summit.
Frontier has 9,408 compute nodes; each node consists of a 64-core

AMDOptimized 3rd Gen EPYC CPUwith 512 GiB of DDR4 memory

and 4 AMD MI250X GPUs, each with 2 Graphics Compute Dies

(GCDs) for a total of 8 GCDs per node. Each GCD has 64 GiB of

high-bandwidth memory (HBM2E). 8 cores per node are reserved

for the OS. The CPU is connected to each GCD via Infinity Fabric,

with a peak bandwidth of 36 GB/s in each direction. The GCDs are

connected by Infinity Fabric with varying number of links, yielding

bandwidths of 50, 100, or 200 GB/s between GCDs [32]. We used

PrgEnv-gnu v8.3.3, cray-mpich v8.1.23 and rocm v5.3.0 to compile

and test on Frontier.
All experiments were conducted with IEEE double-precision

arithmetic. We implemented a matrix generator to test various syn-

thetic matrices with different condition numbers and distributions

of singular values. The condition number has the most significant

effect on the convergence of QDWH and, consequently, its perfor-

mance. The theoretical analysis in [31] proved that the maximum

number of iterations for convergence is six for ill-condition ma-

trices in double precision arithmetic. For these experiments, the

generator creates random unitary matrices𝑈 ,𝑉 , obtained through

the 𝑄𝑅 factorization of random matrices, and a diagonal matrix

Σ based on the desired condition number of the matrix 𝐴. It then

multiplies these together, forming 𝐴 = 𝑈 Σ𝑉𝐻
from its SVD. We
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Figure 1: Accuracy assessment of SLATE and ScaLAPACK
QDWH.

generated ill-conditioned matrices with condition number 𝜅 = 10
16
.

In this case, QDWH requires the maximum number of iterations.

We compare against the ScaLAPACK reference implementation

of QDWH provided by POLAR. On Summit, all ScaLAPACK runs

used 1 MPI rank per CPU core (42 per node), while SLATE runs

used 2 MPI ranks and 6 V100 GPUs per node (3 per MPI rank). On

Frontier, all ScaLAPACK runs used 1 MPI rank per CPU core (56

per node), while SLATE runs used 8 MPI ranks and 8 MI250X GCDs

per node (1 per MPI rank).

7.2 Performance Results and Analysis
We tested ill-conditioned matrices, which represents the worst-case

scenario, where the number of iterations required for convergence

is a maximum of six (three QR-based, three Cholesky-based). We

first check on the accuracy of our new formulation of QDWH-based

PD. For the orthogonality error of 𝑈𝑝 , we use:

𝐼−𝑈 ⊤
𝑝 𝑈𝑝


𝐹√

𝑛
, and for

the accuracy of the computed polar decomposition 𝑈𝑝𝐻 , we use
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Figure 2: Performance comparison on Summit.

the backward error:

∥𝐴−𝑈𝑝𝐻 ∥𝐹
∥𝐴∥𝐹

. Fig. 1a displays the orthogonality

error of the computed polar factor 𝑈𝑝 , and Fig. 1b presents the

backward error of the overall polar decomposition, which remain

around machine precision (i.e., 10
−15

) for both the SLATE and

ScaLAPACK implementations of QDWH for matrices of various

sizes. This highlights the numerical stability of the new task-based

formulation of QDWH.

We executed several tests to find the best tile size𝑛𝑏 to deliver the

highest performance. For SLATE-QDWH tests on GPUs, the tuning

tests we conducted showed that a tile size of 𝑛𝑏 = 320 provided the

best performance compared to other tested tile sizes. For tests on

CPUs, 𝑛𝑏 = 192 gave the best performance among other tested tile

sizes.

Figs. 2 and 3 compare the performance in Tflop/s of the SLATE

and ScaLAPACK implementations of QDWH-based PD across var-

ious number of nodes on Summit. The GPU-accelerated SLATE

implementation of QDWH (blue squares) outperforms its coun-

terpart implementation in ScaLAPACK (green triangles), and the

performance gap widens as the matrix size increase. SLATE-QDWH
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Figure 3: Performance comparison on Summit.

is faster by up to 18× on 1 nodes and 4 nodes, and by approximately

13× on 8 nodes. The SLATE-QDWHperformance on GPUs grows as

the matrix size increases, where larger matrices can highly exploit

the GPUs. Using only CPU cores, SLATE’s performance (orange

circles) is similar to the ScaLAPACK performance (green triangles).

Due to time constraints, we limited the size of CPU runs once the

peak performance was evident. Fig. 4 displays the SLATE-QDWH

performance with various number of Summit nodes. While the

strong scalability for a fixed problem size is limited, it achieves

good weak scalability at the largest problem size for each number

of nodes.

Fig. 6 shows the scalability performance of SLATE QDWH using

several number of nodes on Frontier. The SLATE QDWH perfor-

mance increases as the number of nodes increases and as the matrix

size grows. The task-based SLATE-QDWH using GPUs achieves

around 180 Tflop/s on 16 nodes equipped with 128 GPUs, approx-

imately 24% of the peak performance. The maximum matrix size

that can be tested on this number of nodes is 175k, due to the large

memory footprint of the algorithm, as discussed in [37]. Addition-

ally, data movement between nodes and between CPU and GPU are
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Figure 4: Scalability study of SLATE QDWH on various num-
ber of Summit nodes.
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Figure 5: 16 nodes of Frontier (896 EPYC CPUs, 128 MI250X
GPUs).

further performance limiting factors. GPU-aware MPI can mitigate

the performance impact caused by the data movements. SLATE

benefits from GPU-aware MPI on Frontier, where the NICs are

attached to the GPUs. However, on Summit the NICs are attached

to the CPUs, so MPI communication always goes through the CPU,

explicitly or implicitly, thus GPU-aware MPI is not beneficial for

SLATE there.

8 CONCLUSION AND FUTUREWORK
We have introduced a novel task-based implementation of QDWH-

based PD on massively parallel systems enhanced with multiple

GPUs. We rely on SLATE to employ modern techniques in our

formulation of QDWH-based PD, such as communication-avoiding

algorithms, lookahead panels to overlap communication and com-

putation, and task-based scheduling, along with a modern C++

framework. This implementation of QDWH in SLATE provides
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Figure 6: Scalability study of SLATE QDWH on various num-
ber of Frontier nodes.

a portable code that can be used on various hardware architec-

tures, including CPUs and NVIDIA, AMD, and Intel GPUs. The

benchmarking experiments show that the new task-based high per-

formance implementation of the QDWH-based PD using SLATE

outperforms by up to 18× the POLAR ScaLAPACK-QDWH imple-

mentation.

For future work, we would like to use QDWH polar decomposi-

tion as the main building block to develop partial EVD implementa-

tions, to support more economical partial spectrum requirements.

Moreover, we would like to integrate mixed-precision techniques to

further accelerate the polar decomposition computations. Last but

not least, we would like to extend this work to implement another

QDWH algorithmic variant, the Zolo PD algorithm [25], which

requires an even higher number of flops than QDWH-based PD,

but can exploit a higher level of concurrency, making it attractive

in the strong-scaling regime.
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