
Survey Paper

A survey of numerical linear algebra
methods utilizing mixed-precision
arithmetic

Ahmad Abdelfattah1, Hartwig Anzt1,2 , Erik G Boman3,
Erin Carson4, Terry Cojean2, Jack Dongarra1,5,6, Alyson Fox7,
Mark Gates1, Nicholas J Higham6, Xiaoye S Li8, Jennifer Loe3 ,
Piotr Luszczek1, Srikara Pranesh6, Siva Rajamanickam3,
Tobias Ribizel2 , Barry F Smith9, Kasia Swirydowicz10,
Stephen Thomas10, Stanimire Tomov1, Yaohung M Tsai1

and Ulrike Meier Yang7

Abstract
The efficient utilization of mixed-precision numerical linear algebra algorithms can offer attractive acceleration to scientific
computing applications. Especially with the hardware integration of low-precision special-function units designed for
machine learning applications, the traditional numerical algorithms community urgently needs to reconsider the floating
point formats used in the distinct operations to efficiently leverage the available compute power. In this work, we provide
a comprehensive survey of mixed-precision numerical linear algebra routines, including the underlying concepts, theo-
retical background, and experimental results for both dense and sparse linear algebra problems.

Keywords
Mixed-precision arithmetic, numerical mathematics, linear algebra, high-performance computing, GPUs

1. Introduction

In computational numerics, the accuracy of a computed

result and the time needed to complete the algorithm both

heavily depend on the floating point format used for storage

and arithmetic operations. While we acknowledge the exis-

tence of other formats, here we focus on fixed-size floating

point formats composed of a sign bit, an exponent, and a

significand. Roughly speaking, the length of the exponent

determines the value range of a floating point format, and

the length of the significand determines the relative accu-

racy of the format in that range. While a sufficient exponent

range is necessary for the meaningful data representation,

generally the accuracy of an algorithm output strongly cor-

relates with the significand length.

The cost of communication and computation in a numer-

ical application grows with the size of the floating point

format. Communication here can mean access to main

memory and data transfers within computing cores, in

between distinct compute cores, or between distinct com-

pute nodes. The cost of data transfers is composed of a

constant access latency and the transfer time that reflects

the ratio between message size and data transfer rate.

Consequently, when ignoring the latency, the communica-

tion cost linearly increases with the size (in bits) of the

floating point format. This implies that the runtime impact

of communicating values in different formats is hardware

independent and only depends on the size of the floating

point formats. Specifically, for the widely adopted

IEEE754 formats for double precision (64 bit) and single

precision (32 bit) (IEEE), the runtime difference for mem-

ory/communication operations is roughly 2�, independent

1 University of Tennessee, Knoxville, USA
2 Karlsruhe Institute of Technology, Karlsruhe, Germany
3 Sandia National Lab, Albuquerque, USA
4 Charles University, Prague, Czech Republic
5 Oak Ridge National Lab, Oak Ridge, USA
6 University of Manchester, Manchester, UK
7 Lawrence Livermore National Lab, USA
8 Lawrence Berkeley National Lab, Berkeley, USA
9 Argonne National Lab, Argonne, USA
10 National Renewable Energy Lab, Boulder, USA

Corresponding author:

Hartwig Anzt, Karlsruher Institut für Technologie (KIT), Germany.

Email: hartwig.anzt@kit.edu; hanzt@icl.utk.edu

The International Journal of High
Performance Computing Applications
1–26
ª The Author(s) 2021
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420211003313
journals.sagepub.com/home/hpc

https://orcid.org/0000-0003-2177-952X
https://orcid.org/0000-0003-2177-952X
https://orcid.org/0000-0002-3018-7190
https://orcid.org/0000-0002-3018-7190
https://orcid.org/0000-0003-3023-1849
https://orcid.org/0000-0003-3023-1849
mailto:hartwig.anzt@kit.edu
mailto:hanzt@icl.utk.edu
https://sagepub.com/journals-permissions
https://doi.org/10.1177/10943420211003313
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420211003313&domain=pdf&date_stamp=2021-03-19

of the hardware platform. At the same time, the cost of

performing arithmetic operations heavily depends on the

hardware support for computations in a certain floating

point format, and the acceleration/slowdown of computing

in different formats can vary significantly between hard-

ware architectures. For example, on Intel’s 64-bit proces-

sors, the compute performance in single precision is twice

the compute performance of double precision. On AMD’S

Radeon VII GPU, the ratio between the single-precision

performance and the double-precision performance is

about 4�.

Given the performance differences for computing and

communicating in different precision formats, there is a

long history of efforts that aim to improve the performance

of numerical algorithms by carefully combining precision

formats. The overall goal of these mixed-precision algo-

rithms is to accelerate the applications with the use of lower

precision formats while maintaining the high accuracy of

the output.

But while the idea of mixed-precision algorithms has

been around for several decades, recent hardware trends

have motivated increased research and development activ-

ities. Within the past few years, hardware vendors have

started designing special-purpose units for low-precision

arithmetic in response to the machine learning commu-

nity’s demand for high compute power in low-precision

formats. Also, the server-level products are increasingly

featuring low-precision special function units (e.g., NVI-

DIA Tensor Cores in V100 GPUs) providing about 16 �
higher performance than what can be achieved in IEEE

double precision. Exploiting this compute power efficiently

could offer up to an order of magnitude of speedup to

compute-bound algorithms. At the same time, the gap

between the compute power on the one hand and the mem-

ory bandwidth on the other hand keeps increasing, making

data access and communication progressively more expen-

sive compared with arithmetic operations (Figure 1). Given

the over provisioning of modern hardware for arithmetic

operations, it may be a rational decision for memory-bound

algorithms to compress all data in cache before communi-

cating with remote processors or main memory

In this paper, we present mixed-precision linear algebra

algorithms and the attainable performance advantages for

dense linear algebra (Section 3) and for sparse linear alge-

bra (Section 4). We conclude in Section 5 with an outlook

on current algorithm development and perspectives for

mixed-precision technology on future architectures. We

note that this survey is focusing on numerical linear algebra

operating on explicitly-available linear operators, matrix-

free methods remain outside the scope of this work.

2. Precision formats, hardware realization,
and notation

Before presenting mixed-precision algorithms, we want to

establish some notation we use throughout the rest of the

paper, and provide some background on precision formats

and their realization in hardware. We exclusively focus on

floating point formats that are composed of a sign bit, a

sequence of exponent bits, and a sequence of significand

bits. The distinct precision formats then differ in the com-

position in terms of how many bits are used for the expo-

nent and how many bits are used for the significand.

Generally, we use the term high precision for precision

formats that provide high accuracy at the cost of a larger

memory volume (in terms of bits) and low precision to refer

to precision formats that compose of fewer bits (smaller

memory volume) and provide low(er) accuracy. Unless

explicitly stated, we think of IEEE double precision when

using the term high precision and IEEE754 single precision

when using the term low precision (IEEE, 2019). These

formats are of particular interest as they are natively sup-

ported by a broad range of hardware architectures. How-

ever, in particular with the rise of machine learning, a

number of architectures now also provide native support

for floating point formats, that are even more compact than

IEEE754 single precision. In particular IEEE754 half pre-

cision and BFloat16 are formats that experience increased

interest by the community. For all floating point formats,

their bitwise configuration determines the characteristics.

Roughly speaking, the length of the exponent of a precision

format determines the range of a format, the length of the

significand determines the precision of a format. Relevant

indicators in that context are the largest and smallest repre-

sentable numbers in a format, and the unit roundoff of a

format u. In Table 1 we list some of the most relevant

formats used in modern scientific high-performance com-

puting along with their key characteristics. Traditionally,

hardware and software are strictly coupling the precision

format used for arithmetic operations and for memory oper-

ations. However, given that most architectures are nowa-

days overprovisioned for arithmetic operations, there exist

trends to break up this strict coupling. On the hardware

side, a recent example of an architecture breaking up the

coupling between memory format and arithmetic format

are the NVIDIA Tensor Cores integrated into NVIDIA’s

Figure 1. Evolution of the machine balance of processors over
different hardware generations.

2 The International Journal of High Performance Computing Applications XX(X)

Volta GPU architecture v10 (2017). These special function

units designed to perform high-performance matrix-matrix

multiplication take half precision (FP16) input data, but

compute in FP32 (v10, 2017). On the software side, the

concept of a memory accessor separating the memory pre-

cision from the arithmetic precision pursues the same goal:

computing in higher precision while handling the data in

lower precision in memory (Anzt et al., 2019b). In 4.3 we

will detail the software-based approach in more detail. For

the V100 GPU experiments in Section 3, we claim that the

algorithms operating on the Volta Tensor Cores use half

precision, acknowledging that internally, the arithmetic

operations are using higher precision after converting the

half-precision input data.

3. Dense linear algebra

Carefully designed mixed-precision dense linear algebra

algorithms can leverage the potential performance advan-

tages of low-precision arithmetic. With this in mind, we

start the section in Section 3.1 by presenting basic linear

algebra subroutines specifically designed to exploit the

compute power of NVIDIA’s Tensor Cores, which provide

high compute power in low precision. Building on low-

precision Basic Linear Algebra Subprograms (BLAS) and

guided by the concept of Newton’s method (Section 3.2), it

is possible to derive high-performance linear solvers run-

ning in low precision that, embedded in an iterative refine-

ment (Section 3.3), succeed in generating high-accuracy

solutions while conducting most of the work in low-

precision arithmetic. The standard approach is based on

factorizing a matrix in low precision and using an iterative

refinement scheme in high precision to recover a high-

accuracy solution (see Section 3.3). However, for numer-

ical reasons, it can be advantageous to use the factorization

computed in low precision as a preconditioner for a Gen-

eralized Minimum Residual (GMRES) iterative solver

embedded in an iterative refinement loop (see Section

3.4). Using sophisticated scaling and shifting techniques,

symmetry and positive definiteness of a system matrix can

be exploited in a Generalized Minimum Residual-based

Iterative Refinement (GMRES-IR) variant using a low-

precision Cholesky factorization as a preconditioner (see

Section 3.5). In Section 3.6, we present some performance

results demonstrating the potential of these techniques on

modern GPU architectures. The scope of mixed-precision

iterative refinement is not limited to linear systems and

extends to least-square problems (Section 3.7) and eigen-

value solvers (Section 3.8).

3.1. Low-precision BLAS

The revolution of machine learning applications and artifi-

cial intelligence (AI) spiked an interest in developing high-

performance 16-bit, half-precision floating point arithmetic

(FP16), because most AI applications do not necessarily

require the accuracy of 32-bit, full-precision floating point

arithmetic (FP32) or 64-bit, double-precision floating point

arithmetic (FP64) (Gupta et al., 2015). FP16 also enables

machine learning applications to run faster, not only

because of the faster arithmetic, but also because of the

reduction in memory storage and traffic by a factor of 2�
against FP32, and by a factor of 4� against FP64.

In terms of vendor support, NVIDIA, Google, and AMD

manufacture hardware that is capable of performing FP16

arithmetic. Google’s Tensor Core Processing Units (TPUs)

are customized chips that are mainly designed for machine

learning workloads using the 16-bit brain floating point

(BFloat16) format. AMD also provides half-precision cap-

abilities, and their software stack shows support for both

the BFloat16 format and the IEEE FP16 format, (IEEE).

The theoretical performance of half precision on AMD

GPUs follows the expected 2� speedup against FP32 and

4� speedup against FP64. As an example, the Mi50 GPU

has a theoretical FP16 performance of 26:5 TFLOP/s vs.

13:3 TFLOP/s for FP32 and 6:6 TFLOP/s for FP64. But

perhaps the most widely accessible hardware with half-

precision capability are NVIDIA’s GPUs, which first sup-

ported half-precision arithmetic in the Maxwell GPU

architecture. Throughout this section, we will focus on

NVIDIA’s GPUs and math libraries to highlight half-

precision developments for numerical kernels.

While NVIDIA’s Maxwell GPU architecture introduced

hardware support for IEEE FP16 arithmetic, the Volta

architecture, which powers the Summit supercomputer,1

comes with hardware acceleration units (called Tensor

Cores) for matrix multiplication in FP16. These Tensor

Cores are theoretically 12� faster than the theoretical

Table 1. Parameters for various floating point arithmetics. “Range” denotes the order of magnitude of the smallest subnormal (xmin;s)
and largest and smallest positive normalized floating point numbers. BFloat16 does not support subnormal numbers.

Arithmetic Size (bits)

Range
Unit roundoff

xmin;s xmin xmax u

BFloat16 16 — 1:2� 10�38 3:4� 1038 3:9� 10�3

IEEE FP16 16 6:0� 10�8 6:1� 10�5 6:6� 104 4:9� 10�4

IEEE FP32 32 1:4� 10�45 1:2� 10�38 3:4� 1038 6:0� 10�8

IEEE FP64 64 4:9� 10�324 2:2� 10�308 1:8� 10308 1:1� 10�16

IEEE FP128 128 6:5� 10�4966 3:4� 10�4932 1:2� 104932 9:6� 10�35

Abdelfattah et al. 3

FP16 peak performance of the preceding architecture (Pas-

cal architecture). Applications taking advantage of the Ten-

sor Cores can run up to 4� faster than using the regular

FP16 arithmetic on the same GPU. The Tensor Cores are

also able to perform a mixed-precision multiplication with

a low-precision input (e.g., half-precision) and a higher

precision output (typically single-precision). The Tensor

Core units are discussed in more detail in Section 3.1.1.

In terms of half-precision BLAS, most of the available

routines provide only dense matrix multiplications

(GEMMs). From the perspective of machine learning appli-

cations, most of the performance-critical components in

training/inference can be reformulated to take advantage

of the GEMM kernel. As for dense linear algebra, many

high-level algorithms are built to extract their high perfor-

mance from GEMM calls. Therefore, accelerating such

performance-critical steps through FP16 GEMM

(HGEMM) would propagate the performance advantage

to the entire algorithm while keeping other numerical

stages in their original precision(s). An example of this

practice is the mixed-precision dense LU factorization

(Haidar et al., 2018b), which is used to accelerate the solu-

tion of Ax ¼ b in double precision, see Section 3.3.

3.1.1. Hardware acceleration of half precision. The CUDA

Toolkit is one of the first programming models to provide

half-precision (i.e., FP16) arithmetic. Support was added in

late 2015 for selected embedded GPU models based on the

Maxwell architecture, and FP16 arithmetic has become

mainstream in CUDA-enabled GPUs since the Pascal

architecture. FP16 has a dynamic range that is significantly

smaller than single or double precision (see Table 1).

The Volta and Turing architectures introduced hard-

ware acceleration for matrix multiplication in FP16 using

the aforementioned Tensor Cores. Using Tensor Cores for

FP16, these GPUs can deliver a theoretical peak perfor-

mance that is up to 8� faster than the peak FP32 perfor-

mance. As an example, each Volta V100 GPU has 640

Tensor Cores evenly distributed across 80 multiproces-

sors. Each Tensor Core possesses a mixed-precision

4� 4� 4 matrix processing array that performs the oper-

ation D ¼ A� Bþ C, where A, B, C, and D are 4� 4

matrices. The inputs A and B must be represented in

FP16 format, while C and D can be represented in FP16

or in FP32 formats. It is also possible that C and D point to

the same matrix.

NVIDIA’s cuBLAS library provides various optimized

routines, mostly GEMMs, that can take advantage of the

Tensor Core acceleration if configured accordingly. As an

example, the routine cublasHgemm implements the

GEMM operation for real FP16 arithmetic.

Apart from the vendor library, taking advantage of the

Tensor Cores in a custom kernel is also possible through

low-level APIs that are provided by the programming

model. As shown in Figure 2, Tensor Cores deal with input

and output data through opaque data structures called frag-

ments. Each fragment is used to store one matrix.

Fragments can be loaded from shared memory or from

global memory using the load_matrix_sync() API.

A similar API is available for storing the contents of an

output fragment into the shared/global memory of the GPU.

The mma_sync() API is used to perform the multiplica-

tion. The user is responsible for declaring the fragments as

required and calling the APIs in the correct sequence.

The programming model imposes some restrictions to

the programming of the Tensor Cores. First, the GEMM

dimensions (M, N, K), which also control the size of the

fragments, are limited to three discrete combinations,

namely (16, 16, 16), (32, 8, 16), and (8, 32, 16). Second,

the operations of load, store, and multiply must be per-

formed by one full warp (32 threads). Finally, the load/store

APIs require that the leading dimension of the correspond-

ing matrix be a multiple of 16 bytes. As an example, a

standard GEMM operation of size (16, 16, 16) requires

three load_matrix_sync() calls (for A, B, and C),

one mma_sync() call, and then a final store_
matrix_sync() call to write the result. The latest

CUDA version to date (10.1) provides direct access to the

Tensor Cores through an instruction called mma.sync.

The instruction allows one warp to perform four indepen-

dent GEMM operations of size (8, 8, 4). However, using the

explicit instruction may lead to long-term compatibility

issues for open-source libraries as new architectures are

released.

3.1.2. Half-precision GEMM (HGEMM). The cuBLAS library

provides several routines that take advantage of the reduced

FP16 precision. Figure 3 shows the performance of three

different HGEMM kernels. An HGEMM kernel with half-

precision output can achieve up to 30 TFLOP/s of perfor-

mance if the Tensor Cores are turned off. While this is

around 2� the single-precision performance, significantly

higher performance can be achieved if the Tensor Cores are

turned on. As the figure shows, the Tensor Cores are capa-

ble of delivering an asymptotic 100 TFLOP/s, which is 5�
the asymptotic performance of a non-accelerated HGEMM.

Figure 2. Programmability of the Tensor Core units.

4 The International Journal of High Performance Computing Applications XX(X)

However, perhaps the most interesting performance

graph of Figure 3 is the HGEMM with FP32 output, where

we can see that the performance is close to the accelerated

HGEMM kernel but with much more precision on the out-

put. This is of particular importance for mixed-precision

algorithms (Haidar et al., 2018b, 2017). To put this in per-

spective, Figure 4 shows the forward error between the

three different HGEMM kernels, with respect to the

single-precision GEMM kernel from the Intel MKL library.

The forward error is computed as:

jjRcuBLAS � RMKLjjFffiffiffiffiffiffiffiffiffiffiffi
k þ 2
p

jajjjAjjF jjBjjF þ 2jbjjjCjjF
;

where k is equal to the matrix size, and a and b are the two

scalars in the standard GEMM operation (C ¼ aABþ bC).

The first surprising observation is that an HGEMM opera-

tion with FP16 output is more accurate if the Tensor Cores

are turned on (as the accumulation in the Tensor cores

happens in FP32), which means that the utilization of the

Tensor Core units achieves both better performance and

higher accuracy. The second observation is that performing

HGEMM with FP32 output achieves at least two more

digits of accuracy when compared with the other two

HGEMM variants. Given that HGEMM with FP32 output

is mostly within 90% of the peak Tensor Core throughput,

it is clearly the best option for mixed-precision algorithms

that target achieving higher accuracy while taking advan-

tage of the half-precision.

3.1.3. Batch HGEMM. Apart from the vendor-supplied

BLAS, a few efforts have focused on building open-

source BLAS routines that utilize NVIDIA Tensor Cores.

An example of such efforts is in the MAGMA library

(Agullo et al., 2009) which has a batch HGEMM kernel

that makes use of the Tensor Cores (Abdelfattah et al.,

2019). The kernel builds an abstraction layer over the Ten-

sor Cores to overcome their size restrictions, so that arbi-

trary blocking sizes can be used by the kernel. The batch

HGEMM kernel in MAGMA outperforms cuBLAS for

relatively small sizes, as shown in Figure 5. The same work

also shows that extremely small matrices (e.g., with sizes

� 10) do not necessarily benefit from Tensor Core

acceleration.

3.1.4. Error bounds. What can we say about rounding error

bounds for low-precision BLAS? Hardware that employs

low-precision matrix multiplication with accumulation at

high precision, such as the the NVIDIA tensor cores,

requires a careful analysis that takes account of the internal

precisions and the matrix size. A general such analysis,

which quantifies the gain from the use of higher precision

accumulation, is given in Blanchard et al. (2020). A second

question concerns the interaction of precision and dimen-

sion: an error bound with a constant nu (say) provides no

information if nu > 1, such as when n¼ 104 and u is the

unit roundoff for half precision (see Table 1). However,

standard rounding error bounds are based on worst-case

analyses. By making probabilistic assumptions about the

rounding errors one can obtain bounds in which the prob-

lem size is replaced by its square root (Higham and Mary

2019), and even smaller constants can be obtained for data

0
10
20
30
40
50
60
70
80
90

100
110
120
130

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Tf
op

/s

Matrix size (x 1000)

Performance of cuBLAS HGEMM on square sizes (CUDA-9.1)

HGEMM-FP16output (tensor cores on)
HGEMM-FP32output (tensor cores on)
HGEMM-FP16output (tensor cores off)

Figure 3. Performance of different HGEMM kernel from the
cuBLAS library on square sizes. Results are shown on a Tesla
V100 GPU using CUDA-9.1.

10-7

10-6

10-5

10-4

10-3

10-2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Fo
rw

ar
d

Er
ro

r

Matrix size (x 1000)

Forward Error of Square HGEMM

HGEMM-FP16output (tensor cores on)
HGEMM-FP32output (tensor cores on)
HGEMM-FP16output (tensor cores off)

Figure 4. Forward error of HGEMM with respect to MKL
SGEMM (C ¼ aABþ bC). Results are shown for square sizes
using cuBLAS 9.1 and MKL 2018.1.

10-2

10-1

100

101

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

Tf
op

/s

Matrix size

Performance of Batch HGEMM on square sizes (batch size = 1k)

MAGMA
cuBLAS

Figure 5. Performance of the batch HGEMM kernel on square
sizes. Results are shown on a Tesla V100 GPU using CUDA-9.1.

Abdelfattah et al. 5

with zero or small mean (Higham and Mary 2020). These

analyses provide a theoretical explanation for the practical

findings that acceptable accuracy can be obtained for large

n and low precisions.

3.2. Newton’s method

Newton’s method is widely used for solving systems of

nonlinear equations FðxÞ ¼ 0, where F : Rn ! Rn. It takes

the form:

xkþ1 ¼ xk � F
0 ðxkÞ�1

FðxkÞ; ð3:1Þ

where F
0

denotes the Jacobian of F, which is assumed to

be nonsingular. In practice, of course, the explicit inverse

is not computed, but rather a system of equations is solved

with F
0 ðxkÞ as the coefficient matrix. Newton’s method

lends itself to an obvious mixed-precision implementa-

tion, whereby early iterations are carried out at low pre-

cision, and the precision is increased as the iteration

converges. Mixed precision can also be used within a

Newton step: FðxkÞ can be evaluated at a precision higher

than the working precision to inject more information

into the iteration. A detailed analysis of Newton’s method

in mixed-precision floating point arithmetic is given by

Tisseur (2001). Our interest here is in using Newton’s

method as a tool for refining approximate solutions

computed at low precision to the linear equations problem

and the eigenvalue problem, as we will discuss in later

sections.

3.3. Iterative refinement

A common approach to the solution of linear systems,

either dense or sparse, is to perform an LU factorization

of the coefficient matrix. First, the coefficient matrix A is

factored into the product of a lower triangular matrix L and

an upper triangular matrix U. Partial-row pivoting is, in

general, used to improve numerical stability, which results

in a factorization PA ¼ LU , where P is a permutation

matrix. The solution for the system is achieved by first

solving Ly ¼ Pb (forward substitution) and then solving

Ux ¼ y (backward substitution). Because of roundoff

errors, the computed solution x carries a numerical error

magnified by the condition number of the coefficient

matrix A.

Iterative refinement attempts to improve x̂ by forming

the residual r ¼ b� Ax̂, solving Ad ¼ r using the LU fac-

tors, and then updating x̂ x̂ þ z. This process is repeated

as necessary. Iterative refinement is effectively Newton’s

method (3.1) applied to FðxÞ ¼ b� Ax. The method goes

back to the beginning of the digital computer era and has

been analyzed by Wilkinson (1963), Moler (1967), Stewart

(1973), and Higham (1997, 2002).

Iterative refinement inherently presents opportunities

for a mixed-precision approach, and there is a wealth of

existing work in this area. The three tasks—original solve/

factorization, residual computation, and correction

equation solve—can be done in the same precision (fixed

precision) or in different precisions (mixed precision). The

original usage was mixed precision, with the residual com-

puted at twice the working precision.

We define various precisions. Assume that the data A, b,

and the solution x̂ are stored in working precision u. We let

u‘ represent the precision at which the LU factorization of A

is computed and ur represent the precision at which the

residuals are computed. We also define us to be the preci-

sion at which the correction equation is effectively solved;

in practice this will either be u or u‘. A generic mixed-

precision iterative refinement algorithm is given in Algo-

rithm 3.1.

In Table 2 we give citations to work which analyzes

iterative refinement in mixed precision. We list whether

the analysis applies to LU or an arbitrary solver (“arb”)

as well as whether the analyses of backward and/or forward

error are normwise (“N”) or componentwise (“C”). We

note that, if x̂ is an approximate solution of Ax ¼ b, the

normwise forward error is defined by

jjx̂ � xjj=jjxjj;

and the normwise backward error is defined by

minfe : ðAþ DAÞx̂ ¼ b; jjDAjj � ejjAjjg

which can be evaluated as

jjrjj=ðjjAjjjjx̂jjÞ;

where r ¼ b� Ax̂.

Algorithm 3.1. Mixed-precision iterative refinement.

Table 2. Summary of existing analyses of mixed-precision
iterative refinement.

Solver F.E. B.E. Prec.

Moler (1967) LU N — u � ur

Stewart (1973) LU N — u � ur

Skeel (1980) LU C C u � ur

Higham (1997) arb C C u � ur

Tisseur (2001) arb N N u � ur

Langou et al. (2006) LU N N u‘ � u ¼ ur

Carson and Higham (2017) arb C — u � ur

Carson and Higham (2018) arb C C, N u‘ � us � u � ur

6 The International Journal of High Performance Computing Applications XX(X)

The work in Langou et al. (2006) is notable as it suggests

that with double (FP64) as the working precision, the fac-

torization PA ¼ LU and the solution of the triangular sys-

tems Ly ¼ Pb and Ux ¼ y can be carried out in single

precision (FP32). As a result, the only operation with com-

putational complexity of Oðn3Þ is handled in the lower

precision, while all operations performed in working pre-

cision (triangular solves) and residual precision (residual

and solution updates) are of at most Oðn2Þ complexity. The

coefficient matrix A is converted to factorization precision

for the LU factorization, and the resulting factors are stored

in factorization precision, while the initial coefficient

matrix A needs to be kept in memory. Therefore, using

FP32 as factorization precision for a FP64 problem, this

approach increases the memory requirement by 50% com-

pared to the standard algorithm.

Building on the work of Langou et al. (2006), Carson

and Higham (2018) recently analyzed the general three-

precision iterative refinement scheme presented in Algo-

rithm 3.1. The analysis generalizes previously studied cases

(e.g., the two-precision analyses of Higham, 1997; Langou

et al., 2006), and also covers the case where three different

precisions are used. It also allows for an arbitrary solver to

be used in line 5 of Algorithm 3.1. For LU-based iterative

refinement (i.e., when the solve in line 5 is done via trian-

gular solve with the computed LU factors), it is shown that

with the factorization done at half the working precision

and the residual computed at double the working precision,

forward and backward errors on the order of the working

precision are still attainable, as long as the condition num-

ber of A is below some threshold. For example, as long as

k1ðAÞ ¼ jjAjj1jjA�1jj1< 104, then using FP16 for the

Oðn3Þ portion (the LU factorization) and (FP32, FP64) or

(FP64, 128-bit, quadruple-precision floating point arith-

metic (FP128)) as the (working, residual) precision for the

Oðn2Þ portion (refinement loop), one can expect to achieve

forward error and backward error on the order of 10�8 and

10�16, respectively. A full summary of the attainable com-

ponentwise forward errors and the normwise and compo-

nentwise backward errors for LU-based iterative

refinement with various precision combinations can be

found in Carson and Higham (2018, table 7.1).

When mixed precision is used, the method in Algorithm

3.1 can offer significant improvements for the solution of

linear systems in many cases: if the low-precision compu-

tation is significantly faster than the high-precision compu-

tation, if the iterative refinement procedure converges in a

small number of steps, and if the cost of each iteration is

small compared with the cost of the system factorization. If

the cost of each iteration is too high, then a high number of

iterations will result in a performance loss with respect to

the full, double-precision solver. In the sparse case, for a

fixed matrix size, both the cost of the system factorization

and the cost of the iterative refinement step may vary sub-

stantially depending on the number of nonzeros and the

matrix sparsity structure; this will be addressed in Section

4.1. In the dense case, results are more predictable. Note

that the choice of the stopping criterion in the iterative

refinement process is critical. For an analysis of conver-

gence criteria see Demmel et al. (2006).

3.4. GMRES-IR

As mentioned, the analysis in Carson and Higham (2018)

allows for a general solver for the correction equation

within iterative refinement. Carson and Higham (2017)

first proposed the use of the GMRES method (Saad and

Schultz, 1986) preconditioned by the FP16 LU factors as

the solver in the correction equation. This variant is called

GMRES-IR by Carson and Higham. Algorithmically, it

follows the same structure as Algorithm 3.1, except line

5 is performed via preconditioned GMRES. A summary of

results for various precision combinations can be found in

Carson and Higham (2018, table 8.1). It is shown that in

this case, the constraint on the condition number can be

relaxed compared to the LU-based refinement scheme.

For example, with factorization precision FP16, working

precision FP32, and residual precision FP64, we can

expect forward and backward errors on the order of

FP32 as long as k1ðAÞ < 108. We refer to Higham

(2019, table 3.1) for limiting forward and backward errors

for this GMRES-based approach when two precisions are

used, with the residual precision equal to the working

precision.

The idea behind GMRES-IR is that even though the

low-precision LU factors may be of low quality, they can

still be effective preconditioners in using the GMRES

method to solve the correction equation Adk ¼ rk , result-

ing in an effective solve precision us ¼ u. The condition

number of the resulting preconditioned system is reduced

enough to guarantee backward stability of the approxi-

mate solution computed by GMRES even for matrices that

are nearly numerically singular with respect to the work-

ing precision. In contrast, using a basic triangular solve

with the low-precision LU factors to solve Adk ¼ rk , for

which us ¼ u‘, provides no degree of relative accuracy

once k1ðAÞ exceeds u�1
‘ . Using preconditioned GMRES,

we can still guarantee that the solution of the correction

equation has some correct digits and a residual at the level

of the convergence tolerance requested by the algorithm

despite the apparent low quality of the computed

preconditioners.

Since this paper focuses on the practical usage and pos-

sible performance gains rather than error analysis, we point

the reader to Higham (2002), Carson and Higham (2017,

2018), and Higham (2019) for detailed error analysis of

both standard iterative refinement and GMRES-IR. Of

course, in order to be beneficial, it is necessary that the

total number of GMRES iterations and the total number

of refinement steps remains small. As shown in Carson and

Higham (2017, 2018), this is indeed the case for many

problems.

Abdelfattah et al. 7

We note that the HPL-AI mixed-precision benchmark,2

which is designed to take into account the availability of

hardware accelerators for low-precision computation, is

based on GMRES-IR.

3.4.1. Scaling. It is clear that the use of low-precision float-

ing point arithmetic in iterative refinement can lead to sig-

nificant speedups. However, FP16 has a small dynamic

range, and therefore encountering overflow, underflow,

and subnormal numbers is very likely.3

We consider a two-sided diagonal scaling prior to con-

verting to FP16: A is replaced by RAS, where:

T ¼ diagðtiÞ; S ¼ diagðsiÞ; ti; si > 0; i ¼ 1 : n:

Such scaling algorithms have been developed in the

context of linear systems and linear programming prob-

lems. In contrast to previous studies (see Elble and Sahi-

nidis, 2012), where the aim of scaling has been to reduce a

condition number or to speed up the convergence of an

iterative method applied to the scaled matrix, we scale in

order to help squeeze a single-precision or double-

precision matrix into half precision, with a particular aim

to use the resulting half-precision LU factors for iterative

refinement.

Higham et al. (2019) propose the use of two-sided diag-

onal scaling given in Algorithm 3.2. Recall that xmax denotes

the largest finite floating point number (see Table 1).

For FP16, in light of the narrow range, we will also

multiply the shifted matrix by a scalar to bring it close to

the overflow level xmax and to minimize the chance of

underflow and of subnormal numbers being produced.

Higham et al. (2019) recommend two different algo-

rithms for determining R and S; both algorithms are carried

out at the working precision. The first option is row and

column equilibration, which ensures that every row and

column has the maximum element in modulus equal to

1—that is, each row and column is equilibrated. The

LAPACK routines xyyEQU carry out this form of scaling

(Anderson et al., 1999). The second option, for symmetric

matrices, is a symmetry-preserving two-sided scaling pro-

posed by Knight et al. (2014). The algorithm is iterative and

scales simultaneously on both sides rather than sequentially

on one side and then the other.

For more details on scaling see Higham et al. (2019),

Higham and Pranesh (2021), and Carson et al. (2020).

3.5. Low-precision cholesky factorization

In the previous section, we considered general matrices.

We now assume that we are given a symmetric positive

definite matrix A 2 Rn�n in precision u and wish to

compute a Cholesky factorization at precision u‘ > u for

use in iterative refinement. The most practically important

cases are where ðu‘; uÞ ¼ ðhalf ; singleÞ, (half, double),

or (single, double). The obvious approach is to form

Að‘Þ ¼ f l‘ðAÞ, where f l‘ denotes the operation of rounding

to precision u‘, and then compute the Cholesky factoriza-

tion of Að‘Þ in precision u‘. However, this approach can fail

for two reasons. First, if FP16 is used, then the limited

range might cause overflow during the rounding. Second,

for both BFloat16 and FP16, Að‘Þ can fail to be (suffi-

ciently) positive definite, because a matrix where the smal-

lest eigenvalue is safely bounded away from zero with

respect to single precision or double precision can become

numerically indefinite under rounding to half precision.

The second issue can also arise when a double-precision

matrix is rounded to single precision. To overcome these

problems, Higham and Pranesh (2019) propose scaling

and shifting.

3.5.1. Scaling. The first step is to scale the matrix A to the

unit diagonal matrix H ¼ D�1AD�1, D ¼ diagða1=2
ii Þ, and

D will be kept at precision u. Cholesky factorization is

essentially numerically invariant under two-sided diagonal

scaling, so the sole reason for scaling is to reduce the

dynamic range in order to avoid overflow and reduce the

chance of underflow for FP16. For BFloat16 or FP32, it is

not usually necessary to scale, and we can work with A

throughout.

3.5.2. Shifting. We now convert H to the lower precision u‘,

incorporating a shift to ensure that the lower precision matrix

is sufficiently positive definite for Cholesky factorization to

succeed. We shift H by cnu‘I , where cn is a positive integer

constant, to obtain G ¼ H þ cnu‘I . Since the diagonal of H

is I, this shift incurs no rounding error, and it produces the

same result whether we shift in precision u and then round or

round and then shift in precision u‘.

Our final precision-u‘ matrix is constructed as:

G ¼ H þ cnu‘I ;

b ¼ 1þ cnu‘; � ¼ qxmax=b; ð3:2Þ

AðhÞ ¼ f l‘ð�GÞ;

where q 2 ð0; 1Þ is a parameter. Note that b ¼ maxijjgijj,
so the largest absolute value of any element of AðhÞ is qxmax.

Note also that since the growth factor for Cholesky factor-

ization is 1 (see Higham, 2002, Problem 10.4), there is no

danger of overflow during Cholesky factorization of AðhÞ.
Higham and Pranesh (2021, Section 3.3) provide anal-

ysis suggesting the choice of cn. A pragmatic approach is to

take cn to be a small constant, and if the Cholesky

Algorithm 3.2. (Two-sided diagonal scaling then round.) This
algorithm rounds A 2 Rn�n to the FP16 matrix AðhÞ, scaling all
elements to avoid overflow. q 2 ð0; 1� is a parameter.

8 The International Journal of High Performance Computing Applications XX(X)

factorization fails, increase c and try again. Based on this,

we present the low-precision Cholesky factorization algo-

rithm in Algorithm 3.3.

3.6. Mixed-precision factorizations

Haidar et al. (2018b) proposed iterative refinement meth-

ods using mixed-precision factorizations. While classical

iterative refinement and extensions like the GMRES-IR use

fixed-precision factorizations (e.g., in precision u‘ as illu-

strated in Algorithm 3.1), mixed-precision factorizations

apply higher precision (e.g., uw) at critical parts of the

algorithm to obtain more accurate factorizations while

retaining the performance of the low-precision counterpart.

The mixed-precision factorizations were motivated by

the need to get extra precision when working with very low

precisions, like the FP16. Also, this allows one to easily

overcome implementation issues and other limitations of

using FP16 arithmetic and harness the power of specialized

hardware (e.g., Tensor Cores) for a larger range of scien-

tific computing applications.

The developments were applied to GPU Tensor Cores

and illustrate that FP16 can be used to obtain FP64 accu-

racy for problems with k1ðAÞ of up to 105, compared to a

more typical requirement of k1ðAÞ < 104. The work illus-

trates that mixed-precision techniques can be of great inter-

est for linear solvers in many engineering areas. The results

show that on single NVIDIA V100 GPU, the new solvers

can be up to 4� faster than an optimized double-precision

solver (Haidar et al., 2017, 2018a, 2018b, 2020).

A building block for the mixed-precision factorizations

is mixed-precision BLAS. Having mixed-precision BLAS

can ease the development of many mixed-precision

LAPACK algorithms. Currently, cuBLAS provides a

mixed FP32-FP16 precision HGEMM that uses the GPU’s

Tensor Cores for FP16 acceleration. In this GEMM, the

input matrices A and B can be FP32, be internally cast to

FP16, used to compute a GEMM on Tensor Cores in full

(FP32) accuracy, and then the result is stored back on the

GPU memory in FP32. There are two main benefits to

having such mixed-precision BLAS routines. First, note

that this mixed-precision HGEMM is almost as fast as the

non-mixed FP16 HGEMM (Figure 3). Second, the use of

mixed-precision gains about one more decimal place of

accuracy (Figure 4).

Aside from the two main benefits outlined above, the

availability of mixed-precision GEMMs also enables us to

easily develop other mixed-precision algorithms (e.g.,

LAPACK), including the various mixed-precision factori-

zations that we recently added in MAGMA (Haidar et al.,

2018b). Figure 6 shows the performance of the mixed-

precision LU (marked as “FP16-TC hgetrf LU”). Note that

this factorization is about 4�–5� faster than dgetrf. Its data

storage is in FP32, and the implementation is the same as

sgetrf, except that it uses the mixed-precision HGEMMs

for the trailing matrix updates.

Figure 7 shows the mixed-precision iterative refinement

in MAGMA (Haidar et al. 2018b), which uses a backward

error criterion for convergence. The 4� overall acceleration

is due to a number of optimizations. First, note that the 3

iterations to get to FP64 accuracy led to a loss of about 2

TFLOP/s compared with the hgetrf performance (24

TFLOP/s vs. 26 TFLOP/s) (i.e., the overhead of one iteration

can be deduced as being about 2%). Losing 75% (e.g.,

through up to 40 iterations) would lead to no acceleration

compared to the FP64 solver. This overhead per iteration is

very low, owing to fusing all data conversions with compu-

tational kernels. Without fusion, the overhead would have

been easily about 3� higher. Second, note that iterative

refinement using the mixed-precision factorization has less

than half of the overhead in terms of iterations to solution

(three vs. seven iterations until FP64 convergence). This is

due to the extra digit of accuracy that the mixed-precision

HGEMM has over the FP16 HGEMM, which also translates

to a more accurate mixed-precision LU.

Using mixed-precision Cholesky factorization in Algo-

rithm 3.3, Abdelfattah et al. (2020) obtain speedups of up to

4.7 over a double-precision solver on an NVIDIA V100.

Algorithm 3.3. (Low-precision Cholesky factorization.) Given
a symmetric positive definite A 2 Rn�n in precision u, this
algorithm computes an approximate Cholesky factorization

RTR � mD�1AD�1 at precision u‘, where D ¼ diagða1=2
ii Þ. The

scalar q 2 ð0; 1� and the positive integer c are parameters.

matrix size
2k 4k 6k 8k 10k 14k 18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24
26 FP16-TC (Tensor Cores) hgetrf LU

FP16 hgetrf LU
FP32 sgetrf LU
FP64 dgetrf LU

4-5X

Figure 6. Mixed-precision LU (hgetrf) in MAGMA and its speedup
vs. FP64 LU.

Abdelfattah et al. 9

3.7. Iterative refinement for least squares problems

We consider the linear least squares problem minx k Ax�
bk2, where A 2 Rm�n with m � n having full rank. The idea

of mixed-precision iterative refinement and GMRES-IR for

square linear systems can be adapted to the least squares

case. Least squares problems may be ill-conditioned in

practice, and so rounding errors may result in an insuffi-

ciently accurate solution. In this case, iterative refinement

may be used to improve accuracy, and it also improves

stability.

3.7.1. Cholesky-based approach. The normal equations

method solves:

AT Ax ¼ AT b

using the Cholesky factorization of AT A (Section 3.5). In

general, this method is not recommended unless A is very

well conditioned because it has a backward error bound of

order k2ðAÞu (Higham, 2002, sect. 20.4), and the Cholesky

factorization can break down for k2ðAÞ > u�1=2, where

k2ðAÞ is the ratio of the largest to the smallest singular

value of A. Higham and Pranesh (2019) assume that A is

well conditioned and propose the Cholesky and GMRES-

IR-based least squares solver given in Algorithm 3.4.

Line 1 of Algorithm 3.4 produces a matrix B with col-

umns of unit 2-norm. The computation C ¼ BðhÞT BðhÞ on

line 4 produces a symmetric positive definite matrix with

constant diagonal elements � ¼ qxmax, so overflow cannot

occur for q < 1. The shift on line 5 is analogous to that in

Algorithm 3.3, but here the matrix C is already well scaled

and in precision u‘, so there is no need to scale C to have

unit diagonal.

Note that although Algorithm 3.4 explicitly forms

C ¼ BðhÞT BðhÞ in Algorithm 3.4, C is used to form a pre-

conditioner, so the usual problems with forming a

cross-product matrix (loss of significance and condition

squaring) are less of a concern. Also note that if we are

working in FP16 on an NVIDIA V100, we can exploit the

Tensor Cores when forming C to accumulate block fused

multiply-add operations in single precision; this leads to a

more accurate C, as shown by the error analysis of Blan-

chard et al. (2020).

For the computed R̂, we have:

R̂
T

R̂ � BðhÞT BðhÞ � �SAT AS;

or

ðAT AÞ�1 � �SR̂
�1

R̂
�T

S;

so we are preconditioning with an approximation to the

inverse of AT A. For large n, as long as GMRES converges

quickly, the cost of the refinement stage should be negli-

gible compared with the cost of forming AT A and comput-

ing the Cholesky factorization.

We also mention the Cholesky-QR algorithm for com-

puting a QR factorization A ¼ QR. It forms the cross-

product matrix AT A, computes the Cholesky factorization

AT A ¼ RT R, and then obtains the orthogonal factor Q as

Q ¼ AR�1; this process can be iterated for better numerical

stability (Fukaya et al., 2020). Mixed precision can be

exploited in this algorithm, as shown by Yamazaki et al.

(2015, 2016).

Algorithm 3.4. (Cholesky-based GMRES-IR for the least
squares problem.) Let a full rank A 2 Rm�n, where m � n, and
b 2 Rm be given in precision u. This algorithm solves the least
squares problem minx k b� Axk2 using Cholesky-based
GMRES-IR. The scalar q 2 ð0; 1� and the positive integer c are
parameters.

Matrix size
2k 4k 6k 8k 10k 14k 18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

2
5
3

2
63 2

6
3

2
6
3

2
6
3 2

6
3

2

6
3

2

6

3

2

6

3

2

7

3

2

7

3

2

6

3
Performance of solving Ax=b

using FP64 or IR with GMRes to achieve FP64 accuracy
FP16-TC->64 dhgesv
FP16->64 dhgesv
FP32->64 dsgesv
FP64 dgesv

κ ∞
(A

)

100

101

102

103

104

105

4X

Figure 7. Mixed-precision iterative refinement in MAGMA and
acceleration vs. FP64 solvers. Note � 2% overhead per iteration,
and less than half the overhead in terms of iterations for mixed-
precision LU vs. regular FP16 LU (the three vs. seven iterations
until FP64 convergence). The condition numbers of the matrices
are computed using FP64.

10 The International Journal of High Performance Computing Applications XX(X)

3.7.2. Augmented matrix approach. As mentioned, the

Cholesky-based approach described in the previous section

is intended only for the case where the matrix is very well

conditioned. Another approach to mixed-precision least-

squares iterative refinement with a less stringent require-

ment on the condition number is presented by Carson et al.

(2020). This approach is based on using the QR

factorization:

A ¼ Q
R

0

� �
;

where Q ¼ ½Q1;Q2� 2 Rm�m is an orthogonal matrix with

Q1 2 Rm�n and Q2 2 Rm�ðm�nÞ, and R 2 Rn�n is upper tri-

angular. The unique least squares solution is x ¼ R�1QT
1 b

with residual k b� Axk2 ¼k QT
2 bk2.

An iterative refinement approach for least squares sys-

tems was suggested by Björck (1967a). Refinement is per-

formed on the augmented system

I A

AT 0

� �
r

x

� �
¼

b

0

� �
; ð3:3Þ

which is equivalent to the normal equations. In this way,

the solution xi and residual ri for the least squares problem

are simultaneously refined. Björck (1967a) shows that this

augmented system can be solved by reusing the QR fac-

tors of A.

Existing analyses of the convergence and accuracy of

this approach in finite precision assume that, at most, two

precisions are used; the working precision u is used to

compute the QR factorization, solve the augmented system,

and compute the update. A second precision ur � u is used

to compute the residuals. Typically ur ¼ u2, in which case

it can be shown that as long as the condition number of the

augmented system matrix is smaller than u�1, the refine-

ment process will converge with a limiting forward error on

the order of u; see Björck (1990) and Higham (2002, sect.

20.5) and the references therein.

Carson et al. (2020) show that the three-precision itera-

tive refinement approach of Carson and Higham (2018) can

be applied in this case; the theorems developed in Carson

and Higham (2018) for the forward error and normwise and

componentwise backward error for iterative refinement of

linear systems are applicable. The only thing that must

change is the analysis of the method for solving the correc-

tion equation, since we now work with a QR factorization

of A, which can be used in various ways.

The work in Carson et al. (2020) also extends the

GMRES-based refinement scheme of Carson and Higham

(2017) to the least squares case and shows that one can

construct a left preconditioner using the existing QR factors

of A such that GMRES provably converges to a backward

stable solution of the preconditioned augmented system.

Further, it is shown that an existing preconditioner devel-

oped for saddle point systems can also work well in the

GMRES-based approach in practice, even though the error

analysis is not applicable. We refer the reader to Carson

et al. (2020) for further details.

For details of convergence tests for iterative refinement

of least squares problems see Demmel et al. (2006).

3.8. Eigenvalue problems

Newton’s method can be used to refine an approximate

eigenpair of a matrix by defining a function

F : Rnþ1 ! Rnþ1 that has as its first n components

ðA� lIÞx and its last component eT
s x� 1 for some unit

vector es, with this last component serving to normalize

x. If an initial eigen decomposition is available, it can be

exploited to simplify the implementation of the Newton

iteration. This idea was developed by Dongarra (1982) and

Dongarra et al. (1983), building on a Schur decomposition

and allowing the residual ðA� lIÞx to be computed in

higher precision. Algorithm 3.5 implements this procedure,

called SICE, which, in each iteration, solves a linear system

resulting from a rank-1 update in order to refine a single

eigenpair. The rank-1 update is introduced while replacing

one column in A� lI to remove one degree of freedom on

eigenvector correction and, at the same time, compute a

correction for the corresponding eigenvalue. The original

formulation (Dongarra 1982) solves the system with two

series of Givens rotations to make it upper triangular. This

process is hard to parallelize on modern architectures. Also,

some form of orthogonalization should be considered while

using the algorithm to refine more than one eigenvalue.

This idea has been extended to the generalized eigenva-

lue problem by Tisseur (2001) and Davies et al. (2001).

Algorithm 3.5. SICE algorithm for iteratively refining computed
eigenvalue.

Abdelfattah et al. 11

For the symmetric eigenvalue problem, Petschow et al.

(2014) use extra precision to improve the accuracy of the

multiple relatively robust representations (MRRR) algo-

rithm, with little or no performance penalty.

Algorithm 3.6 shows another iterative refinement pro-

cedure from Ogita and Aishima (2018) for solving a sym-

metric eigenvalue problem. This method also succeeds for

clustered eigenvalues (Ogita and Aishima, 2019). Lines 4,

5, and 10 represent the compute-intensive parts of the algo-

rithm, which amounts to 4 calls to the matrix-matrix multi-

ply function xGEMM. Line 8 uses the 2-norm, but it is

recommended to approximate using the Frobenius norm,

because it is much easier to compute in practice. Line 9

is an element-wise operation to construct the refinement

matrix E. Line 10 is the update of eigenvectors by applying

the refinement matrix E. High-precision arithmetic is

required for all computations except line 8 for the matrix

norm. Even though the algorithm may be applied for only a

subset of ‘ eigenvectors, the refinement iterations are con-

fined to the corresponding subspace and its approximation

provided on input. Hence, the refinement process could be

limited: the desired accuracy might be unattainable if only

a part of the spectrum is refined in higher precision and the

subspace spanned by input approximate eigenvectors does

not cover the real eigenvector close enough. It is designed

to be applied on the clustered eigenvalues after the eigen-

space has been accurately captured. The clustered eigenva-

lues’ subspace is not very sensitive to perturbations,

provided that the gap between the clustered eigenvalues

and all the others is sufficiently large. Thus, eigenvalue

gaps must be expanded in each clustering subproblem by

using diagonal shifts as proposed by Ogita and Aishima

(2019) in addition to a modification for improved ortho-

gonality of the refined eigenvectors. Figure 8 shows the

convergence behavior of Algorithm 3.6 on a real symmetric

matrix of size n ¼ 100 when refining the entire spectrum

from single precision toward double precision. The matrix

is generated with random eigenvectors and geometrically

distributed eigenvalues between 1 and 10�5. Each line rep-

resents the convergence of one eigenvalue, and the normal-

ized residual k Ax� lx k = k A kk x k is plotted against

subsequent iteration numbers. The color indicates the value

of eigenvector from blue as 1 toward red as 10�7. Here we

can see the condition of solving the eigenvector is related to

the gap between the eigenvalue and it’s neighborhoods.

The blue ones are well conditioned and can converge

toward double-precision accuracy in two iterations while

the red ones requires up to 8 iterations. This is an important

computational aspect of the convergence rate. The larger

the iteration count, the more time will be spent in line 4, 5,

and 10 of Algorithm 3.6 that have to use higher precision

matrix product.

4. Sparse linear algebra

In contrast to dense linear algebra, sparse linear algebra

operations are typically memory bound, and the primary

goal of mixed-precision sparse linear algebra algorithms is

to reduce the memory access and communication volume.

However, for sparse direct solvers, blocking strategies and

fill-in during the factorization can result in matrices for

which the factorization step becomes compute bound. This

makes mixed-precision iterative refinement strategies like

those presented in Section 3.3 also attractive for sparse

linear systems (see Section 4.1). For 2-D and 3-D problems,

the matrix representation of a finite element discretization

has a larger matrix bandwidth, and the fill-in arising in the

factorization often exceeds the hardware capabilities in

terms of memory and computational cost. Consequently,

many applications rely on iterative solvers and precondi-

tioned iterative solvers to handle sparse linear systems.

Mixed-precision strategies to accelerate iterative sparse lin-

ear algebra methods utilize components that are not critical

Algorithm 3.6. Iterative refinement for symmetric eigenvalue
problem.

Figure 8. Convergence of eigenvalue refinement using Algorithm
3.6 from single to double precision for a real symmetric matrix of
size n ¼ 100. The matrix is generated with random eigenvectors
and geometrically distributed eigenvalues between 1 (blue) and

10�5 (red).

12 The International Journal of High Performance Computing Applications XX(X)

to the final accuracy (e.g., preconditioners or individual

operations in a larger algorithm) in lower precision than

working precision, or trade low-precision memory access

against additional iteration steps. In Section 4.2, we present

a theoretical analysis of the rounding effects low-precision

computations have on the accuracy of Krylov solvers.

However, as previously mentioned, it is usually not the

arithmetic computations that limit the performance of itera-

tive algorithms for sparse problems, but rather it is the

communication and memory bandwidth. In Section 4.3,

we present the idea of radically decoupling the format used

for arithmetic computations from the format that is used for

communication and memory operations. This concept can

span from using lower precision for memory accesses to

using dedicated compression techniques before invoking

communication operations. Examples of how this concept

of format decoupling and compression helps accelerate

sparse linear algebra include preconditioners for iterative

solvers (Section 4.4) and multigrid methods (Section 4.5).

4.1. Mixed-precision sparse direct solvers

The factorization process of a sparse matrix usually gener-

ates fill-in elements, significantly increasing the number of

nonzero elements in the factors. The fill-in is usually struc-

tured, and the fill-in locations can be predicted from the

sparsity pattern of the original system matrix. To improve

performance and memory efficiency, factorization-based

sparse solvers typically operate in a block-sparse fashion:

forming blocks covering the nonzero elements reduces the

indexing information to index the blocks, and storing the

elements as small dense blocks allows for the application

of highly efficient dense linear algebra operations. There

exist two options for realizing the concept of block-sparse

factorizations. One is to convert the system matrix into a

block-sparse matrix prior to the factorization process. The

other, more popular, one is based on forming the dense

blocks “on-the-fly” in registers/fast memory during the fac-

torization process, (block-) sparse factorization:

1. gather the values from sparse data structures into

dense blocks in registers/fast memory;

2. invoke dense linear algebra kernels on dense blocks;

and

3. scatter results into the sparse output data structure.

Similar to dense linear solvers, sparse direct solvers can

also benefit from the mixed-precision iterative refinement

framework presented in Section 3.3: The (block-) sparse

factorization is computed in low precision, thereby lever-

aging the corresponding high compute power, and the itera-

tive refinement process recovers a high-accuracy solution.

Contrary to the dense case, the low-precision (block-)

sparse factorizations not only benefit from higher arith-

metic performance in the invocation of the compute-

bound dense linear algebra kernels, but they also benefit

from the reduced memory access volume in the memory-

bound gather and scatter operations.

The iterative refinement process for recovering high-

precision solutions for a sparse linear system is concep-

tually identical to the dense case: like in Algorithm 3.1,

an error correction equation computed in high precision

is solved using the low-precision factorization. However,

the triangular factors are (block-) sparse, and for solving

the triangular systems, the same strategy of gathering data

from the sparse data structures into contiguous memory

proves successful,

(block-) sparse triangular solve:

1. gather the values from the sparse triangular struc-

tures into dense blocks in registers / fast memory and

2. invoke dense linear algebra kernels to solve for the

right-hand side.

Again, gathering the data in dense blocks enables the use

of efficient dense linear algebra kernels. Using low preci-

sion, the memory-bound “gather” step benefits from a

reduced memory access volume, and the dense linear alge-

bra kernels benefit from the higher performance in low

precision.

For dense linear algebra, the performance benefits of

mixed-precision iterative refinement over high-precision

dense direct solvers mostly correlate with the hardware-

specific arithmetic performance limits in the different pre-

cision formats. In particular, the performance benefits are

mostly independent of the problem characteristics. This is

different when using mixed-precision iterative refinement

for the direct solution of sparse problems, as the matrix

structure determines the amount and structure of the fill-

in, the efficiency of the dense linear algebra kernels oper-

ating on the induced dense blocks, and the ratio between

memory operations and arithmetic operations. As a result,

it is much harder to predict whether the mixed-precision

iterative refinement variant of a sparse direct solver pro-

vides performance benefits over the execution of a sparse

direct solver in high precision.

4.2. Mixed-precision Krylov solvers

The scope of our review includes both Lanczos-based

(short-term recurrence) and Arnoldi-based (long-term

recurrence) methods and the associated methods for sol-

ving linear systems of equations Ax ¼ b. In the context of

long-term recurrence methods, we consider both the

Arnoldi-QR algorithm with the modified Gram-Schmidt

implementation of the GMRES Krylov subspace method

for iteratively solving linear systems of equations as well as

Flexible GMRES (FGMRES). The emphasis here is to

examine the approaches employed to date that incorporate

mixed-precision floating point arithmetic to speedup com-

putations while retaining some or all of the numerical prop-

erties of the original algorithms in FP64 arithmetic (i.e.,

representation error and loss of orthogonality).

Abdelfattah et al. 13

4.2.1. Lanczos-CG. First, we briefly summarize the most

well-known results on the finite precision behavior of

Lanczos and CG methods and discuss how such results

could potentially be extended to the mixed-precision case

and existing progress in this area. We also note that the

literature on finite precision behavior of Lanczos-based

methods is expansive, and we cannot hope to fully describe

it here. For a more thorough account and historical refer-

ences, we point the reader to the survey of Meurant and

Strakoš (2006).

Fundamental relations dealing with the loss of ortho-

gonality and other important quantities in finite precision

Lanczos have been derived by Paige (1980). These results

were subsequently used by Greenbaum to prove backward

stability-like results for the CG method (Greenbaum,

1989); namely, Greenbaum showed that CG in finite pre-

cision can be seen as an exact CG run on a larger linear

system, in which the coefficient matrix has eigenvalues in

tight clusters around the eigenvalues of the original

matrix, where the diameter of these clusters depends on

properties of the matrix and the machine precision. Green-

baum also proved fundamental results on the maximum

attainable accuracy in finite precision, that is, the limiting

value of k xk � x k = k x k for approximate solutions xk

and true solution x, in CG and other “recursively com-

puted residual methods” (Greenbaum, 1997). The results

of Paige and Greenbaum have also been extended to s-step

Lanczos/CG variants in Carson (2015), where it is shown

that s-step Lanczos in finite precision behaves like a clas-

sical Lanczos run in a lower “effective” precision, where

this “effective” precision depends on the conditioning of

the polynomials used to generate the s-step bases. We

believe that these existing results can be extended to the

mixed-precision case.

Existing results in the area of mixed-precision Lanczos-

based methods are contained within the work on “inexact

Krylov subspace methods,” which also applies to Arnoldi-

based methods (see Simoncini and Szyld, 2003; van den

Eshof and Sleijpen, 2004). Within such frameworks, it is

assumed that the matrix-vector products are computed with

some bounded perturbation (which can change in each

iteration), and all other computation is exact. These meth-

ods were motivated by improving performance in applica-

tions where the matrix-vector products dominate the cost of

the computation (e.g., when the matrix is dense or the

application of A involves solving a linear system). Many

theoretical results on “inexact Krylov subspace methods,”

mostly focused on the maximum attainable accuracy, have

been proved in the literature. A surprising result is that the

inexactness in the matrix-vector products can be permitted

to grow in norm as the iterations progress at a rate propor-

tional to the inverse of the residual norm without affecting

the maximum attainable accuracy. However, a crucial prac-

tical question is whether inexactness will affect the conver-

gence behavior before the attainable accuracy is reached;

this is entirely possible in the case of short-term recurrence

methods such as CG and has not been well studied

theoretically.

For comprehensiveness, we briefly mention works

which make use of mixed-precision Krylov subspace meth-

ods in practical applications, focusing on performance

rather than on theoretical results.

One instance of this is in the work of Clark et al. (2010),

which uses mixed-precision CG and BICGSTAB methods to

implement the “reliable update” strategy of Sleijpen and van

der Vorst (1996) within a Lattice QCD application run on

GPUs. The idea behind the “reliable update” strategy is that

the true residual is computed and used to replace the recur-

sively updated residual in select iterations, thus improving

the attainable accuracy; this is done in conjunction with

batched updates to the solution vector. By using higher

(FP64) precision only in the true residual computations and

group updates (and FP32 or FP16 for the rest of the compu-

tation), the authors claim they are able to achieve FP64

accuracy. This deserves further theoretical study, which we

believe can be achieved by extending the results in Sleijpen

and van der Vorst (1996) and the related work of Van Der

Vorst and Ye (2000) to the mixed-precision setting.

4.2.2. Flexible GMRES. Much work has been done involving

the use of lower precision preconditioners within iterative

solvers, in particular, GMRES and FGMRES run in a

higher precision.

Arioli and Duff (2009) rigorously prove, that using a

triangular factorization computed as a preconditioner in

FP32, FGMRES run in FP64 produces a solution with

backward error to FP64 accuracy. In contrast, they demon-

strate that using FP64 iterative refinement as the solver may

fail in such cases. They provide numerical experiments

which support their theoretical analysis. This builds on the

previous work of Arioli et al. (2007), in which it is proved

that FGMRES is backward stable.

Building on the work of Arioli and Duff (2009), Hogg

and Scott (2010) develop a single-precision (FP32) imple-

mentation of an LDLT factorization method for solving

sparse-symmetric linear systems. This FP32 factorization

is then used as a preconditioner within FP64 iterative sol-

vers, including iterative refinement and FGMRES, effec-

tively creating a mixed-precision solver. They demonstrate

that for linear systems that are sufficiently well condi-

tioned, the mixed-precision approach was sufficient for

obtaining FP64 accuracy; the remaining cases required a

full FP64 implementation. Additionally, it is shown that the

mixed-precision approach is beneficial in terms of perfor-

mance for sufficiently large problems.

4.2.3. Arnoldi-QR MGS-GMRES. For MGS-GMRES the

mixed-precision work by Gratton et al. (2020) is the most

recent and appropriate—and in particular the loss-of-

orthogonality relations due to Björck (1967b) and Paige

(1980), later refined by Paige et al. (2006), are employed

in order to provide tolerances for mixed FP32–FP64 com-

putations. MGS-GMRES convergence stalls (the normwise

14 The International Journal of High Performance Computing Applications XX(X)

relative backward error approaches e) when linear indepen-

dence of the Krylov vectors is lost, and this is signaled by

Paige’s S matrix norm k Sk2 ¼ 1. The S matrix (Paige

2018) is derived from the lower triangular T matrix appear-

ing in the rounding error analyses by Giraud et al. (2004).

To summarize, Gratton et al. (2020) postulate starting

from the Arnoldi-QR algorithm using the modified Gram-

Schmidt algorithm and employing exact arithmetic in the

MGS-GMRES iterative solver. The Arnoldi-QR algorithm

applied to a nonsymmetric matrix A produces the matrix

factorization, with loss of orthogonality Fk.

AV k ¼ V kþ1 Hk ; V T
kþ1V kþ1 ¼ I þ Fk ð4:4Þ

They next introduce inexact (e.g., single precision) inner

products—this directly relates to the loss-of-orthogonality

relations for the A ¼ QR factorization produced by MGS.

The resulting loss of orthogonality, as measured by

k I � QT Qk2, grows as OðeÞkðAÞ, as was derived by

Björck (1967b) and OðeÞkð½ r0; AV k �Þ for Arnoldi-QR—

which is described in Paige and Strakoš (2002), Paige et al.

(2006), and related work. The inexact inner products are

given by:

hij ¼ vT
i wj þ hij; ð4:5Þ

where hij are elements of the Hessenberg matrix Hk, and the

Arnoldi-QR algorithm produces a QR factorization of the

matrix:

r0; AV k½ � ¼ V kþ1 b e1; Hk½ �: ð4:6Þ

The loss of orthogonality relations for Fk are given

below, where the matrix U is strictly upper triangular.

Fk ¼ �Uk þ �U
T

k ; Uk ¼

vT
1 v2 � � � vT

1 vkþ1

. .
.

vT
k vkþ1

2
664

3
775 ð4:7Þ

Define the matrices as below.

Nk ¼

h11 � � � h1k

. .
.

hkk

2
664

3
775Rk ¼

h21 � � � h2k

. .
.

hkþ1;k

2
664

3
775 ð4:8Þ

The loss of orthogonality relation, derived by Björck

(1967b) for the A ¼ QR factorization via the modified

Gram-Schmidt algorithm, can be applied to the Arnoldi-

QR algorithm to obtain:

Nk ¼ � 0; Uk½ �Hk ¼ �UkRk : ð4:9Þ

The complete loss of orthogonality (triggers a loss of

linear independence) of the Krylov vectors in MGS-

GMRES signals the minimum error is achieved, and

GMRES then stalls or really can go no further than when

the normwise relative backward error reaches OðeÞ. Grat-

ton et al. (2020) show how to maintain sufficient orthogon-

ality to achieve a desired relative residual error level by

switching the inner products from FP64 to FP32 at certain

tolerance levels and combine this with inexact matrix-

vector products as in van den Eshof and Sleijpen (2004)

and Simoncini and Szyld (2003).

In practice, the restarted variant of GMRES is often

employed to reduce memory requirements. The algorithm

produces both implicit (iteratively computed) and explicit

residuals. Thus, we might ask whether either can be per-

formed in reduced precision. The work described herein on

iterative refinement by Carson and Higham for mixed pre-

cision can be applied to analyze the convergence of

restarted GMRES(m), assuming a fixed number of itera-

tions, because restarted GMRES is just iterative refinement

with GMRES as the solver for the correction term. How-

ever, a more detailed analysis with experiments has yet to

be performed. We are fairly certain that the residual com-

putations must be performed in higher precision in order to

achieve a normwise backward error close to FP64 machine

roundoff.

4.2.4. Alternative approaches. Although somewhat outside

the scope of this review, we can demonstrate that it is

possible to modify the Gratton et al. (2020) analysis based

on the inverse compact WY form of the MGS algorithm,

introduced by Świrydowicz et al. (2020). Rather than treat

all of the inner products in the MGS-GMRES algorithm

equally, consider the strictly upper triangular matrix

U ¼ LT from the loss of orthogonality relations. We intro-

duce a single-precision (FP32) Lk�1;1:k�2 ¼ ðQT
1:k�2qk�1ÞT

and an FP64 triangular solve rj¼ ðI þ Lj�1Þ�1
QT

j�1aj to

update R, as this would directly employ the forward

error analysis of Higham (1989). The former affects the

loss of orthogonality, whereas the latter affects the rep-

resentation error for QR—but then also for Arnoldi-QR.

This could allow more (or most) of the inner products to

be computed in FP32.

Evidence for maintaining orthogonality is provided in

Figure 9, with k I � QT Q k plotted for A ¼ QR using the

inner products in standard MGS (blue) in FP64 versus the

Figure 9. Loss of orthogonality for mixed single-double MGS
algorithm.

Abdelfattah et al. 15

inverse compact WY MGS (red) with QT
j�1qj�1 in FP32

(simulated in MATLAB), and we observe at least the same

or slightly higher error levels. The x-axis is the log condi-

tion number for randomly generated matrices. The lower

triangular solve is computed in FP64.

Barlow (2019) contains similar if not the same algorithm

formulations in block form. His work is related to Björck’s

1994 paper (Björck 1994, Section 7), which derives the tri-

angular matrix T using a recursive form for MGS, and which

is referred to as a “compact WY” representation in the lit-

erature. While Björck used a lower triangular matrix T for

the compact WY form of MGS, Malard and Paige (1994)

derived the upper triangular form, also employed by Barlow,

which reverses the order of elementary projectors. The latter

is unstable in that a backward recurrence leads to OðeÞk2ðAÞ
loss of orthogonality. An interesting observation from Leon

et al. (2013) is that the upper triangular form is less stable

than the lower triangular, even though the backward-forward

algorithm results in re-orthogonalization; see the algorithm

in Leon et al. (2013).

Barlow (2019) employs the Householder compact WY

representation of reflectors and also refers to the work of

Puglisi (1992)—discussed in Joffrain et al. (2006)—and

this is referred to as the “inverse compact WY” represen-

tation of Householder; this originally comes from Walker’s

work on Householder GMRES Walker (1988). Barlow then

extends this approach to the block compact WY form of

MGS; see also the technical report by Sun (1996). The

contribution by Świrydowicz et al. (2020) was to note that

there exists an inverse compact WY representation for

MGS—having the projector P with lower triangular cor-

rection matrix T:

P ¼ I � Qj�1 T QT
j�1

¼ I � Qj�1 ðI þ Lj�1Þ�1
QT

j�1

—and to “lag” the norm k qj�1k2 so that these can be

computed in one global reduction. Barlow (2019) makes

this connection for blocks, and in effect this is given in his

equation (3.10), and references (Puglisi, 1992).

Björck and Paige (1992) made the link between House-

holder and MGS based on the observation made by Shef-

field. Paige defines this to be augmentation, and Gratton

et al. (2020) also references this work. Paige has also

recently extended these augmentation ideas to Lanczos.

The T matrix appears in Paige and Wülling (2014) and then

later in Paige (2018) to derive the loss of orthogonality

matrix S ¼ ðI þ LT
j�1Þ

�1
LT

j�1. This also appears in the work

of Giraud et al. (2004); Langou also worked with Smoktu-

nowicz et al. (2006) on the Pythagorean trick to reduce

cancellation error in the computation of vector norms and

a Cholesky-like form of classical Gram-Schmidt (CGS).

In order to combine single-double floating point opera-

tions in MGS-GMRES, at first it appears that we could

store the T matrix in FP32, but then we would still have

to form QT
j�1aj, and store Qj�1 in FP64. By examining the

cost trade-offs a bit further, we can instead use a form of re-

orthogonalization based on a backward-forward solver

recurrence:

T ¼ ðI þ LT
j�1Þ

�1 ðI þ Lj�1Þ�1;

and our initial computational results, displayed in Figure 10,

demonstrate this works well, driving the relative residual

and, more importantly, the normwise relative backward

error to OðeÞ in FP64, with orthogonality maintained to

OðeÞ in FP32 as indicated by the magenta curve. Here, the

black curve is the FP64 loss of orthogonality metric given

by k Sk2.

The representation error (backward error) for

Aþ E ¼ QR computed by MGS is not affected by FP32

inner products and remains OðeÞ. We are not aware of

whether or not this was previously known.

4.3. Memory format decoupling

We already elaborated on sparse linear algebra operations

being memory bound across the complete hardware tech-

nology food chain. Additionally, we are witnessing a

widening gap between the compute power (in terms of

FLOP/s) on the one side and the communication power

(in terms of memory bandwidth) on the other. In modern

processor technology, retrieving values from main memory

takes several orders of magnitude longer than performing

arithmetic operations, and communicating between distinct

nodes of a cluster is again orders of magnitude slower than

main memory access. With no disruptive hardware changes

on the horizon, we are facing a situation where all applica-

tions suffer from the slow communication to main memory

or in-between nodes.

A promising—and maybe the only promising—strategy

to overcome this problem is to utilize the bandwidth capac-

ity more carefully, reduce the communication volume and

the number of communication points, and—whenever pos-

sible—trade communication against computations. Specif-

ically, the idea is to radically decouple the memory

Figure 10. GMRES residuals and loss of orthogonality k Sk2 for
impcol_e matrix.

16 The International Journal of High Performance Computing Applications XX(X)

precision from the arithmetic precision, employ high pre-

cision only in the computations, and lower the precision as

much as possible when accessing data in main memory or

communicating with remote processors (Anzt et al.,

2019b). An important aspect in this context is the design

of a “memory accessor” that converts data on the fly

between the IEEE high-precision arithmetic format and the

memory/communication format (Figure 11). The memory/

communication format does not necessarily have to be part

of the IEEE standard but can also be an arbitrary composi-

tion of sign, exponent, and significand bits (Grützmacher

et al., 2019) or even nonstandard formats like Gustafson’s

Posits (Unum type III, Gustafson, 2015). On an abstract

level, the idea is to compress data before and after memory

operations and only use the working precision in the arith-

metic operations. While one generally distinguishes

between “lossy compression” and “lossless compression”

(Sayood, 2012), significant bandwidth reduction usually

requires the loss of some information. How much informa-

tion can be disregarded without endangering the numerical

stability heavily depends on the algorithm and the problem

characteristics. Thus, the choice of the memory format

requires careful consideration (e.g., in the form of auto-

mated format select); see Section 4.4.

4.4. Mixed-precision preconditioning

In the iterative solution process of large sparse systems

(e.g., when using Kylov solvers) preconditioners are an

important building block for facilitating satisfactory con-

vergence. The concept of preconditioning is to turn an

ill-conditioned linear system Ax ¼ b into a (left-) precondi-

tioned system MAx ¼ Mb (or AMy ¼ b, x ¼ My for right-

preconditioning), which allows for faster convergence of

the iterative solver (Anzt et al., 2018). The convergence

characteristics typically depend on the conditioning of the

target system. For an ill-conditioned A, the preconditioner

is also required to be ill-conditioned. Otherwise, the pre-

conditioner cannot be expected to improve the conditioning

of the problem or the convergence of the iterative solver. In

that respect, the preconditioner basically tries to approxi-

mate the inverse of the system matrix. Obviously, if the

preconditioner is the exact inverse, the solution is readily

available. However, computing the exact inverse is prohi-

bitively expensive, and, in most cases, the preconditioner is

just a rough approximation of the system matrix inverse. As

a consequence, it is natural to question the need for using

high precision for a preconditioner that is inherently carry-

ing only limited accuracy. Indeed, choosing a lower preci-

sion format for the preconditioner is a valid strategy as long

as the accuracy loss induced by using a lower precision

format impacts neither the preconditioner accuracy nor its

regularity. For example, Trilinos (The Trilinos Project

Team, 2020) allows the use of low-precision precondi-

tioners inside high-precision iterative solvers. However, the

use of lower precision in the preconditioner application

results in different rounding effects than when using high

precision. Specifically, the rounding effects make the pre-

conditioner non-constant, as the rounding effects are not

only larger than in high precision but also depend on the

input data (Anzt et al., 2019a). As a result, low-precision

preconditioners can only be used to accelerate an iterative

method that can handle non-constant preconditioners (i.e.,

can converge even if the preconditioner changes in between

iterations). For the Krylov subspace solvers generating

search directions orthogonal to the previous search direc-

tion, a changing preconditioner requires an additional

orthogonalization of the preconditioned search direction

against the previous preconditioned search direction. The

flexible Krylov solvers (e.g., FGMRES, FCG) contain this

additional orthogonalization and are therefore slightly

more expensive. At the same time, they do allow for using

low-precision preconditioners, which can compensate for

the additional cost.

An alternative workaround is to decouple the memory

precision from the arithmetic precision (see Section 4.3)

and only store the preconditioner in low precision but apply

it in high precision (Anzt et al., 2019a). Running all arith-

metic in high precision keeps the preconditioner constant

and removes the need for the additional orthogonalization

of the preconditioned search direction. On the other hand,

decoupling memory precision from arithmetic precision

requires on-the-fly conversion of in-between formats when

reading data from main memory. Fortunately, most itera-

tive solvers and preconditioners are memory bound, and the

conversion can be hidden behind the memory transfers

(Flegar et al., 2021). A production-ready implementation

of an adaptive-precision block-Jacobi preconditioner

decoupling memory precision from arithmetic precision is

available in the Ginkgo library (Anzt et al., 2020).

Figure 11. Accessor separating the memory format from the
arithmetic format and realizing on-the-fly data conversion in each
memory access.

Abdelfattah et al. 17

4.4.1. Adaptive-precision block-Jacobi preconditioning. The

adaptive-precision block-Jacobi preconditioner realizes the

concept of decoupling arithmetic precision from memory

precision proposed in Section 4.3 for a block-Jacobi precon-

ditioner (Anzt et al., 2019a). The idea here is to compute a

block-Jacobi preconditioner in high precision but then store

the distinct inverted diagonal blocks in the lowest floating

point precision format that avoids overflow and still pre-

serves the regularity of the preconditioner (Figure 12).

This storage format is chosen for each diagonal block

individually, respectively reflecting the numerical charac-

teristics like condition number and value range. Figure 13

(top) visualizes the distribution of formats when storing the

inverted diagonal blocks of size 24 for symmetric positive

definite matrices of the Suite Sparse Matrix Collection.

Obviously, converting to a lower precision format gener-

ally reduces the accuracy of the linear operator, but as

block-Jacobi preconditioners ignore all off-(block)diagonal

entries, they are typically only a rough approximation of

the matrix inverse and therefore, by design, only have very

limited accuracy. Experimental results reveal that the use

of a lower precision format for storing the inverted diagonal

blocks has, in most cases, only negligible effects on the

preconditioner effectiveness and the outer solver conver-

gence. At the same time, storing the inverted diagonal

blocks in lower precision reduces the memory access vol-

ume in every preconditioner application, thereby accelerat-

ing the bandwidth bound iterative solution process

(Figure 13). For the adaptive-precision block-Jacobi pre-

conditioner, it is important that the accessor converts the

inverted diagonal blocks back to the IEEE standard preci-

sion not only for performance reasons—leveraging the

highly optimized IEEE floating point arithmetic of the pro-

cessors—but also for numeric reasons. Using working pre-

cision in the arithmetic operations of the preconditioner

application preserves the preconditioner as a constant oper-

ator, and applying a preconditioner in lower precision

would result in a non-constant preconditioner and require

the use of a (more expensive) flexible iterative solver (Anzt

et al., 2019a).

4.5. Mixed-precision multigrid methods

Multigrid methods are highly effective iterative methods.

There are basically two types of multigrid methods: geo-

metric multigrid methods (GMG) and algebraic multigrid

methods (AMG). GMG requires actual grids on each level

to generate its components, whereas AMG can be considered

more like a “black box” method, in that it can be given a

matrix and the right-hand side and will generate the compo-

nents for each level automatically using sensible heuristics.

These methods are an interesting target for multiprecision

treatment due to their different components that affect the

overall algorithm in different ways. GMG and AMG com-

ponents combine smoothers, coarser grid, restriction, and

prolongation operators on each level. In addition, it is of

interest to investigate changes in precision on different lev-

els. Finally, GMG and AMG can be used as preconditioners

to other solvers (i.e., there is potential to use lower precision

across the whole preconditioner). Historically, most work

focused on the use of a lower precision GMG or AMG

method as a preconditioner to a FP64 solver.

Ljungkvist and Kronbichler (2017, 2019) successfully

used mixed precision to solve the Laplace problem for

different orders with a matrix-free geometric multigrid

approach. Their solver infrastructure allows for using

mixed-precision arithmetic to perform the multigrid V-

cycle in FP32 with an outer correction in FP64, thereby

increasing throughput by up to 83%.

Similarly, Glimberg et al. (2011) use a FP32 multigrid to

precondition a FP64 defect correction scheme and solve the

Laplace problem within a nonlinear water wave application

on a GPU architecture. They achieve a speedup of up to

1:6� for the mixed-precision version over the FP64 version

and a speedup of 1:9� for a purely FP32 version.

Yamagishi and Matsumura (2016) also apply a FP32

multigrid to a FP64 conjugate gradient solver to the Pois-

son/Helmholtz problem within their non-hydrostatic ocean

model. They report a speedup up to 2� for a FP32 Matvec

over a FP64 one and improved overall times using this

approach; however, they compare the full application run

only to their CPU version.

There are various publications that pursue the same

strategy of using a FP32 AMG preconditioner to a FP64

solver.

Emans and van der Meer (2012) perform a careful anal-

ysis of the individual kernels of preconditioned Krylov

solvers on multi-core CPUs, including sparse matrix-

vector multiplications (SpMV), which make up a large

portion of AMG. They also consider the effect of commu-

nication, where lower precision leads to smaller size mes-

sages, but latencies are still an issue, particularly on the

coarsest levels of AMG. They find that the use of mixed

precision for the preconditioner barely affects convergence

and therefore speedups for the kernels, which were between

1:1� and 1:5�, can potentially carry over to the whole

solver and lead to improvements of runtimes within com-

putational fluid dynamics applications.

Figure 12. Storage format optimization for block-Jacobi: starting
from the most compact storage (left top), the format is extended
in exponent bits to fit the data range (rightward) and to preserve
regularity (downward) until the range is fit and regularity is satis-
fied. Note that these configurations are chosen to reflect the
hardware characteristics (16/32/64 bit access) and significand-
truncated IEEE standard precision formats.

18 The International Journal of High Performance Computing Applications XX(X)

Sumiyoshi et al. (2014) investigate AMG performance

on a heterogeneous computer architecture with both CPUs

and GPUs for isotropic and anisotropic Poisson problems.

They consider smoothed aggregation AMG as a stand-

alone solver. They carefully analyze different portions of

the algorithm on five different architectures, including one

multi-core CPU cluster. They report speedups between

1:2� and 1:6� on the GPU-CPU architectures for the

mixed-precision implementation over the FP64 version.

These speedups are related to SpMV performance (between

Figure 13. Top: distribution of floating point formats among the distinct blocks when inverting the blocks in FP64 and preserving one-
digit accuracy of the values in each inverted diagonal block when writing to main memory. Each column represents one symmetric
positive definite matrix of the Suite Sparse Matrix Collection. Bottom: impact on the top-level CG solver solving the system-induced
linear problem. For most systems, the convergence rate is unaffected by the use of a lower storage precision format, and almost all
preconditioner applications are faster, resulting in an average 20% runtime reduction.

Abdelfattah et al. 19

1:6� and 1:8�) on these architectures. However, the

mixed-precision version was slightly slower on the CPU-

only architecture, which achieved barely any improvement

for the SpMV operations.

Richter et al. (2014) examine the performance of a FP32

AMG preconditioner (ML and PETSc) applied to a FP64

PCG solver. They apply the method for an electrostatic

simulation of the high voltage isolator on a GPU/CPU

computer architecture. Their mixed-precision version takes

about 84% of the time of the FP64 version.

An approach described in a presentation by Clark (2019)

takes the use of mixed precision even further to involve half

precision. Clark and collaborators achieved good results

using a FP64 defect correction approach with a FP32 Kry-

lov solver and a half-precision AMG preconditioner.

Another interesting related study by Fox and Kolasinski

(2019) examines the use of ZFP, a lossy compression algo-

rithm, within multigrid. Due to the local structure of ZFP,

ZFP can easily be integrated into numerical simulations

without changing the underlying algorithms. However,

since ZFP is a lossy algorithm, it will introduce some error,

thus, it is important to understand if the error caused by

ZFP overwhelms or other traditional sources of error (e.g.,

discretization error).

ZFP decomposes the field of interest into smaller pieces,

called blocks, that are then compressed and decompressed

independently. ZFP compressed arrays implemented in

Lindstrom (2018) are Cþþ classes that enable random-

accessible arrays whose storage size is specified by the

user. In particular, ZFP fixed-rate arrays specify a rate used

to compress each block of the data field to a finite number

of bits. The study uses ZFP fixed-rate arrays to represent

the approximation vector in MG on a 2-D Poisson problem

with Dirichlet boundary conditions when the number of

interior nodes of the finest grid is ð28 � 1Þ2. Figure 14

presents the relative residual for a V-cycle with or without

ZFP fixed-rate arrays. The orange line represents the rela-

tive residual with respect to the FP64 solution, while the

blue line represents the relative residual with respect to

the solution with ZFP fixed-rate arrays with a rate of 32.

As the number of V-cycles increase, the relative residual

between the two solutions matches until the relative resi-

dual for the ZFP solution approximately reaches machine

unit roundoff u for FP32.

Figure 15 displays a similar study for when the rate used

for the ZFP fixed-rate arrays is adapted depending on the

level within the V-cycle. It is assumed that the ZFP fixed-

rate arrays have a fixed set of possible rates, 64, 48, 32, or

16. The blue line in Figure 15 depicts the relative compres-

sion error (i.e., the error between the FP64 solution and the

ZFP fixed-rate solution, where the finest level has a rate of

64, and the rate for the coarser levels is sequentially low-

ered). That is, if we consider a six-level V-cycle for which

the finest level has a fixed rate of 64, then the second finest

level has a fixed rate of 48, then 32, and then 16 for the

remaining coarse grids. The orange, green, and red lines

depict the relative compression error for a rate of 48, 32,

and 16, respectively for the finest level. The purple dashed

line depicts the relative truncation error for the FP64 solu-

tion. Each ZFP fixed-rate solution remains below the trun-

cation error and the compression error continuously

decreases until the relative error for the ZFP solution

approximately reaches the respective machine unit round-

off u dependent on the rate of the finest level.

This study shows that, for MG on a Poisson problem,

applying ZFP to the approximation vector can significantly

decrease memory use and is expected to decrease run times,

while the generated errors stay below the discretization error.

Since a hardware version of ZFP is not available yet, no

actual runs were possible; however, the results show good

potential for using GMG and/or AMG as a preconditioner.

Currently, Tamstorf et al. (2020a) appear to be the only

ones who investigated the theory of multiprecision multi-

grid methods. Their original intent was to improve the

appearance of the movement of cloth within Disney

movies, which requires higher than FP64 accuracy. How-

ever, their theory applies equally to decreased precision.

They have created a theoretical framework with rigorous

proofs for a mixed-precision version of multigrid for

Figure 14. Comparison between the relative residual for a MG
method, where the approximation vector is represented in FP64
(orange) or as a ZFP fixed-rate array with a rate of 32 (blue).

Figure 15. Relative compression error for an adaptive-rate ZFP
solution, where the rate for the approximation vector is sequen-
tially lowered on the coarser grids. The purple line represents the
truncation error for the double-precision solution.

20 The International Journal of High Performance Computing Applications XX(X)

solving the algebraic equations that arise from discretizing

linear elliptic partial differential equations (PDEs). The

arising matrices being sparse and symmetric positive defi-

nite enable the use of the so-called energy or A norm to

establish convergence and error estimates. Bounds on the

convergence behavior of multigrid are developed and ana-

lyzed as a function of the matrix condition number. Both

theoretical and numerical results confirm that convergence

to the level of discretization accuracy can be achieved with

mixed-precision versions of V-cycles and full multigrid.

This framework is inspired by the results of Carson and

Higham (2017) but ultimately provides tighter bounds for

many PDEs. Tamstorf et al. (2020b) further extend their

theoretical framework to include the quantization error.

They use the bounds to guide the choice of precision level

in their progressive-precision multigrid scheme by balan-

cing quantization, algebraic and descretization errors. They

show that while iterative refinement is susceptible to quan-

tization errors during the residual and update computation,

the V-cycle used to compute the correction in each iteration

is much more resilient, and continues to work if the system

matrices in the hierarchy become indefinite due to

quantization.

4.6. Eigenvalue problems

Little work appears to have been done on exploiting mixed-

precision arithmetic in algorithms for sparse eigenvalue

problems. The ESSEX-II project (Alvermann et al., 2019)

is developing eigensolvers based on Jacobi-Davidson, sub-

space iteration, and other methods, and is using lower pre-

cision in early iterations for speed and higher precision

within orthogonalization for robustness.

5. Summary and outlook on the potential
of mixed-precision technology

We have presented mixed-precision algorithms for dense

and sparse linear algebra that are outperforming traditional

algorithms operating in high precision. For performance-

bound dense linear algebra algorithms, mixed-precision

iterative refinement that employs a low-precision error cor-

rection solver remains the first-choice algorithm to exploit

the compute power in low precision. For sparse linear alge-

bra, the memory-bound nature of the the algorithms makes

the concept of decoupling memory precision from arith-

metic precision attractive. Furthermore, preconditioners

with limited approximation accuracy are natural targets for

the use of lower precision. Carefully adjusting the precon-

ditioner precision to the numerical requirements and the

approximation accuracy can render run time savings with-

out impacting the iterative solver’s convergence.

As AI and deep learning are currently driving the hard-

ware market, we expect a large number of processors and

accelerators featuring low-precision special function units

and support for nonstandard precision formats and integer

operations. For numerical linear algebra, we anticipate

significant potential in the use of integer arithmetic for

numerical calculations and the low-precision function units

designed for deep learning. As we see the machine imbal-

ance continuing to grow, we also expect format decoupling

and compression techniques to become essential and are

eager to see hardware support for data compression.

Authors’ note

This document was prepared as an account of work sponsored

by an agency of the United States government. Neither the

United States government nor Lawrence Livermore National

Security, LLC, nor any of their employees makes any war-

ranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness

of any information, apparatus, product, or process disclosed,

or represents that its use would not infringe privately owned

rights. Reference herein to any specific commercial product,

process, or service by trade name, trademark, manufacturer,

or otherwise does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United

States government or Lawrence Livermore National Secu-

rity, LLC. The views and opinions of authors expressed

herein do not necessarily state or reflect those of the United

States government or Lawrence Livermore National Secu-

rity, LLC, and shall not be used for advertising or product

endorsement purposes. Sandia National Laboratories is a

multimission laboratory managed and operated by National

Technology and Engineering Solutions of Sandia, LLC., a

wholly owned subsidiary of Honeywell International, Inc.,

for the U.S. Department of Energy’s National Nuclear Secu-

rity Administration under contract DE-NA-0003525.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication of

this article: This work was supported by the US Exascale

Computing Project (17-SC-20-SC), a collaborative effort

of the U.S. Department of Energy Office of Science and

the National Nuclear Security Administration. This work

was performed under the auspices of the U.S. Department

of Energy by Lawrence Livermore National Laboratory

under Contract DE-AC52-07NA27344.

ORCID iD

Hartwig Anzt https://orcid.org/0000-0003-2177-952X

Jennifer Loe https://orcid.org/0000-0002-3018-7190

Tobias Ribizel https://orcid.org/0000-0003-3023-1849

Notes

1. https://www.olcf.ornl.gov/summit/.

2. https://icl.bitbucket.io/hpl-ai/.

Abdelfattah et al. 21

https://orcid.org/0000-0003-2177-952X
https://orcid.org/0000-0003-2177-952X
https://orcid.org/0000-0003-2177-952X
https://orcid.org/0000-0002-3018-7190
https://orcid.org/0000-0002-3018-7190
https://orcid.org/0000-0002-3018-7190
https://orcid.org/0000-0003-3023-1849
https://orcid.org/0000-0003-3023-1849
https://orcid.org/0000-0003-3023-1849
https://www.olcf.ornl.gov/summit/
https://icl.bitbucket.io/hpl-ai/

3. Note that some hardware architectures, e.g. NVIDIA

Tensor Cores, perform computations and accumulations

in higher precision, and only truncate down to FP16

when writing the results to main memory.

References

Abdelfattah A, Tomov S and Dongarra JJ (2019) Fast batched

matrix multiplication for small sizes using half-precision arith-

metic on GPUs. In: 2019 IEEE International Parallel and

Distributed Processing Symposium, IPDPS 2019, Rio de

Janeiro, Brazil, 20–24 May 2019, pp. 111–122. IEEE.

Abdelfattah A, Tomov S and Dongarra J (2020) Investigating the

benefit of FP16-enabled mixed-precision solvers for symmetric

positive definite matrices using GPUs. In: Krzhizhanovskaya

VV, Závodszky G, Lees MH, Dongarra JJ, Sloot PMA, and

Teixeira SBJ (eds) Computational Science—ICCS 2020, Lec-

ture Notes in Computer Science, Vol. 12138. New York, NY:

Springer International Publishing, pp. 237–250. DOI: 10.1007/

978-3-030-50417-5_18.

Agullo E, Demmel J, Dongarra J, et al. (2009) Numerical linear

algebra on emerging architectures: the PLASMA and

MAGMA projects. Journal of Physics: Conference Series

180: 012037.

Alvermann A, Basermann A, Bungartz HJ, et al. (2019) Benefits

from using mixed precision computations in the ELPA-AEO

and ESSEX-II eigensolver projects. Japan Journal of Indus-

trial and Applied Mathematics 36(2): 699–717.

Anderson E, Bai Z, Bischof CH, et al. (1999) LAPACK Users’

Guide. 3rd edn. Philadelphia, PA: Society for Industrial and

Applied Mathematics. ISBN 0-89871-447-8. Available at:

http://www.netlib.org/lapack/lug/ (accessed 2020).

Anzt H, Cojean T, Chen YC, et al. (2020) Ginkgo: A high per-

formance numerical linear algebra library. Journal of Open

Source Software 5(52): 2260. DOI: https://doi.org/10.21105/

joss.02260.

Anzt H, Dongarra J, Flegar G, et al. (2019a) Adaptive precision in

block-jacobi preconditioning for iterative sparse linear system

solvers. Concurrency and Computation: Practice and Experi-

ence 31(6): e4460.

Anzt H, Flegar G, Grützmacher T, et al. (2019b) Toward a mod-

ular precision ecosystem for high-performance computing.

The International Journal of High Performance Computing

Applications 33(6): 1069–1078.

Anzt H, Huckle TK, Bräckle J, et al. (2018) Incomplete sparse

approximate inverses for parallel preconditioning. Parallel

Computing 71: 1–22.

Arioli M and Duff IS (2009) Using FGMRES to obtain backward

stability in mixed precision. Electronic Transactions on

Numerical Analysis 33: 31–44.

Arioli M, Duff IS, Gratton S, et al. (2007) A note on GMRES

preconditioned by a perturbed LDLT decomposition with static

pivoting. SIAM Journal on Scientific Computing 29(5):

2024–2044.

Barlow JL (2019) Block modified Gram–Schmidt algorithms and

their analysis. SIAM Journal on Matrix Analysis and Applica-

tions 40(4): 1257–1290.

Björck Å (1967a) Iterative refinement of linear least squares solu-

tions I. BIT Numerical Mathematics 7(4): 257–278.

Björck Å (1967b) Solving linear least squares problems by Gram-

Schmidt orthogonalization. BIT Numerical Mathematics 7(1):

1–21.

Björck Å (1990) Iterative refinement and reliable computing. In:

MG Cox, and SJ Hammarling (eds) Reliable Numerical Com-

putation. Oxford: Oxford University Press, pp. 249–266.

Björck Å (1994) Numerics of Gram-Schmidt orthogonalization.

Linear Algebra and its Applications 197: 297–316.

Björck Å and Paige CC (1992) Loss and recapture of orthogon-

ality in the modified Gram-Schmidt algorithm. SIAM Journal

on Matrix Analysis and Applications 13(1): 176–190.

Blanchard P, Higham NJ, Lopez F, et al. (2020) Mixed precision

block fused multiply-add: error analysis and application to

GPU tensor cores. SIAM Journal on Scientific Computing

42(3): C124–C141.

Carson E and Higham NJ (2017) A new analysis of iterative

refinement and its application to accurate solution of ill-

conditioned sparse linear systems. SIAM Journal on Scientific

Computing 39(6): A2834–A2856.

Carson E and Higham NJ (2018) Accelerating the solution of

linear systems by iterative refinement in three precisions.

SIAM Journal on Scientific Computing 40(2): A817–A847.

Carson E, Higham NJ and Pranesh S (2020) Three-precision

GMRES-based iterative refinement for least squares problems.

SIAM Journal on Scientific Computing 42(6): A4063–A408.

Carson EC (2015) Communication-avoiding Krylov subspace

methods in theory and practice. PhD Thesis, University of

California, Berkeley.

Clark K (2019) Effective use of mixed precision for hpc. In:

Smoky Mountain Conference 2019, Tennessee, 3–6 September

2019.

Clark MA, Babich R, Barros K, et al. (2010) Solving lattice

QCD systems of equations using mixed precision solvers

on GPUs. Computer Physics Communications 181(9):

1517–1528.

Davies PI, Higham NJ and Tisseur F (2001) Analysis of the Cho-

lesky method with iterative refinement for solving the sym-

metric definite generalized eigenproblem. SIAM Journal on

Matrix Analysis and Applications 23(2): 472–493.

Demmel JW, Hida Y, Kahan W, et al. (2006) Error bounds from

extra-precise iterative refinement. ACM Transactions on

Mathematical Software 32(2): 325–351.

Dongarra JJ (1982) Algorithm 589 SICEDR: a FORTRAN sub-

routine for improving the accuracy of computed matrix eigen-

values. ACM Transactions on Mathematical Software 8(4):

371–375.

Dongarra JJ, Moler CB and Wilkinson JH (1983) Improving the

accuracy of computed eigenvalues and eigenvectors. SIAM

Journal on Numerical Analysis 20(1): 23–45.

Elble JM and Sahinidis NV (2012) Scaling linear optimization

problems prior to application of the simplex method. Compu-

tational Optimization and Applications 52(2): 345–371.

Emans M and van der Meer A (2012) Mixed-precision AMG as

linear equation solver for definite systems. In: Proceedings of

International Conference on Computational Science, ICCS

22 The International Journal of High Performance Computing Applications XX(X)

http://www.netlib.org/lapack/lug/
https://doi.org/10.21105/joss.02260
https://doi.org/10.21105/joss.02260

2010, Vol. 1, The Netherlands 31 May–2 June 2010, pp.

175–183.

Flegar G, Anzt H, Cojean T, et al. (2021) Adaptive precision

block-Jacobi for high performance preconditioning in the

ginkgo linear algebra software. ACM Transaction on Mathe-

matical Software 47(2): e4460.

Fox A and Kolasinski A (2019) Error analysis of inline ZFP

compression for multigrid methods. In: 2019 Copper Moun-

tain Conference for Multigrid Methods, Copper Mountain,

CO, March 25, 2019.

Fukaya T, Kannan R, Nakatsukasa Y, et al. (2020) Shifted Cho-

leskyQR for computing the QR factorization of ill-conditioned

matrices. SIAM Journal on Scientific Computing 42(1):

A477–A503.

Giraud L, Gratton S and Langou J (2004) A rank-k update proce-

dure for reorthogonalizing the orthogonal factor from modi-

fied Gram–Schmidt. SIAM Journal on Matrix Analysis and

Applications 25(4): 1163–1177.

Glimberg SL, Engsig-Karup AP and Madsen MG (2011) A fast

GPU-accelerated mixed-precision strategy for fully nonlinear-

water wave computations. In: Proceedings of ENUMATH

2011, University of Leicester.

Gratton S, Simon E, Titley-Peloquin D and Toint P (2019)

Exploiting variable precision in GMRES. arXiv preprint

arXiv:1907.10550.

Greenbaum A (1989) Behavior of slightly perturbed Lanczos and

conjugate-gradient recurrences. Linear Algebra and its Appli-

cations 113: 7–63.

Greenbaum A (1997) Estimating the attainable accuracy of recur-

sively computed residual methods. SIAM Journal on Matrix

Analysis and Applications 18(3): 535–551.

Grützmacher T, Cojean T, Flegar G, et al. (2019) A customized

precision format based on mantissa segmentation for acceler-

ating sparse linear algebra. Concurrency and Computation:

Practice and Experience 32: e5418.

Gupta S, Agrawal A, Gopalakrishnan K, et al. (2015) Deep learn-

ing with limited numerical precision. In: Proceedings of the

32nd International Conference on International Conference

on Machine Learning, Vol. 37, ICML’15. JMLR.org, pp.

1737–1746. Available at: http://dl.acm.org/citation.cfm?id¼3

045118.3045303 (accessed 2020).

Gustafson J (2015) The End of Error: Unum Computing. Milton

Park: Chapman & Hall/CRC Computational Science. Taylor

& Francis. ISBN 9781482239867. Available at: https://books.

google.de/books?id¼W2ThoAEACAAJ (accessed 2020).

Haidar A, Abdelfattah A, Zounon M, et al. (2018a) The design of

fast and energy-efficient linear solvers: on the potential of

half-precision arithmetic and iterative refinement techniques.

In: Shi Y, Fu H, Tian Y, Krzhizhanovskaya VV, Lees MH,

Dongarra J, and Sloot PMA (eds) Computational Science—

ICCS 2018. Cham: Springer International Publishing, pp.

586–600. DOI: 10.1007/978-3-319-93698-7_45.

Haidar A, Bayraktar H, Tomov S, et al. (2020) Mixed-precision

solution of linear systems using accelerator-based computing.

Mixed-precision iterative refinement using tensor cores on

GPUs to accelerate solution of linear systems. Proceedings

of the Royal Society A 476(2243): 20200110, 2020.

Haidar A, Tomov S, Dongarra J, et al. (2018b) Harnessing GPU

Tensor Cores for fast FP16 arithmetic to speed up mixed-

precision iterative refinement solvers. In: Proceedings of the

International Conference for High Performance Computing,

Networking, Storage, and Analysis, SC ‘18, Dallas, TX, USA,

11–16 November 2018. Piscataway, NJ, USA: IEEE Press, pp.

47: 1–47:11.

Haidar A, Wu P, Tomov S, et al. (2017) Investigating half preci-

sion arithmetic to accelerate dense linear system solvers. In:

Proceedings of the 8th Workshop on Latest Advances in Scal-

able Algorithms for Large-Scale Systems, New York, NY,

November 2017, pp. 1–8.

Higham NJ (1989) The accuracy of solutions to triangular sys-

tems. SIAM Journal on Numerical Analysis 26(5): 1252–1265.

Higham NJ (1997) Iterative refinement for linear systems and

LAPACK. IMA Journal of Numerical Analysis 17(4): 495–509.

Higham NJ (2002) Accuracy and Stability of Numerical Algo-

rithms. 2nd edn. Philadelphia, PA: Society for Industrial and

Applied Mathematics. ISBN 0-89871-521-0.

Higham NJ (2019) Error analysis for standard and GMRES-

based iterative refinement in two and three-precisions. MIMS

EPrint 2019.19, Manchester: Manchester Institute for Mathe-

matical Sciences, The University of Manchester. Available at:

http://eprints.maths.manchester.ac.uk/2735/ (accessed 2020).

Higham NJ and Mary T (2019) A new approach to probabilistic

rounding error analysis. SIAM Journal on Scientific Comput-

ing 41(5): A2815–A2835.

Higham NJ and Mary T (2020) Sharper probabilistic backward

error analysis for basic linear algebra kernels with random

data. SIAM Journal on Scientific Computing 42(5):

A3427–A3446.

Higham NJ and Pranesh S (2021) Exploiting lower precision

arithmetic in solving symmetric positive definite linear sys-

tems and least squares problems. SIAM Journal on Scientific

Computing 43(1): A258–A277.

Higham NJ and Pranesh S (2019) Simulating low precision

floating-point arithmetic. SIAM Journal on Scientific Comput-

ing 41(5): C585–C602.

Higham NJ, Pranesh S and Zounon M (2019) Squeezing a matrix

into half precision, with an application to solving linear systems.

SIAM Journal on Scientific Computing 41(4): A2536–A2551.

Hogg JD and Scott JA (2010) A fast and robust mixed-precision

solver for the solution of sparse symmetric linear systems.

ACM Transactions on Mathematical Software 37(2): 17:

1–17:24.

IEEE (2019) IEEE Standard for Floating-Point Arithmetic, IEEE

Std 754-2019 (Revision of IEEE 754-2008). New York, NY:

The Institute of Electrical and Electronics Engineers. ISBN

978-1-5044-5924-2. DOI:10.1109/IEEESTD.2019.8766229.

Joffrain T, Low TM, Quintana-Ort ES, et al. (2006) Accumulating

Householder transformations, revisited. ACM Transactions on

Mathematical Software (TOMS 32(2): 169–179.

Knight PA, Ruiz D and Uçar B (2014) A symmetry preserving

algorithm for matrix scaling. SIAM Journal on Matrix Analysis

and Applications 35(3): 931–955.

Langou J, Langou J, Luszczek P, et al. (2006) Exploiting the

performance of 32 bit floating point arithmetic in obtaining

Abdelfattah et al. 23

http://dl.acm.org/citation.cfm?id=3045118.3045303
http://dl.acm.org/citation.cfm?id=3045118.3045303
http://dl.acm.org/citation.cfm?id=3045118.3045303
https://books.google.de/books?id=W2ThoAEACAAJ
https://books.google.de/books?id=W2ThoAEACAAJ
https://books.google.de/books?id=W2ThoAEACAAJ
http://eprints.maths.manchester.ac.uk/2735/

64 bit accuracy (revisiting iterative refinement for linear sys-

tems). In: Proceedings of the 2006 ACM/IEEE Conference on

Supercomputing, Tampa, FL, USA, 11–17 November 2006.

Leon SJ, Björck Å and Gander W (2013) Gram-Schmidt ortho-

gonalization: 100 years and more. Numerical Linear Algebra

with Applications 20(3): 492–532.

Lindstrom P (2018) Zfp version 0.5.3. Available at: https://zfp.

readthedocs.io/en/release0.5.3/index.htm (accessed 2020).

Ljungkvist K and Kronbichler M (2017) Multigrid for matrix-free

finite element computations on graphics processors. Technical

report, Department of Information Technology, Uppsala

University.

Ljungkvist K and Kronbichler M (2019) Multigrid for matrix-free

high-order finite element computations on graphics proces-

sors. ACM Transactions on Parallel Processing 6: 3322813.

Malard J and Paige C (1994) Efficiency and scalability of two

parallel QR factorization algorithms. In: Proceedings of IEEE

Scalable High Performance Computing Conference. New

York, NY: IEEE, pp. 615–622.

Meurant G and Strakoš Z (2006) The Lanczos and conjugate

gradient algorithms in finite precision arithmetic. Acta Numer-

ica 15: 471–542.

Moler CB (1967) Iterative refinement in floating point. Journal of

the ACM (JACM) 14(2): 316–321.

NVIDIA (2017) Nvidia Tesla V100 GPU Architecture. Available

at: https://images.nvidia.com/content/volta-architecture/pdf/

volta-architecture-whitepaper.pdf (accessed 2020).

Ogita T and Aishima K (2018) Iterative refinement for symmetric

eigenvalue decomposition. Japan Journal of Industrial and

Applied Mathematics 35(3): 1007–1035.

Ogita T and Aishima K (2019) Iterative refinement for symmetric

eigenvalue decomposition II: clustered eigenvalues. Japan

Journal of Industrial and Applied Mathematics 36: 435–459.

Paige CC (1980) Accuracy and effectiveness of the Lanczos algo-

rithm for the symmetric eigenproblem. Linear Algebra and its

Applications 34: 235–258.

Paige CC (2018) The effects of loss of orthogonality on large

scale numerical computations. In: International Conference

on Computational Science and Its Applications. Cham:

Springer, pp. 429–439.

Paige CC and Strakoš Z (2002) Residual and backward error

bounds in minimum residual Krylov subspace methods. SIAM

Journal on Scientific Computing 23(6): 1898–1923.

Paige CC and Wülling W (2014) Properties of a unitary matrix

obtained from a sequence of normalized vectors. SIAM Jour-

nal on Matrix Analysis and Applications 35(2): 526–545.

Paige CC, Rozložnk M and Strakoš Z (2006) Modified gram-

schmidt MGS, least squares, and backward stability of

MGS-GMRES. SIAM Journal on Matrix Analysis and Appli-

cation 28(1): 264–284.

Petschow M, Quintana-Ort E and Bientinesi P (2014) Improved

accuracy and parallelism for MRRR-based eigensolvers—a

mixed precision approach. SIAM Journal on Scientific Com-

puting 36(2): C240–C263.

Puglisi C (1992) Modification of the Householder method based

on the compact WY representation. SIAM Journal on Scien-

tific Computing 13(3): 723–726.

Richter C, Schops S and Clemens M (2014)GPU-accelerated

mixed precision algebraic multigrid preconditioners for dis-

crete elliptic field problems. 9th IET International Conference

on Computation in Electromagnetics (CEM 2014), London,

UK, 2014, pp. 1–2, DOI: 10.1049/cp.2014.0185.

Saad Y and Schultz MH (1986) GMRES: a generalized minimal

residual algorithm for solving nonsymmetric linear systems.

SIAM Journal on scientific and statistical computing 7(3):

856–869.

Sayood K (2012) Introduction to Data Compression, Fourth Edi-

tion. 4th edn. San Francisco, CA: Morgan Kaufmann Publish-

ers Inc. ISBN 0124157963.

Simoncini V and Szyld DB (2003) Theory of inexact Krylov sub-

space methods and applications to scientific computing. SIAM

Journal on Scientific Computing 25(2): 454–477.

Skeel RD (1980) Iterative refinement implies numerical stability

for Gaussian elimination. Mathematics of Computation

35(151): 817–832.

Sleijpen GL and van der Vorst HA (1996) Reliable updated resi-

duals in hybrid Bi-CG methods. Computing 56(2): 141–163.

Smoktunowicz A, Barlow JL and Langou J (2006) A note on the

error analysis of classical Gram–Schmidt. Numerische Math-

ematik 105(2): 299–313.

Stewart GW (1973) Introduction to Matrix Computations. New

York, NY: Academic Press. ISBN 0-12-670350-7.

Sumiyoshi Y, Fujii A, Nukada A, et al. (2014) Mixed-precision

amg method for many core accelerators. In: EUROMPI/ASIA

14: Proceedings of the 21st European MPI Users’ Group

Meeting. September 2014, pp. 127–132.

Sun X (1996) Aggregations of elementary transformations. Techni-

cal Report DUKE-TR-1996-03, Durham, NC: Duke University.

Świrydowicz K, Langou J, Ananthan S, et al. (2020) Low syn-

chronization Gram-Schmidt and generalized minimal residual

algorithms. Numerical Linear Algebra with Applications 28:

e2343.

Tamstorf R, Benzaken J and McCormick S (2020a) Algebraic

error analysis for mixed precision multigrid solvers. SIAM

Journal on Scientific Computing Submitted.

Tamstorf R, Benzaken J and McCormick S (2020b)

Discretization-error-accurate mixed precision multigrid sol-

vers. SIAM Journal on Scientific Computing Submitted.

The Trilinos Project Team (2020) The Trilinos Project Website.

Available at: https://trilinos.github.io (accessed 2020).

Tisseur F (2001) Newton’s method in floating point arithmetic

and iterative refinement of generalized eigenvalue problems.

SIAM Journal on Matrix Analysis and Applications 22(4):

1038–1057.

van den Eshof J and Sleijpen GL (2004) Inexact Krylov subspace

methods for linear systems. SIAM Journal on Matrix Analysis

and Applications 26(1): 125–153.

Van Der Vorst HA and Ye Q (2000) Residual replacement stra-

tegies for Krylov subspace iterative methods for the conver-

gence of true residuals. SIAM Journal on Scientific Computing

22(3): 835–852.

Walker HF (1988) Implementation of the GMRES method using

Householder transformations. SIAM Journal on Scientific

Computing 9(1): 152–163.

24 The International Journal of High Performance Computing Applications XX(X)

https://zfp.readthedocs.io/en/release0.5.3/index.htm
https://zfp.readthedocs.io/en/release0.5.3/index.htm
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://trilinos.github.io

Wilkinson JH (1963) Rounding Errors in Algebraic Processes.

Notes on Applied Science No. 32, Her Majesty’s Stationery

Office. ISBN 0-486-67999-3. Also published by Prentice-Hall,

Englewood Cliffs, NJ, USA. Reprinted by Dover, New York,

1994.

Yamagishi T and Matsumura Y (2016) GPU acceleration of a

non-hydrostatic ocean model with a multigrid poisson/

helmholtz solver. Procedia Computer Science 80:

1658–1669.

Yamazaki I, Tomov S and Dongarra J (2015) Mixed-precision

Cholesky QR factorization and its case studies on multicore

CPU with multiple GPUs. SIAM Journal on Scientific Com-

puting 37(1): C307–C330.

Yamazaki I, Tomov S and Dongarra J (2016) Stability and per-

formance of various singular value QR implementations on

multicore CPU with a GPU. ACM Transactions on Mathemat-

ical Software 43(2): 10:1–10:18.

Author biographies

Ahmad Abdelfattah is a research scientist at the Innovative

Computing Laboratory, University of Tennessee. He

received his PhD in computer science from King Abdullah

University of Science and Technology (KAUST) in 2015.

His research interests include parallel numerical algo-

rithms, performance optimization, and accelerator-based

computing.

Hartwig Anzt is a research group leader at the Karlsruhe

Institute of Technology (KIT) and holds a research consul-

tant positin at the University of Tennessee. He leads the

multiprecision focus effort within the US Exascale Com-

puting project, a cross-laboratory effort to develop and

deploy mixed precision algorithms for accelerating scien-

tific computing applications.

Erik G Boman is a scientist at Center for Computing

Research at Sandia National LaboratorieUSA. He holds

a PhD in Scientific Computing from Stanford University.

His research interests are in numerical linear algebra,

combinatorial scientific computing, and high-performance

computing.

Erin Carson is a research scientist at Charles University.

She received a Ph.D. in Computer Science in 2015 from the

University of California-Berkeley. Her research focuses on

numerical linear algebra, parallel algorithms, and high per-

formance computing.

Terry Cojean received his PhD at Inria Bordeaux in 2018

and is currently a post-doctoral researcher in Hartwig

Anzt’s research group at the Karlsruhe Institute of Tech-

nology. Currently, he is a lead developer of the Ginkgo

sparse linear algebra software.

Jack Dongarra holds an appointment at the University of

Tennessee, Oak Ridge National Laboratory, and the Uni-

versity of Manchester. He specializes in numerical algo-

rithms in linear algebra, parallel computing, use of

advanced-computer architectures, programming methodol-

ogy, and tools for parallel computers.

Alyson Fox is a Computational Mathematician in the Cen-

ter for Applied Scientific Computing at Lawrence Liver-

more National Laboratory and a SIAM Science Policy

Fellow. Her interests include lossy compression algo-

rithms, collaborative autonomy, network analysis, numer-

ical analysis, graph theory, data mining, and scientific

computing.

Mark Gates is a Research Assistant Professor at the Uni-

versity of Tennessee, Knoxville, where he specializes in

high-performance computing, concentrating on parallel

algorithms for linear algebra.

Nicholas J Higham is Royal Society Research Professor and

Richardson Professor of Applied Mathematics in the Depart-

ment of Mathematics at the University of Manchester. He

received his PhD in 1985 from the University of Manchester.

He is a Fellow of the Royal Society, an ACM Fellow, a

SIAM Fellow, and a Member of Academia Europaea.

Xiaoye S Li is a Senior Scientist at the Lawrence Berkeley

National Laboratory. She has worked on diverse problems

in high performance scientific computations, including

parallel computing, sparse matrix computations, high-

precision arithmetic, and combinatorial scientific comput-

ing. She is the lead developer of SuperLU, a widely used

sparse direct solver, and has contributed to the development

of several other mathematical libraries, including

ARPREC, LAPACK, PDSLin, STRUMPACK, and

XBLAS. She is a SIAM Fellow.

Jennifer Loe completed her PhD in mathematics at Baylor

University. She is now a postdoc at Sandia National

Laboratories in the Scalable Algorithms department. Her

primary research is in Krylov solvers.

Piotr Luszczek is a Research Assistant Professor at the

Innovative Computing Laboratory in the University of Ten-

nessee, Knoxville’s Tickle College of Engineering. His

research interests include benchmarking, numerical linear

algebra for high-performance computing, automatic perfor-

mance tuning for modern hardware, and stochastic models

for performance.

Srikara Pranesh is a research associate in the department of

Mathematics, University of Manchester. His main research

Abdelfattah et al. 25

interests are numerical analysis, numerical linear algebra,

and mathematical software.

Siva Rajamanickam is a principal member of technical staff

in the Scalable Algorithms department at the Center for

Computing Research at Sandia National Laboratories. He

has a PhD in Computer Science and Engineering from the

University of Florida. His focus is in the intersection of high

performance computing, combinatorial scientific comput-

ing, performance portability, graph algorithms and machine

learning. Dr Rajamanickam leads the linear solvers product

of the Trilinos library and the Kokkos Kernels library.

Tobias Ribizel received the master’s degree in computer

science and mathematics from Karlsruhe Institute of Tech-

nology (KIT) in 2019, where he now works as doctoral

researcher in the FiNE junior research group. His research

interests include software engineering and low-level per-

formance optimization for HPC.

Barry F Smith received his mathematics degree from the

Courant Institute in 1990. Since then, much of the time, he

has been developing mathematical software libraries at

Argonne National Laboratory.

Kasia Swirydowicz is a Computational Scientist in Pacific

Northwest National Laboratory in Richland, WA. Her

research interest include numerical linear algebra and Kry-

lov subspace solvers, and their efficient implementation on

High Performance Computing systems.

Stephen Thomas is an applied mathematician with the US

DOE National Renewable Energy Laboratory in Colorado.

Throughout his graduate studies and research career, Dr.

Thomas has focused on the intersection of high-

performance computing and iterative solvers for large

sparse linear systems with applications in climate,

geoscience, and renewable energy.

Stanimire Tomov is Research Assistant Professor at the

University of Tennessee, Knoxville. He specializes in par-

allel algorithms, data analytics, and high-performance sci-

entific computing. His current work is concentrated on the

development of numerical linear algebra software for new

architectures.

Yaohung M Tsai received his PhD degree in Computer

Science at the University of Tennessee. His research

focused on mixed precision numerical methods that

exploited contemporary and emerging hardware platforms

with the new accuracy options for floating-point process-

ing. His work also involved automated performance engi-

neering approach to achieve efficient implementations on

various hardware architectures in a portable fashion.

Ulrike Meier Yang leads the Mathematical Algorithms &

Computing group in the Center for Applied Scientific

Computing at Lawrence Livermore National Laboratory,

the xSDK (Extreme-scale Scientific Software Kit) project

in the Exascale Computing Project (ECP) and the Linear

and Nonlinear Solvers Topical Area in the SciDAC FAS-

TMath Institute. Her research interests are numerical algo-

rithms, particularly multigrid methods, high performance

computing, parallel algorithms, performance evaluation

and scientific software design.

26 The International Journal of High Performance Computing Applications XX(X)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

