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Abstract—Jaccard weights are a popular metric for identifying
communities in social network analytics. In this paper we present
a kernel for efficiently computing the Jaccard weight matrix on
GPUs. The kernel design is guided by fine-grained parallelism
and the independent thread scheduling supported by NVIDIA’s
Volta architecture. This technology makes it possible to interleave
the execution of divergent branches for enhanced data reuse and
a higher instruction per cycle rate for memory-bound algorithms.
In a performance evaluation using a set of publicly available
social networks, we report the kernel execution time and analyze
the built-in hardware counters on different GPU architectures.
The findings have implications beyond the specific algorithm and
suggest a reformulation of other data-sparse algorithms.

I. INTRODUCTION

Being able to identify communities and hubs in social

networks is one of the key challenges in social network

analytics [1]. Identifying communities and conflating them

in a more compact representation also helps to summarize

huge networks [1], which then facilitates uncovering existing

behavioral patterns (user behavior analytics [2]) and predicting

emergent properties of the network (predictive analytics [3]).

In this regard, community detection can provide functionality

similar to clustering, a data mining technique used to partition

a data set into disjoint subsets based on the similarity of data

points [4].

To detect communities, it is necessary to quantify the rela-

tionship between individuals or groups in the dataset. Jaccard

weights [5] represent the ratio between the number of individ-

uals shared by two groups and the sum of the individuals that

are part of either group or both groups. In a graph-theoretical

interpretation of the dataset, individuals correspond to vertices

and relationships to edges. The Jaccard weight then extends

to the individual level as the ratio between the number of

joint neighbors of two vertices (vertices connected via a single

edge) and the total number of neighbors. The Jaccard weight
matrix assembles the connectivity information of all vertex

combinations in a single matrix and allows for identifying

strongly connected subsets that correspond to communities in

the data set.

In this paper we propose a GPU kernel for computing the

Jaccard weight matrix for unweighted, undirected graphs in

element-wise parallel fashion. Following some brief review

of the Jaccard weight concept in Section II, we present in

Section III a kernel that computed the Jaccard weight matrix

in element-wise parallel fashion. The algorithm design is

motivated by the Jaccard weight matrix, deriving as a sparsity-

preserving sparse matrix multiplication. The kernel realization

is driven by the fine-grained parallelism of modern GPU

architectures and the recently introduced independent thread

scheduling in NVIDIA’s Volta architecture. In Section IV, we

use a set of test matrices to show the kernel’s competitive-

ness with previous implementations, and analyze the kernel

execution characteristics on different architecture generations.

Evaluating the hardware counters, we relate the higher kernel

execution performance on NVIDIA’s Volta architecture to

the increased bandwidth and the improvements in the single

instruction, multiple thread (SIMT) [6] execution model. We

outline our conclusions in Section V.

II. JACCARD WEIGHTS AND RELATED WORK

Originating from set theory, the Jaccard weight [5] is a

general measure for the similarity of two sets S1 and S2.

In more precise terms, the Jaccard weight quantifies how

many elements are shared by the two sets in relation to the

cardinality of the union [7]:

J (S1S2) =
|S1 ∩ S2|
|S1 ∪ S2| (1)

with | · | denoting the cardinality. The Jaccard weight is 0 for

disjoint sets, 1 for identical sets, and takes values in the range

(0, 1) otherwise.

In graph theory, Jaccard weights are used to measure

the connectivity between two vertices. For a graph G =
(V,E) with vertex set V = {v1, . . . vn} and edge set E =
{(i1, j1), (i2, j2), . . . (im, jm)}, the Jaccard weights quantify

how many common direct neighbors two vertices share in

relation to the total number of direct neighbors. With N (vi)
being the neighborhood of vi, which is all vertices that can be

accessed from vi by traversing a single edge, we can define

for two vertices i, j the

• intersection weight wI(i, j) = |N (i) ∩N (j)|,
• union weight wU (i, j) = |N (i) ∪N (j)|.
In this notation, the Jaccard weight becomes

Jij = J (i, j) =
wI(i, j)

wU (i, j)
. (2)
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If we represent the undirected graph G in the form of a

(symmetric) pattern matrix, the edges connecting vertices cor-

respond to nonzeros in the matrix, and the intersection weight

wI(i, j) corresponds to the vector product < A(i, :), A(j, :) >
of the rows i and j of the adjacency matrix A, and the union

weight wU (i, j) corresponds to

wU (i, j) =
∑

:

(|A(i, :)|) +
∑

:

(|A(j, :)|)− < A(i, :), A(j, :) >

where
∑

:(|v(:)|) denotes the sum of the absolute values in a

vector. The concept of Jaccard weights can easily be extended

to weighted graphs. Then, the nonzeros in the adjacency matrix

represent the weights of the distinct edges, and the metrics

defined above replace the cardinality of neighborhoods with

the absolute sum of the edge weights.

If the Jaccard weights for all vertex combinations (i, j) are

available, Jaccard clustering can be used to partition the graph

into subsets, with vertices of the same cluster being strongly

connected in the relative sense.

III. FINE-GRAINED PARALLEL JACCARD MATRIX

COMPUTATION

The Jaccard weight matrix kernel we propose is motivated

by the observation that the Jaccard weight matrix can be

interpreted as a sparsity-preserving sparse general matrix-

matrix multiplication (SpGEMM) [7]. More precisely, for an

adjacency matrix A, the Jaccard matrix J can be computed

as J = A �J AT where �J is a algorithm-specific matrix

multiplication operator that fulfills S(J ) = S(A) for the

nonzero pattern S. This implies that the customized matrix

multiplication does not need a symbolic multiplication phase–

nonzero Jaccard weights Jij ∈ J are only possible in

locations (i, j) that are nonzero in A. Jaccard weights can

become numerically zero, but accepting explicit zeros in the

sparse Jaccard weight matrix makes it possible to use the

sparsity pattern of A and compute the weights for the nonzero

locations in J . For an unweighted graph G, the matrix A
becomes a pattern matrix, and

∑
:(|A(i, :)|+∑

:(|A(j, :)| is the

sum of the nonzeros in row i and j – which is readily available

if A is stored in compressed sparse row (CSR) format.

For efficiently realizing the Jaccard matrix kernel on GPUs,

we propose to parallelize across the nonzero elements in J ,

see Figure 1. While this ensures workload balance in terms of

the number of Jaccard weights each thread processes, the cost

of computing a Jaccard weight Jij heavily depends on the

sparsity pattern of the matrix A. In particular, the computa-

tional cost depends on the cost of the sparse dot product, which

again depends on the sparsity pattern of the rows i and j. The

sparsity pattern also determines the memory access pattern of

the kernel. Even for elements adjacent in the Jaccard weight

matrix, the computational cost and memory access pattern can

differ significantly. For warp-synchronizing GPU architectures,

this can easily become a performance problem as the 32

threads of a warp execute simultaneously until all threads

of the warp complete the computation of the respectively

assigned matrix entry [8]. Furthermore, because the execution

g l o b a l vo id
j a c c a r d w e i g h t s k e r n e l ( i n t num rows , i n t num cols , i n t nnzJ ,

i n t ∗ rowidxJ , i n t ∗ c o l i d x J , do ub l e ∗v a l J ,
i n t ∗rowptrA , i n t ∗col idxA , do ub l e ∗valA ) {

i n t i , j , i l , iu , j l , j u ;
i n t k = blockDim . x ∗ gridDim . x ∗ b l o c k I d x . y

+ blockDim . x ∗ b l o c k I d x . x + t h r e a d I d x . x ;
d o u b l e sum i , sum j , cap ;
i f ( k < nnzJ ) {

i = rowidxJ [ k ] ; j = c o l i d x J [ k ] ;
i f ( i != j ){

i l = rowptrA [ i ] ; i u = rowptrA [ j ] ;
sum i = 0 . ; sum j = 0 . ; cap = 0 . ;
sum i = rowptrA [ i +1] − rowptrA [ i ] ;
sum j = rowptrA [ j +1] − rowptrA [ j ] ;
whi le ( i l < rowptrA [ i +1] && i u < rowptrA [ j + 1 ] ) {

j l = c o l i d x J [ i l ] ; j u = rowidxJ [ i u ] ;
/ / i f t h e r e are a c t u a l v a l u e s :
/ / cap = ( j l == j u ) ? v a l J [ i l ] ∗ v a l J [ i u ] : sp ;
/ / e l s e
cap = ( j l == j u ) ? cap + one : cap ;
i l = ( j l <= j u ) ? i l +1 : i l ;
i u = ( j u <= j l ) ? i u +1 : i u ;

}

v a l J [ k ] = cap / ( sum i + sum j − cap ) ;
} e l s e {

v a l J [ k ] = 1 . 0 ;
} } }

Fig. 1. CUDA kernel computing the Jaccard weight matrix in CSR format.

Fig. 2. SIMT execution model. Top: NVIDIA GPU architectures < SM70;
Bottom: NVIDIA GPU architecture SM70 (Volta) [9].

of branches cannot be interleaved, thread divergence inevitably

results in serialized execution for different portions of the

warp, and all other threads of the warp are waiting until the

branch is completed (see top in Figure 2).

NVIDIA’s Volta technology greatly advances the SIMT [6]

execution model. It supports independent thread scheduling,

which enables finer-grain synchronization and cooperation

between parallel threads in a program [9]. Prior GPU archi-

tectures used a single program counter shared amongst all 32

threads of a warp, combined with an active mask that specifies

which threads of the warp are active at any given time – leaves

threads that are not executing a branch inactive [6]: All threads

execute together only after the divergent section is completed.

In the Volta architecture, each thread features its own program

counter, which allows threads of the same warp to execute

different branches of a divergent section simultaneously (see

bottom in Figure 2). To maximize parallel efficiency, the Volta
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K20m P100 V100
Architecture Kepler Pascal Volta
DP Performance 1.2 TFLOPs 5.3 TFLOPs 7 TFLOPs
SP Performance 3.5 TFLOPs 10.6 TFLOPs 14 TFLOPs
HP Performance – 21.2 TFLOPs 112 TFLOPs
SMs 13 56 80
Operating Freq. 0.75 GHz 1.15 GHz 1.53 GHz
Mem. Capacity 5 GB 16 GB 16 GB
Mem. Bandwidth 208 GB/s 732 GB/s 900 GB/s
Sustained BW 146 GB/s 500 GB/s 742 GB/s
L2 Cache Size 1.5 MB 4 MB 6 MB
L1 Cache Size 64 KB 64 KB 128 KB

TABLE I
KEY CHARACTERISTICS OF THE HIGH-END NVIDIA GPUS. THE HALF

(HP) PERFORMANCE OF THE V100 IS FOR THE 8 TENSOR CORES. THE

SUSTAINED MEMORY BANDWIDTH IS MEASURED USING THE BANDWIDTH

TEST SHIPPING WITH THE CUDA SDK.

architecture includes a schedule optimizer which determines

how to group active threads from the same warp together into

SIMT units. When computing distinct elements in the Jaccard

weight matrix, the schedule optimizer can accumulate the

cases where the matrix rows have the same nonzero pattern.

While the benefits of interleaving the execution of distinct

branches may have a moderate effect on compute-bound

kernels, memory-bound algorithms like the Jaccard weight

matrix kernel may complete the divergent region faster. This

stems from the fact that data read by one thread of the warp

may later be used by another thread of the warp executing

a different branch. If the branches are executed in order, the

data may have to be loaded from the L2 cache attached to

the memory controllers, or (even worse) reread from main

memory.

IV. EXPERIMENTAL PERFORMANCE ANALYSIS

A. Experimental framework

In this section we experimentally assess the performance

of the proposed kernel on different GPU architectures. The

NVIDIA K20m and the NVIDIA P100 GPUs belong to the

Kepler and Pascal generations, respectively. Both architectures

feature the traditional SIMT execution model. The NVIDIA

V100 is part of the Volta generation where each thread has

its own program counter. This allows threads to be scheduled

independently. In Table I we list some of the key characteris-

tics of the GPU architectures [10], [9], [11]. All computations

are executed on the GPU, the kernel is implemented in the

CUDA programming model; CUDA in version 9.0 was used to

compile and run the kernels. By default, we use a thread block

size of 512. We note that this is not always the best choice

for a specific architecture / test matrix combination. However,

problem-dependent optimization is costly, and this choice has

proven to yield good performance for many settings.

We assess the performance of the new Jaccard weights

kernel for the same set of test matrices that was previously

used in Fender et al. [7]. The matrices are all available in the

SuiteSparse [12] matrix collection and are listed along with

some key characteristics in Table II. We consider all matrices

as unweighted, undirected graphs. For convenience, we list

Matrix rows/cols nonzeros memory∗
SW smallword 100,000 999,996 4.4 MB
PA preferentialAtt. 100,000 499,985 2.4 MB
CA caidaRouterLev. 192,244 609,066 3.2 MB
AD coAuthorsDBLP 299,067 977,676 5.1 MB
CI citationCites. 268,495 1,156,647 5.7 MB
PD coPapersDBLP 540,486 15,245,729 63.1 MB
PC coPapersCites. 434,102 16,036,720 65.9 MB
AS as-Skitter 1,696,415 22,190,596 95.5 MB
HL hollywood-2009 1,139,905 113,891,327 460.1 MB

TABLE II
TEST MATRICES ALONG WITH KEY CHARACTERISTICS. THE MEMORY

ESTIMATE IS THE MEMORY REQUIRED TO STORE THE PROBLEM AS

PATTERN MATRIX IN CSR FORMAT, USING 32-BIT INTEGERS FOR THE

ROW POINTER AND THE COLUMN INDEXES.

K20m P100 V100 TITAN X TITAN Xp∗
SW 1.61e-3 2.45e-4 7.75e-5 4.43e-4 –
PA 2.08e-2 3.57e-3 1.09e-3 4.35e-3 5.00e-3
CA 2.09e-2 2.92e-3 8.31e-4 3.59e-3 8.00e-3
AD 1.43e-2 1.97e-3 5.39e-4 2.66e-3 4.00e-3
CI 4.66e-2 7.75e-3 2.14e-3 8.97e-3 9.00e-3
PD 1.55e+0 1.57e-1 3.52e-2 2.02e-1 3.08e-1
PC 2.48e+0 2.74e-1 5.86e-2 3.22e-1 5.38e-1
AS 1.03e+1 1.39e+0 3.16e-1 1.46e+0 5.02e-1
HL 4.01e+1 1.14e+1 2.48e+0 9.57e+0 1.28e+1

TABLE III
RUNTIME [S] FOR GPU KERNEL TO COMPLETE THE COMPUTATION OF THE

JACCARD WEIGHTS MATRIX ON DIFFERENT HARDWARE ARCHITECTURES.
THE RUNTIME RESULTS IN THE LAST COLUMN ARE THOSE FROM THE

REFERENCE JACCARD KERNEL PRESENTED IN FENDER ET AL. [7].

the amount of memory needed to store the distinct problems

as a pattern matrix in CSR format using 32 bit integers (see

“memory∗”). The combined cache of all multiprocessors is

too small to fit the pattern matrix; the cache of a single

multiprocessor is only a fraction of the memory volume

required.

B. Experimental results

In Table III we report the total execution time for computing

the Jaccard weight matrix kernel. We observe speedup factors

between 3× and 10× when moving from the K20m GPU to

the P100 GPU, and speedup factors between 3× and 5× when

moving from the P100 GPU to the V100 GPU. In Table III we

also include the kernel runtime for an NVIDIA TITAN X [13]

GPU. This device is part of the consumer line of NVIDIA’s

Pascal architecture and is the predecessor to the TITAN Xp

GPU, which is used in Fender et al. [7] to benchmark an

alternative algorithm for computing the Jaccard weight matrix.

Compared to the TITAN X GPU, the TITAN Xp GPU features

a higher number of CUDA cores (3840 vs. 3584) and a higher

main memory bandwidth (548 GB/s vs. 480 GB/s).

An important aspect of the new Jaccard weights kernel’s

performance is the reuse of data. Data originally read from

main memory that resides in the L2 cache can be accessed

significantly faster by the processing cores. The size of the L2

cache is increased for the newer architectures. Similarly, the

size of the multiprocessor’s local cache (L1 cache) is increased

from 64 KB per multiprocessor (Pascal generation) to 96 KB

per multiprocessor for the Volta architecture (see Table I.
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K20m P100 V100

SW 1.06 1.08 2.20
PA 1.32 1.17 2.31
CA 0.89 0.97 2.08
AD 0.94 1.07 2.31
CI 1.15 1.06 2.24
PD 0.52 0.71 1.93
PC 0.42 0.53 1.45
AS – 0.53 2.42
HL – – 0.68

Fig. 3. Main memory read transactions (DRAM READ TRANSACTIONS, left) and L2 cache read transactions (L2 READ TRANSACTIONS, CENTER, and
Executed instructions per cycle (IPC) of the Jaccard weights kernel for the distinct problem/architecture configurations. (Missing data reflects overflow of the
hardware counter.)

In Figure 3 we report the data from hardware counters

dram read transactions (left) and L2 READ TRANSACTIONS

(right) available via NVIDIA’s nvprof profiler. As expected,

the smaller L2 cache size on the K20m GPU limits data

reuse, and the Jaccard weights kernel requires more main

memory reads (see left of Figure 3). The differences in the

main memory read volume between the P100 GPU and the

V100 GPU are much smaller. With the total main memory

transactions volume on the P100 GPU and the V100 GPU

being similar, the performance of a memory-bound kernel is

expected to strongly correlate with the memory bandwidth.

We note the sustained memory bandwidth of the P100 is

3.42× higher than for the K20m, and the sustained memory

bandwidth of the V100 is 1.48× higher than for the P100

(see Table I). At the same time, the Jaccard weight matrix

kernel executes up to 5× faster on the V100. Thus, the V100

GPU’s higher memory bandwidth is insufficient in offsetting

the performance differences between the Pascal and the Volta

architectures. The L2 cache read volume (Figure 3, left)

being significantly larger than the main memory read volume

indicates the efficient reuse of cached data. Counterintuitive

to the larger L2 cache size, the L2 read volume of the V100

is on average 80% smaller than the the L2 read volume of

the K20m and the P100 GPUs. This indicates that the V100

architecture makes more efficient use of data that is read into

the multiprocessor memory.

On the right in Figure 3 we report the respectively-achieved

instruction per cycle (IPC) rate. Although two generations

apart in terms of architecture, the K20m and the P100 achieve

very similar IPC rates. This indicates that both architectures

use the same SIMT execution model, with one scheduler

handling the scheduling of all threads in a warp. The 2×
higher IPC rate is likely enabled by each thread having its

own scheduler, and the possibility of interleaving the execu-

tion of divergent branches if convenient. For memory-bound

algorithms reusing some data, the scheduler can introduce the

execution of a different branch at the point when required

data is present in the multiprocessor cache. This avoids the

expensive reloading of data from L2 cache or main memory.

Consequently, less threads have to stall waiting for data, and

a higher IPC rate can be achieved.

V. SUMMARY AND FUTURE WORK

In this paper we proposed a Jaccard weight matrix kernel

for GPU architectures. The Jaccard weight is an important

tool for identifying communities in big data analytics. The

kernel derives as element-parallel sparsity preserving matrix

multiplication and makes efficient use of NVIDIA’s improved

SIMT execution model. For a set of test matrices we reported

performance and hardware counters on different architectures.
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