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Abstract—We present a kernel that is designed to quickly
compute the condition number of a large collection of tiny
matrices on a graphics processing unit (GPU). The matrices can
differ in size and the process integrates the use of pivoting to
ensure a numerically-stable matrix inversion. The performance
assessment reveals that, in double precision arithmetic, the new
GPU kernel achieves up to 550 GFLOPs (billions of floating-
point operations per second) and 800 GFLOPs on NVIDIA’s
P100 and V100 GPUs, respectively. The results also demonstrate
a considerable speed-up with respect to a workflow that computes
the condition number via launching a set of four batched kernels.
In addition, we present a variable-size batched kernel for the
computation of the matrix infinity norm. We show that this
memory-bound kernel achieves up to 90% of the sustainable
peak bandwidth.

I. INTRODUCTION

The condition number of a matrix A quantifies how sensitive

the linear system Ax = b is with respect to changes in the

right-hand side vector b [1], [2]. If the condition number

is large, tiny changes in b can cause significant changes in

the solution vector x. While this assumes exact arithmetic,

the condition number is even more relevant when working

with limited precision, which is the de-facto standard in

scientific computing. As the limited precision format implies

the rounding of values (e.g., those in the right-hand side

vector), the condition number then determines the attainable

accuracy of the solution. The same effect has to be taken into

account when computing the inverse of a matrix. Scientific

computations using a single precision format throughout the

complete algorithm often ignore the relevance of the condition

number. This is motivated by the fact that rounding effects

impact all numerical operations in a similar way, and the only

way to improve the accuracy is to transform the complete

work-flow to operate in a higher precision format. In contrast,

taking the condition number into account becomes essential in

mixed precision algorithms, which handle part of the computa-

tions in a less accurate format than working precision. In that

scenario, special care has to be paid to the numerical effects

and rounding error propagation: For example, already casting

the matrix A to a lower precision format can potentially turn

a regular matrix into a singular one. Unfortunately, computing

the condition number of a (large) matrix A is computationally

expensive, and even though strategies for cheaply approximat-

ing the condition number in an iterative fashion have been

developed [3], many mixed precision algorithms refrain from

employing an explicit analysis and instead leave it to the

application scientist to analyze the numerical effects [4].

A recently proposed mixed precision strategy to the precon-

ditioned iterative solution of linear systems does not convert

the system matrix to lower precision, but instead forms a

block-Jacobi preconditioner where, if appropriate, the diagonal

blocks are stored in reduced precision [5]. The elegance of

this approach is that not all diagonal blocks need to use the

same precision, but the precision format can be chosen locally,

with each block adapted to its condition number. Hence, this

approach does not require assessing the condition number of

the system matrix A, but instead needs to inspect the condition

number of each diagonal block in the Jacobi preconditioner.

The preconditioner typically consists of a significant number

of small blocks, which motivates the variabe-size batched

condition number routine presented in this paper. We provide

the necessary background on condition number computation

and batched routines in Section II. We then develop the kernel

computing the condition number for a large set of matrices on

a graphics processing unit (GPU) in Section III. In Section IV

we use runtime experiments on the latest server-line GPU

architectures from NVIDIA to asses the routine performance

and relate it to the cost of the block-Jacobi preconditioner

generation. We also include a performance analysis on a

variant computing the condition number by launching a set

of four batched routines, including a variable-size batched

matrix infinity norm kernel. We conclude in Section V with

an outlook on future research opportunities.

II. BACKGROUND AND RELATED WORK

A. Matrix conditioning

The condition number cond(A) of a matrix A reflects how

sensitive the corresponding linear system Ax = b is to small

changes in the right-hand side vector b [1]. More precisely,

the condition number is defined as the maximum ratio of the

relative error in the solution x to the relative variation in the
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right-hand side vector b:
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This equation holds for any matrix norm and induced vec-

tor norm, in particular for the maximum norm ‖A‖∞. The

maximum norm can for both, the matrix and the vector norm,

cheaply be computed as maximum of the absolute sums of the

distinct matrix rows in A [6]:

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |. (2)

We note that the row sums are unaffected by neither col-

umn nor row exchanges, and hence the infinity norm being

unaffected by the application of the standard partial (i.e.,

row) pivoting. The algorithm we design in Section III for

computing the condition number for a set of matrices is based

on computing the infinity norm for each of the matrices and

their corresponding inverses.

B. Batched routines

The qualifier “batched” identifies a procedure that applies

the same operation to a large collection of data entities.

In general, the subproblems (i.e., the data entities) are all

small and independent, turning the overall problem into an

embarrassingly-parallel operation [7]. An efficient batched

algorithm employs a parallel formulation that simultaneously

performs the operation on several/all subproblems to yield

a more fruitful exploitation of the computational resources.

This abstraction is particularly important on highly parallel

architectures like GPUs, where scheduling one data entity

after another may waste a large fraction of the computational

resources. Batched routines also reduce the kernel invocation

overhead as they replace a sequence of routine calls with a

single kernel. In addition, if the data for the subproblems is

conveniently stored in the GPU memory, a batched routine can

orchestrate a more efficient (coalesced) memory access.

In recent years, the development of batched routines for

linear algebra operations has received considerable interest

because of their application in machine learning, astrophysics,

quantum chemistry, hydrodynamics, and hyperspectral image

processing, among others. Examples of batched kernels for

the dense BLAS appear in [8], [9], [10], [11], and there

exists a strong community effort on designing an interface

standard for these routines [7]. Batched routines have also been

developed for sparse linear algebra functionality, including

batched sparse matrix-vector multiplication [12] and routines

for generating sparse approximate inverses for incomplete

triangular factors [13].

Batched routines are typically classified into two subsets:

those where all data entities have the same size, and those

where the data entities can differ in size (within a range).

The latter type of batched routines, usually referred to as

“variable-size,” are more complicated in design, but offer

higher flexibility in terms of target applications [14].

III. BATCHED CONDITION NUMBER ROUTINE

In [11] we designed a batched routine for the in-place

inversion of variable-sized matrices (up to dimension 32×32)

on GPUs. In this section, we review the key ideas in [11],

and add the calculation of the condition number with little

overhead to this scheme.

The calculation can be decomposed into four steps, see

Figure 1: (1.1, 1.2) Calculate the infinity norm of A; (2)

invert A; (3.1, 3.2) compute the infinity norm of A−1; and (4)

derive the condition number as cond(A) = ‖A‖∞ ·
∥∥A−1

∥∥
∞,

according to (1). It is possible to realize these steps in separate

stand-alone CUDA kernels or, as proposed in this work, using

a single kernel. Combining the four components into a single

kernel radically reduces the main memory access, which is

typically crucial for the performance of batched routines.

The complete procedure is realized entirely in registers. Each

thread stores and is responsible for operations on a single row

of the matrix, and data from other threads is communicated via

warp shuffles. The entire matrix is read from main memory

at the beginning of the routine, and written back when the

routine finishes. Thus, there is no additional data movement

necessary during the procedure.

Matrix inversion

Once the matrix is present in registers, the matrix inversion

is realized by applying the variable-size batched Gauss-Jordan

elimination (“GJE”) described in [11]. The complete inversion

process is handled in registers, and communication is realized

via warp shuffles [15]. This limits the matrix size to problems

of dimension less or equal than 32 × 32. In-place inversion

avoids the need of additional memory.

To ensure numerical stability, we use the implicit pivoting

strategy presented in [16]. Instead of swapping rows and

assigning threads to a fixed row, we move the workload to

the thread owning the data and keep track of a row swap

history. If the inverse matrix is required, all the row swaps are

applied at once when writing the inverse matrix back to main

memory.

Calculating matrix norms in registers

With each thread keeping a complete matrix row in registers,

the absolute sum of each row can be computed in a data-

parallel fashion. No communication is required for this step

(see Figure 1, steps 1.1. and 3.1.). Finding the maximum of

the absolute sums requires a global reduction over all threads
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Fig. 1: Calculation of the condition number with A ∈ R
8×8. The orange blocks denote threads and the inscription their

thread-ID, each thread keeps its matrix row in registers.
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Fig. 2: Reduction example with eight threads and the CUDA

XOR-shuffle. The numbers represent the thread-ID. The con-

nections between threads show an exchange of their current

reduction value. At the end, all threads have the same result,

which is why this reduction is also called “all-reduction”.

assigned to the matrix (see Figure 1, steps 1.2. and 3.2.).

The necessary communication can be realized efficiently using

CUDA’s XOR-shuffle (see Figure 2).

Multiple problems per warp

Using one warp for a single matrix is inefficient if the batch

contains only matrices significantly smaller than the warp size.

To tackle this, we follow the strategy proposed in [11] by

taking advantage of the sub-warp support in CUDA shuffles.

The sub-warp size has to be defined globally prior to the

kernel invocation, and has to be a power of two [11]. Let km
denote the size of the largest block in the matrix batch and

assume pm is the smallest power of 2 such that pm ≥ km. The

size of a sub-warp is now set to pm, which means that each

P100 V100
Architecture Pascal Volta
DP Performance 5.3 TFLOPs 7 TFLOPs
SP Performance 10.6 TFLOPs 14 TFLOPs
HP Performance 21.2 TFLOPs 112 TFLOPs
SMs 56 80
Operating Freq. 1.15 GHz 1.53 GHz
Memory Capacity 16 GB 16 GB
Memory Bandwidth 732 GB/s 900 GB/s
Sustained BW 560 GB/s 846 GB/s
L2 Cache Size 4 MB 6 MB
L1 Cache Size 64 KB 128 KB

TABLE I: Key characteristics of the high-end NVIDIA GPUs.

The Half (HP) Performance of the V100 is for the Tensor

cores. The sustained memory bandwidth is measured using

the AXPY function from the CUDA cuBLAS library.

warp can process 32/pm matrices. The performance penalty

of this approach is that, in every sub-warp, there are at least

pm− km threads that remain idle and do not contribute to the

result. The advantage, on the other hand, is that this yields

a generic function that needs no preprocessing and avoids

the expensive calculations that are necessary to determine the

mapping between threads and rows.

IV. EXPERIMENTAL ANALYSIS

In this section, we analyze the performance of the batched

condition number routine experimentally.

We run the performance analysis on the latest two architec-

tures in NVIDIA’s server line for high performance scientific
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Fig. 3: Relative error
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condMAT (A) of the batched con-

dition number calculation. The reference point condMAT (A)
is computed using MATLAB’s COND function. The data is

averaged over 100 matrices.
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Fig. 4: Floating-point operation count for inverting a single

matrix via GJE vs. the variant computing also the condition

number of the matrix.

computing: the NVIDIA P100 GPU (Pascal generation) and

the NVIDIA V100 GPU (Volta generation). Both architectures

adhere to the traditional SIMT execution model. The NVIDIA

V100 is part of the Volta generation where each thread has

its own program counter. This allows threads to be scheduled

independently; however, this feature comes at the price of each

thread using two 32-bit registers for its program counter [17].

In Table I we list some of the key characteristics of the GPU

architectures [17], [18]. In addition to the theoretical peak

bandwidth listed by NVIDIA, we also report in Table I the

“sustained memory bandwidth” that we could attain using the

CUBLASDAXPY function of NVIDIA’s cuBLAS library.

Although all computations are executed on the GPU, we

mention that the host system is powered by two Intel Xeon

E5-2650 v3 (codename “Haswell”) processors running at

2.30 GHz. We implemented the batched condition number

routine in the MAGMA open source software framework [19]

with the matrix inversion based on GJE with partial pivot-

ing [11]. The kernel is implemented in the CUDA program-

ming model, with CUDA version 9.0 used to compile and run

P100 V100
Registers

Available / Block 65536 65536
Used / Thread 89 100
Used / Block 12288 13312

Derived maximum of active Blocks / SM 5 4

TABLE II: Statistics on compiling and executing the DP

variable-size batched condition number kernel on a batch of

50,000 matrices of size 32× 32.

the kernels. By default, we use a thread block size of 128. The

batch of test matrices is generated with random entries.

In a first experiment we check the correctness of the devel-

oped batched condition number kernel by taking MATLAB’s

COND function as reference (MATLAB version 2017b [20]). In

Figure 3 we visualize the relative error of the single and double

precision versions (SP and DP, respectively) for increasing

matrix sizes. The data there reflects the average relative error

over 100 random matrices. The relative error stays within the

approximation accuracy of the respective floating-point format

for all matrix sizes.

Next, we compare the performance of the variable-size

batched condition number routine with the variable-size

batched matrix inversion kernel based on GJE [11]. The mo-

tivation is that the batched condition number kernel presented

in Section III has the GJE-based matrix inversion as a central

component and computes the condition number by adding

norm calculations prior to and after the matrix inversion. In

the performance comparison we only count the operations

of the matrix inversion, while the norm calculation and the

condition number calculation are viewed as “overhead” to the

matrix inversion. This approximation simplifies the analysis of

the performance penalty introduced by adding the condition

number calculation to the matrix inversion. Furthermore, it

is reasonable as the additional cost (in terms of floating-

point operations) of the condition number calculation quickly

becomes negligible for increasing matrix sizes; see Figure 4.

For reference, in the comparison we include the perfor-

mance we achieve with the batched inversion routine available

in NVIDIA’s cuBLAS library.

In Figure 5 we focus on the P100 GPU and we consider a

homogeneous batch containing square matrices of orders 16

(top row) and 32 (bottom row). The left-hand side figures are

for IEEE SP, the right-hand side figures are for IEEE DP.

The analysis reveals that the performance of the batched

condition number routine grows with the batch size following

a similar trend to that observed for the GJE-based matrix

inversion. The overhead of the condition number assessment

ranges between 5% and 15%, depending on the floating-point

format and the matrix size.

To further investigate the performance variation as a func-

tion of matrix size, in Figure 6 we fix the batch size to 30,000

matrices and then vary the size of the matrices in the batch.

In the SP regime (left-hand side figure), the performance of

the kernel inverting the matrices and computing the condition

number increases consistently with the matrix size, with some
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(a) Batch containing matrices of size 16×16, single precision.
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(b) Batch containing matrices of size 16×16, double precision.
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(c) Batch containing matrices of size 32×32, single precision.
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(d) Batch containing matrices of size 32×32, double precision.

Fig. 5: Performance analysis of the variable-size batched condition number routine on P100 GPU in comparison to batched

matrix inversion routines.
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(a) Batches containing 30,000 matrices, single precision.
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(b) Batches containing 30,000 matrices, double precision.

Fig. 6: Performance of the variable-size batched condition number routine on P100 GPU for increasing matrix size and a fixed

batch size of 30,000 matrices.
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(a) Batches containing 30,000 matrices, single precision.

0 5 10 15 20 25 30 35
Matrix size

0

200

400

600

800

G
F

lo
p/

s

GJE-based Inversion
Inversion + Cond. Number
cuBLAS-based Inversion

(b) Batches containing 30,000 matrices, double precision.

Fig. 7: Performance of the variable-size batched condition number routine on V100 GPU for increasing matrix size and a fixed

batch size of 30,000 matrices.

local peaks marking sweet spots from the point of view of

the strategy for multiple-problems-per-warp (for size 8 and

16). The peak performance for a batch of 32 × 32 matrices

exceeds 1 TFLOPs (i.e., 1012 floating-point operations per

second, or FLOPs). This is more than a 6× speedup over

NVIDIA’s batched inversion routine, which is neither capable

of handling batches containing matrices of different size, nor

does compute the condition number. Ignoring minor perfor-

mance fluctuations, the same trend can be observed for the

DP case. There, the performance peak is about 550 GFLOPs,

which is half the SP performance.

We now run the same performance test on the newer

V100 GPU, with the results visualized in Figure 7. The

same local peaks can be observed for sizes 8 and 16. In

the SP regime, the V100 behaves similarly to the P100,

reaching a peak performance of 2.3 TFLOPs; see Figure 7b.

However, the performance pattern is different in the DP case;

see Figure 7b. Unlike in the P100 case, the performance

does not grow for sizes beyond 24. Instead, the performance

drops significantly for sizes larger than 23. To investigate

this behavior in Table II we compare how the variable-size

batched condition number kernel is compiled and executed in

the 32× 32 DP case. We notice that, on the V100, the kernel

is compiled using additional registers. This, in the end, limits

the number of blocks that can be executed simultaneously on

a multiprocessor.

The design of the variable-size batched condition number

routine is motivated by the idea of storing the inverted blocks

of a block-Jacobi preconditioner in less than working preci-

sion [5]. This requires both the inversion of the diagonal blocks

and the calculation of the condition number of each the blocks

to ensure regularity. The kernel we developed combines both

steps. At the same time, if only the condition number is of

interest, writing the inverse matrices back to main memory

is not required. We now turn back to the P100 architecture

and assess the benefits obtained from dropping the writes to

main memory from the batched condition number routine;

see Figure 8. In this analysis we also include a variant that

computes the condition number by launching four separate

kernels for the building blocks outlined in Figure 1: A batched

norm calculation; the GJE-based batched matrix inversion; a

second batched norm calculation for the inverse matrix; and a

kernel computing the condition number as the ratio between

the norm of the matrix and the norm of its inverse. A pattern

we notice for all runtime data in Figure 8 reflects the sweet-

spots of the multiple-problems-per-warp strategy: For batches

containing only matrices of dimension smaller than 16×16,

we can handle multiple matrices with each warp. Once the

problem size becomes larger than 16×16, the runtime in-

creases drastically. Comparing the different realizations of the

batched condition number calculation, we notice a 25%–30%

higher execution time for the variant composed of four batched

routines. This was expected, as launching four separate kernels

significantly increases the data access volume. Completing the

condition number calculation in registers without writing the

inverse matrix to main memory is, in the SP case, about 10%
faster than the combination of inversion and condition number

calculation; see Figure 8a. In the DP case, the runtime benefits

of avoiding the main memory writes are smaller; see Figure 8b.
For completeness, we include a performance analysis of

the variable-size batched matrix infinity norm calculation as

this routine may also be used as a stand-alone function. As

this operation has an arithmetic intensity of O(1) (concretely,

O(n2) memory reads versus O(n2) floating-point operations

for a matrix of size n) we assess the efficiency of the developed

kernel by analyzing the achieved memory bandwidth. In Fig-

ure 9 we consider uniform batches containing matrices of order

16× 16 (dashed lines) and 32× 32 (solid lines), and increase

the batch size from 1,000 to 50,000. The data reveals that

the DP kernel reaches about 500 GB/s, which is 10% below

the sustained bandwidth we attained with the CUBLASDAXPY

routine from NVIDIA’s cuBLAS library. For matrices where

each row takes 128 bytes of memory (sizes 16 × 16 in DP

or 32×32 in SP) we observe about 450 GB/s. In the SP case

with matrices of dimension 16×16 the variable-size matrix
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Fig. 8: Runtime comparison (P100 GPU) of different kernel variants computing the condition number: [Inversion + Cond.

Number] enhances the GJE-based matrix inversion with the condition number calculation; [Cond. Number] only computes the

condition number using the same strategy, but does not write the inverse matrix back to memory; [Norm] + [Inversion] +

[Norm] +[Cond] invokes four separate kernels to compute the condition number and the inverse.
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Fig. 9: Bandwidth achieved for the variable-size batched

infinity matrix norm. Solid lines are for matrices of size

32× 32; dashed lines for matrices of size 16× 16.

infinity norm achieves about 75-80% of the measured peak

bandwidth.

V. SUMMARY AND FUTURE WORK

We presented a variable-size batched condition number ker-

nel for GPUs. The routine combines the matrix infinity norm

calculation with matrix inversion via Gauss-Jordan elimination

enhanced with implicit pivoting. The kernel keeps the data

in registers only, and all communication is handled via warp

shuffles. Following this strategy, we achieve performance rates

of up to 1 SP TFLOPs and 500 DP GFLOPs when running

the kernel on NVIDIA’s P100 GPU architecture. In addition to

the composed batched condition number routine, we present

a variable-size batched matrix infinity norm. In a memory

efficiency analysis, we observe that this memory-bound kernel

achieves up to 90% of the sustained memory bandwidth.

All functionalities are designed to fit into the MAGMA-

sparse open source software package. As part of future work,

we plan to investigate how to efficiently integrate the batched

condition number routine into the adaptive precision block-

Jacobi preconditioning framework.
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