
Revisiting Credit Distribution Algorithms for
Distributed Termination Detection

George Bosilca∗, Aurélien Bouteiller∗, Thomas Herault∗, Valentin Le Fèvre†, Yves Robert∗‡, Jack Dongarra∗
∗University of Tennessee Knoxville, TN, USA

†Barcelona Supercomputing Center, Spain
‡Laboratoire LIP, ENS Lyon, France

Abstract—This paper revisits distributed termination detection
algorithms in the context of High-Performance Computing (HPC)
applications. We introduce an efficient variant of the Credit
Distribution Algorithm (CDA) and compare it to the original
algorithm (HCDA) as well as to its two primary competitors: the
Four Counters algorithm (4C) and the Efficient Delay-Optimal
Distributed algorithm (EDOD). We analyze the behavior of each
algorithm for some simplified task-based kernels and show the
superiority of CDA in terms of the number of control messages.

Index Terms—Termination detection, credit distribution algo-
rithms, task-based HPC application, control messages.

I. INTRODUCTION

A distributed application is terminated if all processes

have completed the computations assigned to them and no

message is in transit within the interconnection network.

Termination detection is a fundamental issue for distributed

systems, because – for dynamic applications – no process

has complete knowledge of the global configuration (the state

of all processes and of the network) [1]. In particular, an

idle process may be reactivated by a message from another

process, complete its new assignment, send some work or-

ders to be completed by remote processes, and then become

idle again and so on. Many active-to-idle and idle-to-active
transitions can take place before the application eventually

terminates. Since the pioneering work of Dijkstra, Scholten,

and Francez [2], [3], countless algorithms have been proposed

for termination detection.

Many high-performance computing (HPC) applications can

rely on straightforward techniques for termination detection.

For instance, many dense or sparse factorization algorithms

terminate when the bottom-right diagonal element of the

matrix has been updated, and termination can safely be de-

clared right after the completion of that last operation. More

generally, many HPC applications are structured as a task

graph with all dependencies statically known before execution.

Termination can safely be declared once all exit tasks (tasks

without any successor task) of the graph have been completed.

However, there are also many HPC applications whose task

graphs are dynamically updated during the execution: the

application task graph is data dependent, and new tasks may

be created depending on the value of the output of another

task. Typical examples are partial differential equation (PDE)

schemes, where the necessary degree of refinement is dictated

by the physics of the simulated material. For all of these ap-

plications, a distributed termination detection algorithm must

be implemented.

Our main contribution is the design of a new termination

detection algorithm that is specialized for HPC platforms. We

adopt a simplified but realistic model for such platforms. For

instance, message loss and re-ordering are routinely managed

by the network layer (e.g. MPI, OpenSHMEM,etc.), hence we

can safely design algorithms that benefit from these features

and assume that messages are delivered in FIFO order. We

focus on performance at scale and aim at minimizing the

overhead incurred by the termination detection algorithm on

the application. Clearly, detection algorithms that use many

control messages will delay, or add extensive management of,

application messages and will be detrimental to application

progress. In this work, we consider different classes of ter-

mination detection algorithms and evaluate their overhead in

terms of the number of control messages that are generated.

We distinguish and compare three main classes of algo-

rithms for termination detection. First, many algorithms use

ascending and descending waves of control messages, and

we discuss the Four Counter algorithm (4C) – a state-of-the-

art wave algorithm – in Section III. The Credit Distribution

Algorithms (CDA) are another set of algorithms proposed

independently by Huang [4] and Mattern [5]. These algorithms

are also known as weight-throwing algorithms, and they use

a controlling agent that initially distributes some credit to all

processes. When sending an application message, a process

keeps a fraction of its current credit and transfers the remaining

fraction through the message; upon reception of a message,

the credit carried by the message is added to the credit of

the receiving process. Finally, when becoming idle, a process

returns its credit to the controlling agent. The controlling

agent declares termination when all of the initially distributed

credit has been returned to it. We introduce the original

algorithm, “Huang’s CDA” (HCDA), discuss several existing

variants, and propose a novel CDA algorithm dedicated to

HPC platforms in Section III. Finally, a more recent class

of algorithms, Efficient Delay-Optimal Distributed (EDOD)

termination detection algorithms [6], requires that a control

message acknowledging primary messages reception is sent

by the receiver of each application message back to the

sender; this is to ensure that the sender can be safely declared

terminated once all of its messages have been acknowledged.

These control messages go up and down a control binary

611

2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-6654-3577-2/21/$31.00 ©2021 IEEE
DOI 10.1109/IPDPSW52791.2021.00095

20
21

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
is

tri
bu

te
d

Pr
oc

es
si

ng
 S

ym
po

si
um

 W
or

ks
ho

ps
 (I

PD
PS

W
) |

 9
78

-1
-6

65
4-

35
77

-2
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IP

D
PS

W
52

79
1.

20
21

.0
00

95

Authorized licensed use limited to: University of Manchester. Downloaded on August 05,2022 at 10:56:19 UTC from IEEE Xplore. Restrictions apply.

tree – independent of the application communications. EDOD

is carefully designed to minimize the latency of termination

detection, and we describe it in more detail in Section III.

Our main contribution is the design and implementation of a

novel CDA variant that drastically improves performance, un-

der the constraints of an HPC system, with a more conservative

but mathematically accurate credit management system, where

the borrowing operation can be satisfied by a neighbor process

with more abundant resources. We evaluate the algorithms in

terms of the number of control messages, through a theoretical

analysis for the token ring application, and through simulations

for synchronous tree-based task systems. As stated above, we

focus on the number of messages generated by each algorithm

as the key indicator of performance and overhead.

The paper is organized as follows. In Section II, we present

motivating applications and systems that require termination

detection. We review 4C, HCDA, and EDOD in Section III.

We introduce our new CDA algorithm in Section IV and

provide a theoretical comparison with HCDA, 4C and EDOD

in Section V. We survey related work in Section VI. We

provide concluding remarks and directions of future work in

Section VII.

II. DYNAMIC APPLICATIONS AND TERMINATION

DETECTION

Termination detection is often implicit or trivial in regular,

static applications, for which the control-flow of the applica-

tion and/or the initial load balance of the work is sufficient

to decide, locally, the termination. The issue becomes more

crucial for dynamic applications expressed over asynchronous

programming paradigms, for which the total amount of work is

data dependent—and therefore remains unknown until comple-

tion. Here, we focus on efficiently detecting that an application

producing supplementary work and messages, from process-

local criterion, is globally complete.

To illustrate the concept, consider the example of k-
dimensional trees that represent approximations of multidi-

mensional functions and operators. Consider for k = 1 a

function, f(x), that should be approximated over a domain,

[A,B]. A 1-dimensional tree is used to approximate the values

of f by splitting [A,B] into subdomains, [ai, bi). For each

subdomain, a leaf in the tree is created that carries a single

value: the average of f in that subdomain,
∫ b

a
f(x)dx/(b−a).

The size of the subdomain (and thus the quality of the

approximation) is set by selecting the depth of the leaves in

the tree. Figure 1 illustrates this approach.

A task-based approach to create such representations is

used in the Multiresolution ADaptive Numerical Environment

for Scientific Simulation (MADNESS) [7], which is a high-

level software environment for the resolution of integral and

differential equations in multiple dimensions using adaptive

and fast harmonic analysis methods with guaranteed precision.

The operation of creating a tree that represents a given function

in a given domain for a target precision is called a “projection.”

A natural and efficient algorithm to implement the projection

consists of walking down the tree in parallel, with each task

instantiating a node and deciding locally if a given node in the

tree is refined enough to reach the target precision, in which

case it is defined as a leaf. If not, its 2k children are spawned

to increase the refinement. As the algorithm proceeds with

refining the nodes, a mapping defines which tasks/nodes are

held by which process of the parallel application. Depending

on the targeted function, refinement, and data distribution, a

process may be done with all current tasks but still receive

more tasks to instantiate higher refinements at any time—until

all processes are finished with all tasks.

A naive approach to detect termination for this algorithm

would be to wait for the entire subtree to complete before

letting the task complete, every time a task spawns refinement

nodes. This approach has multiple obvious drawbacks: if the

wait monopolizes computing resources, a starvation will occur

when the number of nodes in the k-dimensional tree exceeds

the number of computing elements. Even if better strategies

are implemented to avoid this resource consumption, control

information about the completion of each task must be sent to

the process holding the parent node, thereby introducing large

delays and costs. Because a process may receive work at any

time, local observations that the number of tasks to complete

has reached zero is not sufficient to decide termination, and a

distributed termination algorithm is necessary.

This issue occurs in many tree-based algorithms and is a

key part of composition. For example, occurring frequently in

MADNESS algorithms, multiple functions must be projected

in order to be derived, summed, multiplied and integrated to

compute a solution to the final problem. To reduce overheads,

all of these operations should start with maximum concur-

rency, but knowledge about the completion of dependent

operations is necessary to ensure the correctness of the result.

Distributed termination detection algorithms rely on observing

the activity of the processes, as well as the injection and

delivery of application messages, sometimes modifying them

to piggyback information. Since these roles are assigned to

the runtime system, it is also natural to assign the role of

detecting the termination of global operations to the runtime

environment.

III. ALGORITHMS FOR TERMINATION DETECTION

Sections III-B to III-D detail the main features of the three

primary detection termination algorithms from the literature:

4C (waves with in-transit message detection), EDOD (ac-

knowledged primary messages), and HCDA (Huang’s credit

distribution), which we contrast with our own CDA algorithm

in Section IV. Beforehand, in Section III-A, we review the

system model common to all algorithms.

A. System Model

We consider a distributed system comprised of a set of

P processes with an independent clock and a local memory.

The processes are connected through an asynchronous inter-

connection network capable of carrying messages in 1-port

duplex mode with an arbitrary, but finite, delay. Processes and

messages are considered here in the general sense: processes

612

Authorized licensed use limited to: University of Manchester. Downloaded on August 05,2022 at 10:56:19 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Sample application: 1−dimensional tree whose refinement locally depends on the slope of the target function.

may employ internal shared-memory parallelism (which is

abstracted from the model), and remote memory accesses can

be considered as asynchronous messages. The processes and

network are reliable, and we assume that the interconnection

network is complete; that is to say: any process may send

a direct message to any other processes. We also assume

that messages may not overtake; in other words, the network

is assumed to be FIFO, or the network library manages

ordering and reemission as necessary (e.g. MPI). Although

not required for correcting the algorithms, these assumptions

simplify performance analysis.

A parallel workload executes internal actions on the pro-

cesses, either executing a task or creating a new task. Task

mapping (to processes) is determined by an application-

provided mapping function, and successor tasks may be

mapped onto a remote process, which entails the emission

of a message. When the destination of a message is the local

process, it is considered a local action.

In such a distributed system, we consider the termination

detection problem. Termination detection is achieved when

all processes know that every process has completed the

workload. More formally, a process is still considered active
when it has pending actions, including when it is executing a

task, has scheduled tasks to execute locally, or has pending

emissions to perform. When a process does not have any

further pending local actions, it becomes idle. A process may

exit from the idle state and return to the active state only

when it receives a message (i.e., tasks can be only created

upon completion of another task). Without loss of generality,

we consider that, initially, one process contains a startup

task (there is a trivial transformation to render any workload

with multiple initial tasks compliant). The termination of the

workload is a global stable state that is reached when, in a

global snapshot [8], every process is in the idle local state,

and there are no in-transit messages (since, otherwise, these

in-transit messages could create work for some of the idle

processes). The termination is detected when every process

has been informed that this global state has been reached.

Termination detection algorithms are thus distributed algo-

rithms that observe that the global state has been reached and

then announce it to all processes. In some algorithms, the

detection and announce phases may be merged or overlapped.

The distributed termination detection algorithm likely requires

the exchange of secondary messages (i.e., supplementary

control messages added to the primary messages generated by

the parallel workload). These secondary messages allow the

process states to be gathered/reported to a centralized entity

or be part of a termination broadcast.

B. The 4C Wave Algorithm

In wave algorithms, when a process becomes idle, it initiates

a wave to verify the state of other processes in the system. The

wave crosses the network and collects the status of individual

processes and their communication channels at some process

– either at the initiator or at some external entity. That process

then inspects the collected global state to ascertain when the

global termination state has been reached. For example, a pro-

cess that switches from active to idle may initiate a distributed

snapshot. The snapshot permits to detect in-transit messages,

i.e., messages that have been emitted before the beginning of

the wave, but received after its beginning at another process.

Thus, after completing the snapshot, a process can report to

the announcer if it was active, or if it detected an in-transit

message at the logical time of the snapshot. Unfortunately,

this approach requires performing a large number of waves.

Specifically, one wave for every process’s transition from

active to idle, which – in the worst case – may result in as

many waves as primary messages. The approach also suffers

from a large termination detection delay.

The 4C wave algorithm, which has seen some practical uses

in [7], can avoid some of these caveats. In this algorithm,

processes are organized along a secondary tree overlay, and the

root of that tree announces when termination is detected. Every

process, p, counts how many primary messages it has sent, sp,
and received, rp. It also maintains two accumulating counters,

σsip and σrip, initially set to 0, representing the cumulative

number of primary messages sent and received by all processes

in the subtree rooted at p – as collected during wave i.

Independent of their idle or active state, processes can be

in the UP or DOWN state (UP initially). When a leaf in the

tree becomes idle in the UP state, it enters the DOWN state

and sends its two counters to its parent in a STOP message.

When a node in the tree receives a STOP message from its

children, it accumulates the counters. When it becomes idle

in the UP state and has received a STOP message from all

of its children, it enters the DOWN state and propagates the

counters to its parent.

When the root enters the DOWN state, it compares σsiroot,
σriroot, σr

i−1
root, and σsi−1

root. If they are all equal, it broadcasts

the termination; otherwise, it sends down a REPEAT message

(propagated by all) that initiates the nodes’ transition from the

DOWN state to the UP state (thus starting another wave).

Comparing σsiroot and σriroot is not a sufficient condition

for termination, as one has to account for orphan messages,

i.e., messages emitted by some process after the wave and

received by some other process before the wave. If the wave

is crossed by orphan messages, the reception is counted in the

613

Authorized licensed use limited to: University of Manchester. Downloaded on August 05,2022 at 10:56:19 UTC from IEEE Xplore. Restrictions apply.

accumulator, σriroot, but its emission is not. Thus, an orphan

message may cancel the difference, σriroot − σsiroot, even

when an in-transit message is present, which would render the

algorithm incorrect. If the value of σsiroot remains constant

during two consecutive waves, then the prior wave had no

orphan messages, hence the counter comparison is a valid

estimator for the absence of in-transit messages.

C. Optimal Delay Algorithm

Mahapatra and Dutt [6] note that many termination detec-

tion algorithms focus on optimizing for the minimal number

of secondary messages but often exhibit poor detection delay

on commonly used primary communication patterns, like k-
ary n-cubes, especially when considering a bounded port

model, where message management time is considered. For

this reason, the authors focus on designing an algorithm the

purpose of which is to attain the optimal detection delay on

arbitrary primary communication patterns.

Their EDOD algorithm requires that primary messages be

acknowledged by secondary messages to prevent premature

termination announcements. Their algorithm also uses a sec-

ondary static spanning tree to reduce status change messages to

the root and to broadcast the termination announcement. The

secondary overlay can be (but does not have to be) extracted

as a subset of the primary communication topology when it

is known in advance. The root is then selected as a central

process at a minimal distance to all leaf processes.

When the root process becomes idle, it announces the

termination. When a non-root process becomes idle, it sends

a STOP message to its parent. A process cannot become idle

until it receives a STOP message from all of its children.

During the normal course of the computation, the algorithm

counts the outgoing primary messages. A process cannot

become idle until it receives a secondary acknowledge mes-

sage for every outgoing primary message. When receiving a

primary message, the receiver, r, may be active or idle. When r
is active, it acknowledges the reception using a direct ACKs,r

secondary message to the sender s. When r is idle, it becomes

active and sends a RESUMEs,r message to its parent. The

parent may receive the RESUMEs,r message when it is active

or idle. When an idle parent receives a RESUMEs,r message

from a child, it becomes active, forgets the reception of the

STOP message from that child, and forwards the RESUMEs,r

message to its parent. When an active parent receives a

RESUMEs,r message from a child, it forgets the reception

of the previous STOP message from that child, and sends the

ACKs,r to r, following the inverse path from the RESUMEs,r

message, then r sends ACKs,r to s directly. In effect, delaying

the ACKs,r message prevents the root of the subtree containing

s and r from becoming idle when a potential RESUMEs,r

message is canceling the STOP-message-induced actions on

r’s ancestors.

D. Credit Distribution Algorithms

In a credit distribution algorithm (e.g., HCDA), as originally

proposed independently by Huang [4] and Mattern [5], an

initiator controlling agent starts the computation with Ctotal

total credit, and the initiator distributes the credit among

processes according to the initial activity of the processes.

During execution, messages carry credit between processes:

when a process sends a message, it sends a fraction of its

credit along with the message and keeps a fraction of the

credit for itself. When a process receives a message, it adds the

message-carried credit to its own credit stash. When a process

becomes idle, it returns its entire stash of credit to the initiator.

From there, the initiator process can detect the termination of

all other processes when it again has Ctotal credits. Note that,

as usual, an idle process may reset to active as a result of

receiving a message. In this case, the process transitioning

from an idle to an active state inherits the credit that has been

carried in the in-transit message, thus guaranteeing that the

initiator misses a fraction of the Ctotal credits for as long as

any in-transit or active processes remain.

This approach is elegant in theory, but it suffers from

multiple drawbacks that hinder its implementation. In non-

infinite precision arithmetic, the HCDA algorithm is subject

to an underflow problem when dividing the weight into two

halves upon message emission. To partially alleviate this

problem, Mattern [5] suggests using only credits of the form

X = 2−Y , where Y is an integer, and to encode Y = − log2 X
to represent X . This requires some modifications to the

algorithm, outlined below.

• Use 2−q as the initial local credit, where 2q−1 < P ≤ 2q ,
and total credit is now Ctotal = P2−q .

• An active node receiving a basic message returns the

message-carried credit to the collecting agent, instead of

storing it locally, to keep its own summing simple.

Then, all message weights have a weight, 2−Y , for some

Y , and sending a message splits the weight by incrementing

Y . However, the complete summation is delegated to the

controlling agent rather than eliminated, and many secondary

control messages are needed to return the non-locally summed

credit to the controlling agent.

Another variant suggested in [1, Ch. 6] allows a node

without any remaining credit to create its own credit currency

and start a weight-throwing termination detection subcall.

Then, that node returns its weight to the initiator when it has

become passive and its subcall has terminated. The weights

originating from the initiator and from the node must be

maintained separately. Again, this variant incurs additional

control overhead and extra delays. In Section IV, we discuss

how we build upon the basic HCDA strategy to design an

algorithm suitable for extreme-scale, distributed HPC systems

in a manner that avoids producing a large number of secondary

credit return messages and operates without messaging delays.

IV. CDA FOR HPC

We expand on the classical CDA algorithm with original

considerations for HPC platforms executing large-scale, dis-

tributed dataflow programs. The major challenge with CDA is

the credit attrition resulting from the non-infinite divisibility

614

Authorized licensed use limited to: University of Manchester. Downloaded on August 05,2022 at 10:56:19 UTC from IEEE Xplore. Restrictions apply.

of the credit representation. Our CDA algorithm strives to

achieve a low number of control messages while reducing the

disruption of the exchange of primary messages. In our CDA

algorithm, credit is represented as integer values (i.e., credit is

not infinitely divisible but can be summed efficiently without

arbitrary precision arithmetic). During the initial state, credit

is distributed equally among nodes. Each process starts with

an initial credit of value, Cinit, known by all. The total amount

of credit distributed initially is thus Ctotal = PCinit. Note that,

in certain applications, not all processes are initially active,

and an application-specific policy may have achieved a more

optimal initial distribution (e.g., by dividing the credit among

initially active processes) but at the expense of losing gener-

ality. Initial credit is computationally generated and requires

no secondary messages to be distributed.

When a process becomes idle, it returns its credit to the

controlling agent with a FLUSH secondary message. This

strategy has two drawbacks: (1) it increases the number of

control messages, significantly in the worst case; and (2) it

accelerates the rate of global attrition of credit in non-initiator

processes by removing the flushed credit from circulation

(hence increasing the chance that some active process will run

out of credit). In primary algorithms executed as a dataflow, the

locally visible horizon of tasks scheduled in the runtime can

be leveraged to detect that an outgoing message is terminal,

that is, the last message sent before a transition to idle.

We observe that sending the whole locally available credit

along with pending terminal emissions has multiple benefits: it

avoids generating FLUSH messages and maintains more credit

available among active processes. When sending a primary

message, a process splits its locally available credit (accord-

ing to different policies detailed below) and “piggybacks” a

fraction of the credit onto the message. Because the piggyback

is of fixed size (since our credit representation does not grow

to remain infinitely divisible), the practical cost of adding

the piggyback to primary messages is trivial. However, it is

possible that a process that needs to emit primary messages

would run out of locally available credit. In this case, the

process requests (with a secondary BORROW message) the

allocation of supplementary credits from the controlling agent.

The controlling agent counts how many credits have been

created during the execution in a counter that grows as neces-

sary, thereby ensuring that the controlling agent will never fail

at providing supplementary credits. As a consequence, more

credit than is representable by the maximum value of local

and message credit may be in circulation in the system. If

a non-controller process receives a message containing more

credit than it could accumulate in a single variable without

an overflow, its local credit is set to the maximum, and all

remaining credit is immediately returned to the controlling

agent. For as long as a process is out of credit (e.g., the time

period required for the secondary BORROW request to round-

trip to the control agent), the process has to delay the emission

of all primary messages, since it would otherwise carry the risk

of resetting the destination process to active without holding

message carried credit.

Running out of credit is a major performance hurdle and

should be avoided. To reduce the likelihood of running out

of credit, we devise two complementary strategies: (1) the

credit division strategy that we employ operates under multiple

regimes, and (2) credit borrowing is prefetched.

The minimum credit that a primary message may safely

carry is 1. While this strategy reduces the attrition rate at the

sender process (by leaving as much credit as possible at the

source), if a message reaches a process that has little credit

left (e.g., an idle process that had rid itself of all its local

credit), then that process will need to borrow credit from

the controlling agent and delay the next primary message.

Conversely, if a process divides the credit into two halves for

every message (as is customary in many CDA algorithms,

including HCDA), then local credit declines very quickly (at

an exponential rate) with the number of outgoing messages –

leading to a high chance of the process running out of credit

before it receives credit naturally through its primary message

receptions.

We devise a multi-regime strategy that avoids both issues.

When a process holds abundant credit (i.e., above a threshold

value, Ccon) the process employs a credit division strategy

to improve the chances that destination processes may carry

more message emissions without borrowing. Multiple mes-

sages may be sent simultaneously (from the view of the

emitter process and independently of the port model of the

network) when a task creates multiple successors at remote

processes. Each individual successor task may represent an

individual emission, yet all are created during the same local

step. Message emissions may also appear simultaneous for

a process when considering an asynchronous communication

system that enqueues non-blocking emissions. Messages may

be scheduled from additional tasks that are completing at the

local process before the initiation of previously scheduled

emissions at that same process. In both cases, instead of

dividing the credit by two for every message, credit is divided

uniformly among all outstanding emissions when message

emissions are simultaneous. We maintain a counter of shares,

S, which counts how many shares are known for the current

credit. S is equal to the number of outgoing messages, plus one

if the process remains active. Letting Ccur denote the current

credit amount, each message receives �Ccur� /S� credits.

When local credit drops below Ccon, the allotment of credit

per message is modified to carry a fixed amount of credit

per message Wcon. The goal is to conserve the local credit to

enable the process experiencing low availability of credit to

keep issuing messages with no delays, for as long as possible.

Overall, the credit allocation function uses the following

formula to set the credit, wi, on an outgoing message, mi,

at a process with current credit, Ccur, and S shares.

wi =

{ �Ccur
S � if Ccur > Ccon

min(�Ccur
S �,Wcon) if Ccur ≤ Ccon

In addition, to further avoid delaying emissions, when less

than Cborrow is available, the process proactively issues a BOR-

ROW message to replenish its credit with additional credit

615

Authorized licensed use limited to: University of Manchester. Downloaded on August 05,2022 at 10:56:19 UTC from IEEE Xplore. Restrictions apply.

from the control process. The amount of credit returned by the

control process is Cinit. In some cases, this may increase the

number of secondary BORROW messages, as the process may

have received credit (from primary message receptions) before

reaching an indivisible credit, but the severe performance

penalty resulting from delaying primary messages supports the

deployment of this optimization.

V. ANALYSIS

In this section, we compare the 4C, EDOD, HCDA, and

CDA algorithms in terms of their number of control messages,

which is the key parameter to assess and compare their

respective overhead. We use two simple applicative kernels

for this comparison: (1) the token ring, which is the archetype

case study for distributed algorithms; and (2) the projection op-

eration in 1−dimensional trees described in Section II, which

is representative of tree-based synchronous computations.

A. Token ring

The token ring is a kernel widely used to assess the perfor-

mance of distributed algorithms [9], [10], [11]. Informally, it

consists of several steps, with a token randomly moving from

one process to another at every step, and a random number of

steps. We use the following instantiation.

• The token is initially owned by process 0.
• With a fixed probability of p < 1, the token owner draws a

process number randomly and uniformly in [0,P − 1] and
sends a message (the token) to that process. The algorithm

stops with a probability of q = 1− p.

The expected number of steps (token moves) of the algo-

rithm is 1
q . At each step, the token owner performs some

computation, the precise length of which is not important but

is assumed to be long enough so that all control messages

of the termination detection algorithm are processed before

the next step begins. In other words, we can view the steps

as synchronized, with the termination algorithm detecting

termination (or not) at the end of each step.

The token ring mimics the termination pattern of an applica-

tion that ends with a linear chain of tasks, the length of which

is data dependent. Our results are shown below in Theorem 1.

Theorem 1. The expected number of control messages of 4C,
EDOD, HCDA, and CDA for the token ring is the following:

• E(4C) ≥ 1
q × P + P + o(P)

• E(EDOD) ≥ 1
q × 3 log(P) + 2P + o(P)

• E(HCDA) = 1
q + 2

log(Cinit)q
+ P + o(P)

• E(CDA) ≤ 2P
We see that EDOD is more efficient than 4C at each

step, and that CDA is the clear winner as soon as the token

circulates at least P times.

Proof. At each step of the token ring algorithm, the sender

node makes an active-to-idle transition, while the receiver

node is awakened by the token message and makes an idle-to-
active transition. Because we assume the steps do not overlap,

these are the only two transitions during the step, and all the

other processes remain idle.

For the 4C algorithm, the sender initiates a chain of

messages by notifying its parent in the control tree. There

are two cases, described below.

• If the receiver is not an ancestor of the sender in the control

tree, it will notify its parent, which in turn will notify its

parent, thereby eventually reaching the root. If the current

step is not the last step, the root will detect that the current

wave has failed (because not all nodes have reported being

idle) and will propagate this information down to tree to all

processes via a descending wave; if this is the last step, the

root will detect termination and send the final descending

wave; in both cases, the cost is P − 1 control messages.

• If the receiver is an ancestor of the sender in the control

tree, the chain of messages from the sender to the root will

be blocked by the receiver. But this latter event has a small

probability, because there are at most log(P) nodes in the

path from the sender to the root. Hence, the probability of

the receiver belonging to that path is at most
log(P)
P .

Altogether, the expected number of control messages per step

is at least (1− log(P)
P)(P−1)+ log(P)

P ×1 = P+o(P). Adding

the cost, P − 1, of the final notification broadcast, we get the

result for E(4C), since the expected number of steps is 1
q . For

the EDOD algorithm, we have the following analysis.

• Initially, every node transitions from active to idle, either

immediately or after sending the first message for the

initiator, and sends a message to its parent in the control

tree; therefore, there are P − 1 messages.

• For each token message at each step, an acknowledge

message is sent by the recipient to the sender. It goes through

a chain of resume and acknowledge all along the unique

path in the control tree connecting both nodes. The number

of control messages is equal to the distance between both

nodes in the control tree. The average distance between two

nodes in a complete binary tree of P nodes is asymptotically

2 logP [12]. As a side node, we see that this average

distance is of the same order as the diameter of the tree,

which can be explained by the fact that the majority of

nodes are leaves of the tree (see [12] for further details).

• We have to add the stop messages, propagated by the sender

up to the tree, which leads to logP additional messages per

token message. Altogether, the overhead is 3 logP per step.

Adding the cost, P − 1, of the final notification broadcast, we

get the result for E(EDOD). Finally, we discuss the number

of control messages for the credit distribution algorithms. For

HCDA, we count a message (to return the credit) every step

and two messages (borrowing request and extra credit) every

log(Cinit) steps, when the credit piggybacked in the primary

message runs out. For CDA, this means the following.

• After the first step, process 0 (the source node) becomes idle

after the token message is sent, and it transfers all its current

weight, Cinit, into the token message and has nothing to

return to the controlling agent. All nodes except the source

616

Authorized licensed use limited to: University of Manchester. Downloaded on August 05,2022 at 10:56:19 UTC from IEEE Xplore. Restrictions apply.

node were active and became idle during the first step, hence

they return their total weight to the controlling agent, which

amounts to P − 1 control messages.

• While the token iterates during the following steps, the

sender has weight, Cinit, and transfers it into the message,

and then it has zero weight and does nothing more. The

recipient had weight, 0, and gets Cinit from the message.

• Upon termination, the recipient sends its weight, Cinit, back

to the controlling agent.

Altogether, the overhead is P messages (out of which P − 1
are sent during the first step), hence the result for E(CDA)
when adding the cost of the last termination broadcast. An

important distinction for CDA is that the total number of

control messages is independent of the number of steps.

B. Non-deterministic binary trees

We consider now the projection operation in 1−dimensional

trees described in Section II. In practice, we can model such

an operation with a task graph that unfolds a binary tree,

each node having two children with some probability, and

being a leaf otherwise. Since an exact analysis with arbitrary

task weights is out of reach, we present a simplified scenario

to evaluate the average performance of the four algorithms.

The simulation works as follows: first, we precompute some

application trees with the following algorithm:

(1) Start with a complete tree of height Lmin = 3.
(2) For each leaf, at level l with probability λl, refine by

replacing the leaf with a complete subtree—the height of

which is drawn uniformly and at random between 2 and

5 (i.e., we add between 2 and 30 new nodes).

(3) Repeat the last step on all new leaves until no leaf is

refined.

(4) Crop the tree if its height exceeds Lmax.

The tasks of the tree are labeled using a breadth-first order:

task 0 is at level 0, and tasks 1 and 2 are at level 1, and so

on. We generated different sizes of trees using the following

parameters: small trees with λ = 0.8 and Lmax = 30, medium

trees with λ = 0.9 and Lmax = 50, and big trees with λ = 0.93
and Lmax = 60.

For the simulation, we consider that all tasks at a given level,

l, are processed at time, l. We have two different mapping

strategies for mapping tasks to processes: (1) a round-robin

mapping, where task x goes to process x mod P; and (2) a

random mapping, where task x goes to a process uniformly

drawn in [0,P − 1].
We compute the messages sent by the application at each

step (all tasks at a level in the tree), and determine whether the

processes become active or idle at the end of the step. When a

process was active and is again active at the end of the step, we

model the inherent distributed aspect of the algorithms using

three different models:

• Sinstant: The node does not transition to idle during the step, it

remains active throughout. This corresponds to the case where

computations and communications are instantaneous, thus a

node knows in advance whether it will stay active or not.

• Slocal: The node transitions to idle before returning to

active, unless there is a message to itself. This corresponds

to the case where communications are very slow compared to

computations, all messages are received at the end of the step,

so a process transitions to idle because it cannot know in in

advance whether it will stay active or not.

• Sload: The node transitions to idle before returning to active

only if it has no message for itself and if its load is smaller

than all the loads of the nodes that send a message to it:

this is because in that case, it terminates computing before

receiving any load from the other guys. This corresponds to

the case where computations are long and messages takes very

short time. We define the load to be equal to the number of

messages received at the previous step (each of them implying

the execution of a task, this corresponds to assuming that all

tasks have the same weight).

To compare the performance of CDA to other algorithms,

we compute the number of control messages sent by each

algorithm, as detailed below.

• HCDA and CDA: all messages carry credits, so there is no

control message – except when one process becomes idle

and needs to return its credit to the controlling agent (flush),

or when it does not have credit anymore and needs to send

a message to the controlling agent to continue (borrow).

Each time we detect that a process needs to flush or borrow,

we add one control message. Otherwise, when processes

transition from idle to active or from active to idle, we do not

count anything, as these algorithms do not send messages

for simple transitions.

• 4C: once the list of messages (sent during a step) is com-

puted, we go through the list of all processes in descending

order. If a process becomes idle, we check if it belongs to

the wave. If it does not, it is added to the wave; if the process

has children, they also belong to the wave. By going through

the processes in descending order, we ensure the wave goes

as high as possible in the control tree. Each time the root

belongs to the wave, we account for 2(P−1) messages (2×
the number of edges in the control tree).

• EDOD: each time a process, pi, transitions from idle to

active, it means that it received messages from a set of

processes, S. We then compute the union of all paths from pi
to each one of the processes in the set S. Finally, we sum the

number of edges in that union of paths, which accounts for

the number of control messages sent at this step by process

pi. When a process, pi, transitions from active to idle, we

check that its whole subtree is composed of idle processes

at the end of the step. In that case, we account for one

control message that goes up in the control tree; there are n
messages total, where n is the size of the subtree, because

each node of the subtree is the root of an idle subtree itself.

Figures 2 to 5 present the number of control messages

for all algorithms. We had to use a logarithmic scale on the

Y-axis to report a range of different numbers. The data is

presented for a wide range of tree sizes, ranging from small

(47 tasks in Figure 2) and medium (397 tasks in Figure 3)

617

Authorized licensed use limited to: University of Manchester. Downloaded on August 05,2022 at 10:56:19 UTC from IEEE Xplore. Restrictions apply.

Sinstant Slocal Sload
R
o
u
n
d
R
o
b
in

M
ap

p
in
g

R
an

d
o
m

M
ap

p
in
g

Figure 2: Number of control messages per process for all algorithms (4C, EDOD, HCDA and CDA) for a 47-task tree. The

first row uses a round-robin mapping while the second row uses a random mapping.

Sinstant Slocal Sload

R
o
u
n
d
R
o
b
in

M
ap

p
in
g

R
an

d
o
m

M
ap

p
in
g

Figure 3: Number of control messages per process for all algorithms (4C, EDOD, HCDA and CDA) for a 397-task tree. The

first row uses a round-robin mapping while the second row uses a random mapping.

Sinstant Slocal Sload

R
o
u
n
d
R
o
b
in

M
ap

p
in
g

R
an

d
o
m

M
ap

p
in
g

Figure 4: Number of control messages per process for all algorithms (4C, EDOD, HCDA and CDA) for a 17, 797-task tree.

The first row uses a round-robin mapping while the second row uses a random mapping.

618

Authorized licensed use limited to: University of Manchester. Downloaded on August 05,2022 at 10:56:19 UTC from IEEE Xplore. Restrictions apply.

Sinstant Slocal Sload
R
o
u
n
d
R
o
b
in

M
ap

p
in
g

R
an

d
o
m

M
ap

p
in
g

Figure 5: Number of control messages per process for all algorithms (4C, EDOD, HCDA and CDA) for a 202, 007-task tree.

The first row uses a round-robin mapping while the second row uses a random mapping.

to large (17, 797 tasks in Figure 4) and very large (202, 007
tasks in Figure 5), using an initial credit, Cinit = 232. First,

all the simulations show that CDA dramatically outperforms

HCDA. Interestingly, the only occurrences of BORROWs for

CDA are when the mapping is random and there are only

a few processes. In this case, the processes may receive a

lot of messages, thus a lot of tasks to execute, and thus

a higher number of messages to send afterward. With the

credit reducing quickly at the beginning because there is a

good probability that a process is idle in the first steps, and

there may be too many messages to send compared to the

credit. Still, the number of BORROWs is – on average –

null, especially when using round-robin mapping. The only

overhead in terms of messages added by CDA comes from

the number of flushes (when a process becomes idle and has

no message to send). When using round-robin mapping, the

number of flushes per process is less than the number of

control messages sent by the 4C algorithm (on average for the

first figure). However, when we set the mapping to be random,

4C proves to be more efficient than CDA when P > 100.
Between random and round-robin mapping, the number of

control messages for CDA does not change much, whereas

random mapping drastically reduces the number of control

messages for 4C.

Overall, we expect CDA to send less messages than 4C, in

particular when the number of processes increases. Looking

at the top-right plots in each figure, where the model is Sload
and the mapping is round-robin (achieving more load balance

than random), the number of flushes per process tends to stay

constant when the number of processes increases, whereas 4C

produces more messages.

Table I provides the average ratio, over the three models,

of the number of control messages generated by 4C, EDOD,

and HCDA over that of CDA, for the four tree sizes. For

the round-round mapping, the best competitor is 4C which

sends three times fewer messages for 47-task trees but three

and a half times more for 202, 007-task trees. For the random

mapping, 4C is also the best competitor, with a 20% gain

for 47-task trees but twice more messages for 202, 007-task
trees. For both mapping, EDOD and HCDA generate an

order of magnitude more messages than CDA. Altogether, for

large trees, CDA succeeds in dramatically reducing the total

number of control messages in comparison with the other three

algorithms 4C, EDOD, and HCDA.

VI. RELATED WORK

[13] proposes a method to precisely define the metrics of

efficiency for distributed termination detection. We leverage

this method in our analysis.

Termination detection has been studied extensively from

the theoretical perspective: [14] demonstrates that different

classes of detectors are equivalent through automatic transfor-

mations; see Ch. 6 of [1] and Ch. 9 of [15].

Wave termination detection algorithms include [16], based

on distributed snapshots, and [17], designed for asynchronous

wide-area networks by combining a reduction tree with a

logical ring. Delay optimal algorithms include [18] and [6],

and we compare one that is representative to this work.

Weight throwing, or distributed credit algorithms, have been

extensively studied theoretically: [19] proposes to use them

to implement garbage collection mechanisms; [20] introduces

the Doomsday termination detection protocol that deals with

migrating tasks; [21] uses a mobile agent to count the weight

remaining in the system; [22] and [23] consider the partic-

ular case of mobile networks; and [24] considers resilient

approaches to these algorithms. A recent work [25] introduces

resilient optimistic termination.

Few works compare, experimentally or practically, the dif-

ferent algorithms to evaluate the behavior in average or real-

world conditions. In [26], this comparison is conducted over

a simple benchmark consisting of 100 randomly generated

nested graphs of tasks.

619

Authorized licensed use limited to: University of Manchester. Downloaded on August 05,2022 at 10:56:19 UTC from IEEE Xplore. Restrictions apply.

Tree size 4C round-robin 4C random EDOD round-robin EDOD random HCDA round-robin HCDA random
47 0.32 0.83 12.08 16.07 37.68 38.28
397 1.28 0.65 17.09 18.97 11.65 14.36

17,797 3.34 1.60 68.06 64.56 12.70 12.66
202,007 3.52 1.98 201.68 176.38 95.40 87.98

Table I: Average ratio of the number of control messages generated by 4C, EDOD, and HCDA over that of CDA, for the

round-robin and random mappings, and for all tree sizes.

VII. CONCLUSION

This paper revisits distributed termination detection algo-

rithms in the context of HPC applications, motivated by the

need to efficiently detect termination of work flows for which

the total number of tasks are data-dependent and, hence, not

known until during execution. We introduce an efficient vari-

ant, CDA, of the credit distribution algorithm, and compare

it to the initial credit distribution algorithm, HCDA, and to

two other termination detection algorithms, 4C and EDOD.

We analyze each algorithm for simplified task-based kernels

and show the superiority of CDA in terms of the number of

control messages.

Future work will be devoted to providing a highly tuned

implementation of each termination detection algorithm within

the task based runtime system PARSEC [27], and to compare

their performance for a variety of benchmarks reflecting sci-

entific applications that exhibit dynamic behaviors. This will

enable us to quantify the overhead of each algorithm in terms

of absolute application performance, not just in terms of the

number of control messages that are generated.

Acknowledgements: This research was supported by the

Exascale Computing Project (17-SC-20-SC), a collaborative

effort of the U.S. Department of Energy Office of Science and

the National Nuclear Security Administration. This research

was supported partly by the NSF project #1450300.

REFERENCES

[1] W. Fokkink, Distributed Algorithms: An Intuitive Approach. The MIT
Press, 2013.

[2] E. W. Dijkstra and C. S. Scholten, “Termination Detection for Diffusing
Computations,” Inf. Process. Lett., vol. 11, no. 1, pp. 1–4, 1980.

[3] N. Francez, “On achieving distributed termination,” in Proc. Int. Symp.
Semantics of Concurrent Computation, ser. Lecture Notes in Computer
Science, G. Kahn, Ed., vol. 70. Springer, 1979, pp. 300–315.

[4] S. T. Huang, “Detecting termination of distributed computations by
external agents,” in ICPP. Pennsylvania State University Press, 1989,
pp. 79–84.

[5] F. Mattern, “Global quiescence detection based on credit distribution
and recovery,” Inf. Process. Lett., vol. 30, no. 4, pp. 195–200, 1989.

[6] N. R. Mahapatra and S. Dutt, “An efficient delay-optimal distributed
termination detection algorithm,” J. Parallel Distributed Computing,
vol. 67, no. 10, pp. 1047 – 1066, 2007.

[7] R. J. Harrison, G. Beylkin, F. A. Bischoff, J. A. Calvin, G. I. Fann,
J. Fosso-Tande, D. Galindo, J. R. Hammond, R. Hartman-Baker, J. C.
Hill, J. Jia, J. S. Kottmann, M. Y. Ou, J. Pei, L. E. Ratcliff, M. G.
Reuter, A. C. Richie-Halford, N. A. Romero, H. Sekino, W. A. Shelton,
B. E. Sundahl, W. S. Thornton, E. F. Valeev, Á. Vázquez-Mayagoitia,
N. Vence, T. Yanai, and Y. Yokoi, “MADNESS: A multiresolution,
adaptive numerical environment for scientific simulation,” SIAM J.
Scientific Computing, vol. 38, no. 5, 2016.

[9] J. Misra, “Detecting Termination of Distributed Computations Using
Markers,” in Proc. 2nd ACM Symposium on Principles of Distributed
Computing, ser. PODC ’83. ACM, 1983, pp. 290–294.

[8] K. M. Chandy and L. Lamport, “Distributed Snapshots: Determining
Global States of Distributed Systems,” ACM Trans. Comput. Syst., vol. 3,
no. 1, pp. 63–75, 1985.

[10] A. J. Martin, “Distributed mutual exclusion on a ring of processes,”
Science of Computer Programming, vol. 5, pp. 265–276, 1985.

[11] X. Défago, A. Schiper, and P. Urbán, “Total Order Broadcast and Mul-
ticast Algorithms: Taxonomy And Survey,” ACM Computing Surveys,
vol. 36, p. 2004, 2003.

[12] B. Parhami, “Exact formulas for the average internode distance in
mesh and binary tree networks,” Computer Science and Information
Technology,, vol. 1, pp. 165–168, 2013.

[13] Y. Tseng and R. F. DeMara, “Communication pattern based methodology
for performance analysis of termination detection schemes,” in IPDPS.
IEEE, 2002.

[14] S. Peri and N. Mittal, “Improving the efficacy of a termination detection
algorithm,” J. Inf. Sci. Eng., vol. 24, no. 1, pp. 159–174, 2008.

[15] S. Ghosh, Distributed Systems An Algorithmic Approach, 2nd Edition.
Chapman & Hall/CRC, Computer & Information Science Series, 2015.

[16] S.-T. Huang, “Termination detection by using distributed snapshots,”
Information Processing Letters, vol. 32, no. 3, pp. 113 – 119, 1989.

[17] X. Wang and J. Mayo, “A general model for detecting distributed
termination in dynamic systems,” in 18th International Parallel and
Distributed Processing Symposium, 2004. Proceedings., April 2004, pp.
84–.

[18] N. Mittal, S. Venkatesan, and S. Peri, “Message-optimal and latency-
optimal termination detection algorithms for arbitrary topologies,” in
Distributed Computing, R. Guerraoui, Ed. Berlin, Heidelberg: Springer,
2004, pp. 290–304.

[19] S. M. Blackburn, J. E. B. Moss, R. L. Hudson, R. Morrison, D. S.
Munro, and J. N. Zigman, “Starting with termination: A methodology for
building distributed garbage collection algorithms,” in 24th Australasian
Computer Science Conference (ACSC 2001), 29 January - 1 February
2001, Gold Coast, Queensland, Australia, 2001, pp. 20–28.

[20] M. J. Livesey, R. Morrison, and D. S. Munro, “The doomsday distributed
termination detection protocol,” Distributed Computing, vol. 19, no. 5,
pp. 419–431, Apr 2007.

[21] N. Garanina and E. Bodin, “Distributed termination detection by count-
ing agent,” CEUR Workshop Proceedings, vol. 1269, pp. 69–79, 01 2014.

[22] R. Mishra and P. Saini, “A weight throwing and diffusing computation
based approach for termination detection in manets,” in 2016 Fourth
International Conference on Parallel, Distributed and Grid Computing
(PDGC), 2016, pp. 50–55.

[23] S. De, M. Sameeruddin, V. Sharma, N. Nandi, and H. Dutta, “A new
termination detection protocol for mobile distributed systems,” in 10th
International Conference on Information Technology (ICIT 2007), Dec
2007, pp. 148–150.

[24] T. Tseng, “Detecting termination by weight-throwing in a faulty dis-
tributed system,” Journal of Parallel and Distributed Computing, vol. 25,
no. 1, pp. 7 – 15, 1995.

[25] S. S. Hamouda and J. Milthorpe, “Resilient optimistic termination detec-
tion for the async-finish model,” in High Performance Computing (LNCS
11501), M. Weiland, G. Juckeland, C. Trinitis, and P. Sadayappan, Eds.
Springer, 2019.

[26] R. F. DeMara, Y. Tseng, and A. Ejnioui, “Tiered algorithm for distributed
process quiescence and termination detection,” IEEE Trans. Parallel
Distrib. Syst., vol. 18, no. 11, pp. 1529–1538, 2007.

[27] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J.
Dongarra, “PaRSEC: Exploiting Heterogeneity to Enhance Scalability,”
Computing in Science Engineering, vol. 15, no. 6, pp. 36–45, 2013.

620

Authorized licensed use limited to: University of Manchester. Downloaded on August 05,2022 at 10:56:19 UTC from IEEE Xplore. Restrictions apply.

		2022-08-01T14:00:18-0400
	Preflight Ticket Signature

