
Replacing Pivoting in Distributed Gaussian
Elimination with Randomized Techniques

Neil Lindquist∗, Piotr Luszczek∗, and Jack Dongarra∗†
∗Innovative Computing Laboratory, University of Tennessee, {nlindqu1,luszczek,dongarra}@icl.utk.edu

†University of Manchester; Oak Ridge National Laboratory

Abstract—Gaussian elimination is a key technique for solving
dense, non-symmetric systems of linear equations. Pivoting is
used to ensure numerical stability but can introduce significant
overheads. We propose replacing pivoting with recursive but-
terfly transforms (RBTs) and iterative refinement. RBTs use
an FFT-like structure and randomized elements to provide an
efficient, two-sided preconditioner for factoring. This approach
was implemented and tested using Software for Linear Algebra
Targeting Exascale (SLATE). In numerical experiments, our
implementation was more robust than Gaussian elimination
with no pivoting (GENP) but failed to solve all the problems
solvable with Gaussian elimination with partial pivoting (GEPP).
Furthermore, the proposed solver was able to outperform GEPP
when distributed on GPU-accelerated nodes.

Index Terms—Linear systems, randomized algorithms

I. INTRODUCTION

Gaussian elimination, or LU factorization, is the primary

method for solving dense, non-symmetric systems of linear

equations. The most common variant of this factorization,

Gaussian elimination with partial pivoting (GEPP), swaps the

row with the largest element on or below the diagonal with the

diagonal’s row before factoring that column. However, partial

pivoting adds noticeable overheads to the performance of the

factorization. First, to determine the pivots, the largest element

below the diagonal element must be found for each column,

after the previous column’s update has been applied and before

the current column’s update can be applied. This increases the

communication for distributed solvers and limits the amount

of overlap with computation. Second, swapping the rows

introduces data movement costs, which again, can become

expensive in distributed solvers. Unfortunately, pivoting is

critical for numerical stability; Gaussian elimination with no

pivoting (GENP) is only guaranteed to be safe for specific

classes of matrices, such as diagonally dominant matrices and

totally nonnegative matrices [1]. Thus, methods with smaller

overhead than partial pivoting but better numerical stable than

no pivoting are desirable.

There have been alternative pivoting strategies proposed

to reduce the overhead of pivoting. One such approach is

incremental pivoting, which is based on out-of-core techniques

and only applies GEPP to two tiles at a time [2]. This

reduces the amount of communication to choose pivots at the

cost of increased computation and reduced parallelism in the

panel factorization. Another approach is Gaussian elimination

with tournament pivoting, or communication avoiding LU,

which selects the “best” nb rows to be the pivots of the nb-

column panel before starting the Gaussian elimination process

for those columns [3]. A copy of each tile in the panel

is factored with GEPP, and the pivot rows are recorded.

Then, the sets of rows are reduced in a binary manner by

taking the corresponding rows from the original panel as a

2nb × nb matrix, applying GEPP, then taking the nb pivot

rows. When the Gaussian elimination is finally applied, only

the chosen nb rows are considered as pivots, allowing the

leading nb × nb matrix to be factored without further com-

munication. Additionally, swapping rows in the trailing matrix

update can be partially overlapped with this final factorization.

Unfortunately, these approaches still require swapping rows,

likely between different processes.

An alternative approach is to completely remove pivoting

and instead precondition the matrix to provide numerical

stability. There have been a variety of possible preconditioners

proposed [4]. However, we are focusing on recursive butterfly

transforms (RBTs) [5], which have had promising success in

past research [6], [7], [8]. However, previous studies tested

problems that were either sparse, single-node, or symmetric,

so we explored the dense, distributed, non-symmetric case.

II. RELATED WORK

Parker [5] introduced RBT and proved that, with probability

1, they render a matrix factorizable with GENP. He also

compared against LINPACK’s dgefa() factorization subroutine
on matrices whose elements were drawn from a variety of

random distributions. Additional properties of an RBT-variant

were further explored in relation to spectral transforms [9].

A distributed-memory variant was proposed as an alternative

to LDLT factorization in DPLASMA [7]. It was based on

the DaGUE distributed Direct Acyclic Graph (DAG) sched-

uler that scalably implements a dataflow paradigm. RBT

allowed the authors to avoid pivoting that, in the case of

LDLT, involves both rows and columns to preserve symme-

try and is highly detrimental on large scale machines that

may suffer when these latency-sensitive operations interrupt

computationally-intensive tasks working on matrix blocks or

tiles.

Another application of RBT for Gaussian-Elimination fac-

torization was proposed for multicore systems accelerated with

GPU hardware for both symmetric [10] and non-symmetric

linear systems [6]. Relatedly, the use of RBT for Intel

Xeon Phi accelerators has been tested for the non-symmetric

case [11]; this hardware behaved like the GPUs, except for

35

2020 IEEE/ACM 11th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA)

DOI 10.1109/ScalA51936.2020.00010
978-1-6654-2270-3/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:17:59 UTC from IEEE Xplore. Restrictions apply.

(a) Sparsity pattern of
B〈n〉.

(b) Sparsity pattern of

diag
(
B
〈n/2〉
1 , B

〈n/2〉
2

)
.

(c) Sparsity pattern of a
depth two RBT.

Fig. 1: Sparsity patterns of the last two terms of (1) and their

product, a depth two butterfly.

the iterative refinement, which had not been optimized. These

systems are designed to exploit large amounts of parallelism,

which can be limited by the dependencies and data movements

in GEPP. Thus, removing pivoting increases their perfor-

mance, while RBTs can be cheaply applied. Additionally, the

works testing GPU-based systems provide numerical accuracy

results for the reduced butterfly depth used everywhere, except

Parker’s original paper.

Applying RBT to sparse matrices was also proposed to

reduce the amount of fill-in compared to pivoting [8]. One

particularly interesting suggestion from that work is to only

apply an RBT to one side of the matrix instead of both sides.

Our approach unifies these approaches into a single formu-

lation that targets multicore, GPU, distributed memory, and

standards-based runtime DAG scheduling for algorithms ex-

pressed with a dataflow approach. Our work applies to general

non-symmetric, dense matrices that admit LU factorization and

thus are numerically nonsingular in the working precision —

either 32-bit or 64-bit floating-point formats.

III. DEFINITION AND PROPERTIES OF RECURSIVE

BUTTERFLY TRANSFORMS

A butterfly matrix is a matrix of the form

B〈n〉 =
1√
2

[
R0 R1

R0 −R1

]
,

where R0 and R1 are n/2 × n/2, nonsingular, diagonal
matrices [5]. Then, an RBT of depth d, U 〈n〉, is a matrix
of the form

U 〈n〉 =

⎡
⎢⎢⎣
B
〈n/2d−1〉
1 . . . 0
...

. . . 0

0 . . . B
〈n/2d−1〉
2d−1

⎤
⎥⎥⎦× . . . (1)

×
[
B
〈n/2〉
1 0

0 B
〈n/2〉
2

]
×B〈n〉.

Note that n must be a multiple of 2d−1; however, a linear

system can be augmented with ones on the diagonal and zeros

on the off diagonals to add the necessary rows and columns

to the matrix. Figure 1 shows the sparsity pattern for butterfly

matrices and the resulting depth-two RBT. Additionally, (1) is

a generalized form of the original definition of RBTs, which

1: A′ ← 〈U〉T ×A× 〈V〉
2: �b′ ← 〈U〉T ×�b
3: L,U ← Apply GENP to A′
4: �x′ ← U−1 × L−1 ×�b′

5: �x← 〈V〉 × �x′

Fig. 2: Solving the linear system A�x = �b using recursive
butterfly transforms 〈U〉 and 〈V〉.

is the case where d = log2(n) + 1 [5].1 For example, the
structure of U 〈4〉 with a depth of 2 is

U 〈4〉 =
1

2

⎡
⎢⎢⎢⎣
r
〈2〉
1 r

〈2〉
2

r
〈2〉
1 −r〈2〉2

r
〈2〉
3 r

〈2〉
4

r
〈2〉
3 −r〈2〉4

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣
r
〈4〉
1 r

〈4〉
3

−r〈4〉2 r
〈4〉
4

r
〈4〉
1 −r〈4〉3

r
〈4〉
2 −r〈4〉4

⎤
⎥⎥⎥⎦ ,

where each r
〈j〉
i is a scalar. The structure of RBT matrices

is equivalent to the bit-shuffle permutations performed by

Discrete Fourier Transform (DFT) matrices [5] that bear the

butterfly name due to the data transfer patterns they form [12].

This relation to DFT computational and communication pro-

cesses makes RBT matrices efficient to apply in practice. Ad-

ditionally, if each nonzero in the component butterfly matrices

has magnitude one, the transform is unitary.

RBTs can be used to avoid pivoting by preconditioning the

system. Let 〈U〉 and 〈V〉 be recursive butterfly transforms.
Then, the linear system A�x = �b can be solved by the algorithm
in Fig. 2.2 If a 2d × 2d, nonsingular matrix is preconditioned
by a random, depth-d RBT, then GENP will succeed with
probability 1 [5]. However, previous work has noted that most

matrices can be preconditioned successfully with a depth-2

RBT if iterative refinement is also used [6].

It may appear that the RBTs could instead use butterflies of

size 2k×2k for k = 1, 2, . . . , d, which would reduce commu-
nication in distributed contexts. However, the conditions of the

leading, principal submatrices with dimension divisible by 2d

do not change. Because GENP is numerically safe if and only

if each leading, principal submatrix is nonsingular and well-

conditioned [4], this block diagonal form of RBT provides

limited benefit unless the depth is close to log2(n). On the
other hand, when using the form of RBT described in (1),

more elements contribute to the leading submatrix condition

numbers. Each element of the leading principal submatrices

of dimension less than n/2d are approximately equal to the
sum of 22d elements, with the random factors providing a low

1B〈1〉 is defined to be a nonzero scalar.
2While the algorithm uses matrix transposition, it is also valid for RBT

matrices in the complex domain, either as written or after replacing the
transpositions with conjugate-transpositions.

36

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:17:59 UTC from IEEE Xplore. Restrictions apply.

probability of the sums being too close to 0. Large submatrices

are affected by elements from the entire matrix, limiting how

poorly conditioned the submatrix can become.

A. Packed Storage for Recursive Butterfly Transforms

Explicitly constructing the RBT matrices would triple the

storage required for the linear system. However, the structured

sparsity can be used to reduce storage costs. Note that a

butterfly matrix is equivalent to[
I I
I −I

]
×R,

where R is diagonal. So, only the m diagonal elements of an
m×m butterfly matrix need to be stored. Hence, a recursive
butterfly transform of depth d and size n can be stored in an
n×d dense matrix where each column stores one term of (1).
Because d� n, recursive butterfly transforms introduce little
additional storage when using packed storage.

B. Computation Cost of Recursive Butterfly Transforms

Similar to storing the matrix, utilizing the transform’s struc-

ture provides significant benefits for RBT application. Let A
be an m×m matrix, and let

B
〈m〉
1 =

[
R0 R1

R0 −R1

]
and B

〈m〉
2 =

[
R2 R3

R2 −R3

]

be butterfly matrices stored in vectors �w1 and �w2 using the

packed format from Sec. III-A. Then,

(B
〈m〉
1)TAB

〈m〉
2 =

[
R0 R0

R1 −R1

]
A

[
R2 R3

R2 −R3

]

=

[
R0 R0

R1 −R1

] [
A11 A12

A21 A22

] [
R2 R3

R2 −R3

]

=

[
R0 0
0 R1

]
C

[
R2 0
0 R3

]
(2)

= diag(�w1) C diag(�w2)

where

C =

[
A11 +A12 +A21 +A22 A11 −A12 +A21 −A22

A11 +A12 −A21 −A22 A11 −A12 −A21 +A22

]
.

Thus, transforming anm×m matrix requires 4m2 FLOP. Note

that applying RBTs to both sides of an n × n matrix can be
broken down into (n/m)2 butterfly matrix applications of size
m×m, and thus, requires 4n2 FLOP. Hence, to apply an RBT

of depth d requires 4dn2 FLOP.

Similarly, an RBT in the packed format can be applying to

a vector. Then, each transform only requires O (n) FLOP for a
total of O (dn) FLOP to apply a recursive butterfly transform
of depth d. Because d � n, the cost of transforming the
vectors will be disregarded for the rest of the paper.

In distributed settings, it is also important to consider the

amount of inter-process communication needed. Similar to

computing the FLOP count, we start by considering the cost

of applying a single butterfly matrix to each side of an

m × m matrix, A. First, note that in the description above
of applying a butterfly matrix to each side, each element, of

(B
〈m〉
1)TAB

〈m〉
2 = (αij) depends on four elements in A, one

element from either R0 or R1, and one element from either

R2 or R3. Specifically, the dependencies of α1,1, α1+m/2,1,

α1,1+m/2, and α1+m/2,1+m/2 on A = (aij) are the elements
in the same positions, i.e. a1,1, a1+m/2,1, a1,1+m/2, and

a1+m/2,1+m/2. Furthermore, the elements in R0 and R1 are

shared across the rows of the result, and the elements in R2

and R3 are shared across the columns. We only consider the

case where (B
〈m〉
1)TAB

〈m〉
2 and A are distributed across the

processes in the same manner, which occurs when reusing

the storage of A to hold the resulting transformed matrix.
Additionally, let p be the maximum number of processes the
elements of a single row of A can be distributed across and let
q be the corresponding value for columns. Then by gathering
each set of four interacting elements onto a single process

where one of those elements already resides and returning

them after doing the appropriate computation, we need to

transfer up to 6m2 elements of the matrix, mp/2 elements
of each R0 and R1, and mq/2 elements of each R2 and R3.

Next, we expand the communication cost analysis from

a single pair of butterflies to the entire transform. Simply

combining the individual butterfly applications as described

above would result in transferring 6dn2 elements of the matrix,

np/2 elements of each R0 and R1, and nq/2 elements of each
R2 and R3. Note that it is possible to merge the return of

elements for one application with the gathering of elements

for the next application. With this improvement, it would be

possible to reduce the upper bound on matrix element transfers

to 4dn2+2n2. However, because of the increase in algorithm

complexity, we have not implemented this improvement.

IV. IMPLEMENTING RECURSIVE BUTTERFLY TRANSFORMS

We implemented a linear solved based on RBT and

GENP using Software for Linear Algebra Targeting Exas-

cale (SLATE). SLATE is a dense linear algebra library for

distributed, high-performance systems, both with and without

GPU acceleration [13]. SLATE uses a tile layout for matrix

storage, which provides significant flexibility and a natural

way to organize parallelism. While SLATE is designed for

hybrid algorithms between CPU and GPU, we have not

implemented a GPU version of RBT application.

Given the recursive structure of RBT, we implemented the

application by applying one term of the product in (1) at a

time, albeit in a two-sided manner, to transform the matrix.

Furthermore, the transformation is simplified by applying one

pair of butterflies at a time, as described in Section III-B.

This is implemented as an elementwise operation on the

four submatrices corresponding to each pair of left and right

butterflies. Because the matrices are distributed, each set of

four elements is sent to the node owning the upper left

element to be transformed. Figure 3 shows pseudocode for our

two-sided RBT. The first procedure, RBT, breaks the trans-

formation into individual butterfly applications. The second

procedure, RBT2TILE, applies a single pair of butterflies where

the matrices and butterfly values are separated similar to the

organization in (2). In a non-tiled code, RBT2TILE is equivalent

37

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:17:59 UTC from IEEE Xplore. Restrictions apply.

1: procedure RBT(A, U , V)
2: d← depth(U)
3: for k from d− 1 to 0 do
4: bn ← 2k � Number of butterflies
5: h← n/2k+1 � Half a butterfly’s size
6: for bj from 0 to bn do � Right butterflies
7: j1 ← 2bjh
8: j2 ← j1 + h � Column indices for bj
9: j3 ← j2 + h
10: for bi from 0 to bn do � Left butterflies
11: i1 ← 2bih
12: i2 ← i1 + h � Row indices for bi
13: i3 ← i2 + h
14: A11 ← A[i1:i2, j1:j2]
15: A12 ← A[i1:i2, j1:j2]
16: A21 ← A[i2:i3, j2:j3]
17: A22 ← A[i2:i3, j2:j3]
18: U1 ← U [i1:i2, k]
19: U2 ← U [i2:i3, k]
20: V1 ← V [j1:j2, k]
21: V2 ← V [j2:j3, k]
22: RBT2(A11, A12, A21, A22,

U1, U2, V1, V2)

23: procedure RBT2TILE(A11, A12, A21, A22, U1, U2, V1, V2)

24: mb × nb ← dim(A11) � Tiles are all the same size
25: for j from 0 to nb do
26: v1 ← V1[j]
27: v2 ← V2[j]
28: for i from 0 to mb do
29: u1 ← U1[j]
30: u2 ← U2[j]
31: a11 ← A11[i, j]
32: a12 ← A12[i, j]
33: a21 ← A21[i, j]
34: a22 ← A22[i, j]
35: A11[i, j]← u1v1(a11 + a12 + a21 + a22)
36: A12[i, j]← u1v2(a11 − a12 + a21 − a22)
37: A21[i, j]← u2v1(a11 + a12 − a21 − a22)
38: A22[i, j]← u2v2(a11 − a12 − a21 + a22)

Fig. 3: Algorithms from the two-sided RBT application

UTAV . The procedure RBT breaks the problem into indi-
vidual butterfly applications. The procedure RBT2TILE applies

a single, two-sided butterfly transform to a set of four tiles.

Fig. 4: Subtiles gathered for computing a layer of an RBT for

butterflies of size n/2. All submatrices of the same color are
gathered onto the process owning the upper left entry of the

color for the computation.

to the omitted RBT2. However, as our implementation is tile-

based and distributed, we have an additional step to group

appropriate sets of elements into tiles on a single process

before calling RBT2TILE.

Unfortunately, the way the elements interact when applying

an RBT rarely correspond to the tiles used to store the matrix

data. So, we implemented support for transmitting partial tiles

in a manner similar to previous work on distributed, RBT-

based solvers [7]; however, our approach differs in that we

explicitly gather the elements into tiles defined by the size

and owning-process of the upper left submatrix. The gathered

tiles can then be treated as the application of a single butterfly

described in Sec. III-B. Figure 4 shows an example of how

elements are gathered for the two-sided transform of A,[
B
〈n/2〉
1 0

0 B
〈n/2〉
2

]T

A

[
B
〈n/2〉
3 0

0 B
〈n/2〉
4

]
,

when A is tiled into a 5×5 grid of uniform size. Currently, our
implementation does involve duplicate transfers of the butterfly

nonzeros to reduce the complexity of computing the indices

and managing storage lifetimes.

Note that if the size of the matrix can be controlled, it may

be beneficial to adjust the matrix size so that the transformation

can be efficiently applied. For example, a 2d block-cyclic

distribution of an n×n matrix on a p×q process grid with tiles
of size b × b does not need to subdivide tiles to apply RBTs
when 2pb and 2qb divide n. Furthermore, for a butterfly depth
of d, inter-process communication is unneeded when 2d+1pb
and 2d+1qb divide n.
Similar to previous work [6], we used a depth 2 RBT for

our solver, chose RBT elements of the form exp(r/10) with
r chosen from the uniform distribution [− 1

2 ,
1
2], and provide

iterative refinement. While a depth of 2 does not provide

the probabilistic guarantee of a depth of log2(n), it does not
require the matrix size to be a power of 2 and has lower

38

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:17:59 UTC from IEEE Xplore. Restrictions apply.

GENP(k)

�� ��
TRSM〈U〉(k)

��

TRSM〈L〉(k)

��
GEMM(k)

k+1

��

GENP(k ∈ {1 . . . n})
TRSM〈U〉(k ∈ {1 . . . n− 1})
TRSM〈L〉(k ∈ {1 . . . n− 1})
GEMM(k ∈ {1 . . . n− 1})

Fig. 5: Enumerated DAG of GENP with the graph nodes

representing tasks that are parameterized by input parameter

ranges.

computational overheads. The copy of the matrix for iterative

refinement is always kept entirely on the CPUs to increase the

maximum problem size that can be stored in GPU memory.

Because a copy of the matrix is already needed to achieve the

same accuracy as GEPP, there is limited overhead to check the

backward error of the solution provided by the RBT-solver. So,

problems that cannot be solved accurately with our solver can

be re-solved with a regular GEPP implementation.

V. IMPLEMENTATION OF GENP

Our implementation of GENP is a right-looking variant. Its

organization resembles SLATE’s Cholesky factorization that

is limited to Hermitian, positive-definite matrices – GENP

operates on both upper and lower parts of the matrix due to

the lack of symmetry and does away with the calls to the

SYRK BLAS subroutine. In keeping with SLATE’s design,
we use large OpenMP tasks to specify data dependencies.

Fig. 5 shows the DAG that is instantiated by OpenMP’s task

scheduling runtime. Each of these large tasks is then split into

independent operations on individual tiles, which can run in

parallel. First, the current diagonal tile, Ak,k, is factored into

LU components with the GENP task called GENP(k) in the
figure. Then, the rest of the column, Ak+1:n,k, is replaced

with Ak+1:n,kU
−1, and the rest of the row, Ak,k+1:n, is

replaced with L−1Ak,k+1:n that are called TRSM〈U〉(k) and
TRSM〈L〉(k) in the figure, respectively. Finally, as the last
phase of applying the Schur complement Ak,k+1:n × A−1

k,k ×
Ak,k+1:n, the trailing matrix Ak+1:n,k+1:n is updated with

newly computed Âk+1:n,k×Âk,k+1:n denoted with GEMM(k)
in the figure. These steps are repeated until the entire matrix is

factored. Fig. 6 shows the parameterized DAG of our GENP

that specifies the tile dependencies for any matrix of n × n
tiles.

VI. EXPERIMENTAL RESULTS

Using the implementation of the RBT-based solver de-

scribed in Sec. IV, we tested its accuracy and performance

• GENP(k) :
– ← GEMM(k − 1)
– → TRSM〈U〉(k)
– → TRSM〈L〉(k)

• GENP(1) :
– → TRSM〈U〉(k)
– → TRSM〈L〉(k)

• GENP(n) :
– ← GEMM(n− 1)

• TRSM〈U〉(k) :
– ← GENP(k)
– → GEMM(k)

• TRSM〈L〉(k) :
– ← GENP(k)
– → GEMM(k)

• GEMM(k) :

– ← TRSM〈U〉(k)
– ← TRSM〈L〉(k)
– → GENP(k + 1)

Fig. 6: Parameterized DAG of GENP that fully specifies each

task and its dependencies in a parameterized form. Note that

GENP(1) and GENP(n) are the special cases of factoring the
first and last tiles, respectively.

relative to SLATE’s GEPP implementation for double preci-

sion. Our results were measured on the Summit supercomputer

at the Oak Ridge National Laboratory. We used eight nodes,

each containing two sockets, with one 22-core IBM POWER9

processors. Each socket was connected to three NVIDIA Volta

V100 GPUs each with 16GiB High Bandwidth Memory
(HBM) 2, and 256GiB DDR4. The network consists of dual-
rail EDR InfiniBand connected in a Non-blocking Fat Tree

topology. The operating system is Red Hat Enterprise Linux

version 7.6 with an IBM Spectrum Scale™ filesystem.

Our software stack included GCC 8.1.1, CUDA 10.1.243,

Spectrum MPI 10.3.1.2, ESSL 6.1.0-2, and Netlib LAPACK

3.8.0. The code was compiled with -fopenmp -O3, and
nvcc was configured for the Volta architecture. One pro-
cess was allocated and bound to each socket for a total

of 16 processes. Through the job launcher, each process

was assigned all 21 available cores and 3 available GPUs,

and tasks were bound and distributed with packed:21 and
packed, respectively. Summit was set to smt2 mode. Our
results were measured using a modified version of SLATE’s

tester that supports our new solver plus additional matrix

generators. The solvers’ parameters were tuned for perfor-

mance, except for tile size, which was only tuned for GEPP.

Tests were run with the flags --origin h --target d
--ref n --nb 832 --seed 96 --seedB 42 --ib
64 --lookahead 0 --dim $DIMS. GEPP also used
the flags --panel-threads 20 --p 2 --q 8, and the
RBT solver used --depth and --refine as appropri-

39

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:17:59 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Normwise backward error of various solvers for matrices of size 100 000. NA indicates the solution was invalid due
to division by zero or overflow.

Matrix GEPP RBT Solver RBT Solver GENP GENP
refined refined

Random [0, 1] 1.23× 10−15 2.97× 10−17 6.43× 10−12 2.67× 10−17 4.10× 10−12

Random [−1, 1] 2.39× 10−15 2.93× 10−17 1.53× 10−11 1.19× 10−15 8.76× 10−11

Random Normal 1.77× 10−15 3.29× 10−17 6.68× 10−12 3.23× 10−17 1.71× 10−11

Random {0, 1} 1.82× 10−15 2.25× 10−17 6.15× 10−12 NA NA
fielder 3.03× 10−18 2.92× 10−19 1.73× 10−17 NA NA
orthog 2.29× 10−16 9.19× 10−3 1.00× 10−2 1.21× 10−1 1.30× 10−1

gfpp NA 2.79× 10−19 5.06× 10−18 NA NA

ate. GEPP’s process grid of 2 × 8 was allocated such that
the processes sharing a column were located on the same

node. The accuracy tests also used the flags --matrix and
--matrixB to control the problem generator. The perfor-
mance tests were preceded by solving a problem of size

6656 or 7072 (for tile-aligned and not tile-aligned results,
respectively) to ensure that the initialization of BLAS and MPI

was not included.

A. Accuracy Results

First, we tested the accuracy of the RBT solver in

comparison to GEPP and GENP. We tested matrices of

size 100 000 and compared the normwise backward error,
‖r‖1/(‖A‖1‖x‖1), in Table I. Both the RBT solver and GENP
were run with and without one step of iterative refinement

for the sake of comparison. The tested matrices are a subset

of the matrices previously used to test RBT-based solvers

for problems of size 1024 [6], with minor modification to
the last matrix. The elements of the first two matrices are

uniformly selected from the given ranges. The third matrix

has elements selected from a normal distribution with mean

0 and standard deviation 1. The fourth matrix has elements

selected from 0 and 1 with equal probability. The fifth and

sixth matrices come from MATLAB’s gallery function. Note

that |i − j| used in previous works is identical to fielder.
The last matrix is based on the matrix in Higham’s Matrix

Computation Toolbox [14], except the elements below the

diagonal are halved to ensure GEPP pivots the matrix as

intended. All problems had a right hand side selected from

a normal distribution with mean 0 and standard deviation 1.

As Table I shows, the RBT-based solver was able to solve

all but one problem, including all of the problems solvable

by GENP and the example of worst-case behavior of GEPP.

The one matrix that the RBT-based solver had poor accuracy

was the orthog matrix. This matrix is constructed by setting
the (i, j) ∈ [1, n]2 element to

√
2/(n+ 1) sin (ijπ/(n+ 1)),

which makes it orthogonal and symmetric. Previous work

showed success on this matrix for a size of 1024 [6] but not
for a size of 30 000 [15] when using an RBT depth of 2 and
1 step of iterative refinement. To understand the behavior of

this matrix as the problem size grows, we plotted the backward

error, ‖r‖1/(‖A‖1‖x‖1), for varying problem sizes and RBT
depths, but otherwise as the first test, in Fig. 7 For the smaller

1,000 10,000 100,000

10−17

10−13

10−9

10−5

10−1

Problem size

N
o
rm
w
is
e
B
ac
k
w
ar
d
E
rr
o
r

Depth 0 Depth 1 Depth 2 Depth 3

Depth 4 Depth 5 Depth 6

Fig. 7: Accuracy of the RBT-based solver for various sizes of

the orthog and various RBT depths.

depths tested, there appears to be a problem size at which the

depth loses effectiveness. However, depths of 4, 5, and 6 all

started losing accuracy at a similar point, which complicates

the situation We believe the sine-based structure of this matrix

causes the difficulties but have not been able to quantify the

source of the issue.

B. Performance Results

Next, we tested the performance of the RBT solver in

comparison to GEPP and GENP. Because of the increase

in the complexity of inter-process communication, the RBT

solver was tested on two sets of sizes. First are problem sizes

that allow the RBT communication to be done as whole tiles,

specifically, problem sizes that are multiples of 16 640 that
did not run out of memory for the GEPP solver. This first

set of problem sizes was also used for the GEPP and GENP

performance. Second are problem sizes that are smaller by

416 elements (half a tile width) than the first set of problem
sizes. Figures 8 presents the performance in both TFLOP/s
and seconds. This performance is computed from the mean

40

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:17:59 UTC from IEEE Xplore. Restrictions apply.

50 100 150 200 250 300

·1,000

0

20

40

60

80

Problem size

P
er
fo
rm
an
ce
(T

F
L
O
P
/s
)

GEPP

GENP

RBT Solver - no refinement, tile aligned

RBT Solver - no refinement, not tile aligned

RBT Solver - 1 step refinement, tile aligned

RBT Solver - 1 step refinement, not tile aligned

50 100 150 200 250 300

·1,000

0

200

400

600

Problem size

R
u
n
ti
m
e
(s
)

Fig. 8: Performance of various solvers on 8 nodes of Summit.

runtime of 3 executions and a flop count of 2
3n

3. Additionally,

99.9% confidence intervals are also included in the figure but
are less than 1TFLOP/s in each direction for all but one case.
Finally, the RBT-based solver was also tested without iterative

refinement to better understand the sources of overhead.

The RBT solver was successfully able to outperform GEPP.

For problems of size greater than 200 000, the tile-aligned RBT
solver had speedups ranging between 1.82 and 2.68 times
faster, and the non-tile-aligned solver had speedups ranging

between 1.56 and 2.26 times faster. For reference, GENP had
speedups ranging between 3.12 and 3.25 times faster for those
problem sizes.

Next, consider the jagged performance of the RBT-based

results. For the tile aligned problems, the first, fifth, ninth, and

thirteen sizes were all aligned such that no communication was

needed for RBT application. The RBT-based solver without

refinement was able to perform very closely to GENP at

these sizes with other tile sizes having worse performance.

This indicates that inter-process communication causes most

of the cost to apply the transforms. So, optimization efforts

of the transform application should focus on inter-process

communication. The iterative refinement also introduced a

noticeable overhead. Optimization of the iterative refinement

step likely involves increased utilization of the GPUs and

improving the performance of the individual kernels.

At the time of writing, SLATE was not effective at keep-

ing the GPUs busy in its LU factorizations, which results

in performance significantly below the theoretical peak of

336TFLOP/s for our 8-node configuration. The issue is
known to SLATE’s developers; however, improvements to this

performance were still in development and unable to be tested.

Our performance results are reasonably similar to previous

works. First, the prior work on a distributed system solved

symmetric problems and was tested on a 16-node cluster, each

with eight cores of Intel Nehalem and no GPUs [7]. The

relative performances of the non-pivoted factorization and the

RBT-transformed solver shown in Baboulin et al.’s Fig. 10

are similar to those in Fig. 8 with the RBT solver’s perfor-

mance depending on whether the tiles are aligned with the

butterfly’s structure. However, when using iterative refinement,

the performance of Baboulin et al.’s solver peaks at almost

that of the non-pivoted solver, while our solver performs

noticeably worse. Furthermore, Baboulin et al.’s solver runs

entirely on the CPU, while our solver uses the GPU more

often in the factorization than in the refinement, unbalancing

the relative performances. Second, the prior work involving

GPU-accelerated systems and non-symmetric problems was

tested on a single-node with twelve cores of Intel Westmere

and either a NVIDIA K20 GPU or an Intel Xeon Phi co-

processor 7120 [11]. There, the RBT solver outperforming

GEPP, although not to the degree that occurred in our work;

additionally, the RBT overhead was consistently similar to the

non-communicating, tile-aligned case from this work. Finally,

iterative refinement added little overhead on the NVIDIA

GPU, compared to our work where the CPU computed a

significant part of the refinement. (The Intel Xeon Phi system

did not have an optimized iterative refinement, making it

unsuitable for comparison.)

VII. CONCLUSION

Our proposed approach of transforming the problem with

RBTs then solving with GENP provided a speedup over GEPP

between 1.56 and 2.68 times faster. However, the approach
described here is unable to solve all problems. Those cases can

revert to a regular GEPP implementation and only introduce

an overhead between 37% and 64%, based on the results
for larger problem sizes. Thus, this approach should provide

a performance benefit, even if it cannot solve one in three

problems.

41

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:17:59 UTC from IEEE Xplore. Restrictions apply.

There are a variety of future directions for this work. First, it

may be possible to reduce the overhead of applying the RBT,

particularly when the transforms and tiles are not in alignment.

One proposed approach is to only apply an RBT to one-side

of the problem [8], which would significantly reduce the com-

plexity of communications. It has received limited attention

but has had success for factoring sparse problems. Relatedly,

there have been other transformations proposed for enabling

GENP [4], and it may be beneficial to explore whether other

transforms could perform better or be used to augment the

RBT. For example, a randomized permutation would likely

destroy the structure of the problematic matrix discussed in

Sec. VI-A. It would also be interesting to investigate the strong

scaling of the RBT solver compared to GEPP. The lack of a

monolithic, highly synchronous, panel factorization in GENP

may make it highly effective on extremely parallel systems.

ACKNOWLEDGMENTS

This material is based upon work supported by the Uni-

versity of Tennessee grant MSE E01-1315-038 as Interdisci-

plinary Seed funding and in part by UT Battelle subaward

4000123266. This material is also based upon work sup-

ported by the National Science Foundation under OAC Grant

No. 2004541.

This research used the computational resources of the

Oak Ridge Leadership Computing Facility at the Oak Ridge

National Laboratory, which is supported by the Office of

Science of the U.S. Department of Energy under Contract

No. DE-AC05-00OR22725 provided by the Exascale Com-

puting Project (17-SC-20-SC), a collaborative effort of the

U.S. Department of Energy Office of Science and the National

Nuclear Security Administration.

REFERENCES

[1] A. George and K. D. Ikramov, “Gaussian elimination is stable for the
inverse of a diagonally dominant matrix,” Mathematics of Computing,
vol. 73, no. 246, pp. 653–657, 2004.

[2] T. Joffrain, E. S. Quintana-Ortı́, and R. A. van de Geijn, “Rapid
development of high-performance out-of-core solvers,” in Applied
Parallel Computing. State of the Art in Scientific Computing, ser.
Lecture Notes in Computer Science, J. Dongarra, K. Madsen, and
J. Waśniewski, Eds. Berlin, Heidelberg: Springer, 2006, pp. 413–422,
doi: 10.1007/11558958 49.

[3] L. Grigori, J. W. Demmel, and H. Xiang, “Communication avoiding
Gaussian elimination,” in Proceedings of the 2008 ACM/IEEE Con-
ference on Supercomputing, ser. SC ’08, Nov. 2008, pp. 1–12, doi:
10.1109/SC.2008.5214287.

[4] V. Y. Pan and L. Zhao, “Numerically safe Gaussian elimination with no
pivoting,” Linear Algebra and its Applications, vol. 527, pp. 349–383,
Aug. 2017, doi: 10.1016/j.laa.2017.04.007.

[5] D. S. Parker, “Random butterfly transformations with applications in
computational linear algebra,” Computer Science Department, UCLA,
Tech. Rep. CSD-950023, 1995.

[6] M. Baboulin, J. Dongarra, J. Herrmann, and S. Tomov, “Accelerating
linear system solutions using randomization techniques,” ACM Trans-
actions on Mathematical Software, vol. 39, no. 2, pp. 1–13, Feb. 2013,
doi: 10.1145/2427023.2427025.

[7] M. Baboulin, D. Becker, G. Bosilca, A. Danalis, and J. Dongarra,
“An efficient distributed randomized algorithm for solving large dense
symmetric indefinite linear systems,” Parallel Computing, vol. 40, no. 7,
pp. 213–223, Jul. 2014, doi: 10.1016/j.parco.2013.12.003.

[8] M. Baboulin, X. S. Li, and F.-H. Rouet, “Using random butterfly
transformations to avoid pivoting in sparse direct methods,” in High
Performance Computing for Computational Science – VECPAR 2014,
ser. Lecture Notes in Computer Science, M. Daydé, O. Marques, and
K. Nakajima, Eds. Cham: Springer International Publishing, 2015, pp.
135–144, doi: 10.1007/978-3-319-17353-5 12.

[9] T. Trogdon, “On spectral and numerical properties of random butterfly
matrices,” Applied Mathematics Letters, vol. 95, pp. 48–58, 2019, doi:
10.1016/j.aml.2019.03.024.

[10] M. Baboulin, R. A. Dongarra Jack, T. Stanimire, and Y. Ichitaro, “Dense
symmetric indefinite factorization on GPU accelerated architectures,” in
Parallel Processing and Applied Mathematics. PPAM 2015, ser. Lecture
Notes in Computer Science, R. Wyrzykowski, E. Deelman, J. Dongarra,
K. Karczewski, J. Kitowski, and K. Wiatr, Eds. Springer, 2016, doi:
10.1007/978-3-319-32149-3 9.

[11] M. Baboulin, A. Khabou, and A. Rémy, “A randomized LU-based
solver using GPU and Intel Xeon Phi accelerators,” in Euro-Par 2015:
Parallel Processing Workshops, ser. Lecture Notes in Computer Sci-
ence, S. Hunold, A. Costan, D. Giménez, A. Iosup, L. Ricci, M. E.
Gómez Requena, V. Scarano, A. L. Varbanescu, S. L. Scott, S. Lankes,
J. Weidendorfer, and M. Alexander, Eds. Cham: Springer International
Publishing, 2015, pp. 175–184, doi: 10.1007/978-3-319-27308-2 15.

[12] C. Van Loan, Computational Frameworks for the Fast Fourier Trans-
form. Philadelphia: SIAM, 1992.

[13] M. Gates, J. Kurzak, A. Charara, A. YarKhan, and J. Dongarra, “SLATE:
Design of a modern distributed and accelerated linear algebra library,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. Denver,
Colorado: Association for Computing Machinery, Nov. 2019, pp. 1–18,
doi: 10.1145/3295500.3356223.

[14] N. J. Higham, “The matrix computation toolbox,” 2002, http://www.ma.
man.ac.uk/∼higham/mctoolbox.

[15] S. Donfack, J. Dongarra, M. Faverge, M. Gates, J. Kurzak, P. Luszczek,
and I. Yamazaki, “A survey of recent developments in parallel imple-
mentations of Gaussian elimination,” Concurrency and Computation:
Practice and Experience, vol. 27, no. 5, pp. 1292–1309, 2015, doi:
10.1002/cpe.3306.

42

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:17:59 UTC from IEEE Xplore. Restrictions apply.

APPENDIX

ARTIFACT DESCRIPTION

Summary of the Experiments Reported

We ran SLATE’s gesv, gesv_nopiv, and gesv_rbt
tests on Oak Ridge National Laboratory’s Summit supercom-

puter using a modified version of SLATE, as described in

Sec. VI.

Artifact Availability

Software Artifact Availability: All author-created software
artifacts are maintained in a public repository under an OSI-

approved license.

Hardware Artifact Availability: There are no author-created
hardware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: None of the associated artifacts,
author-created or otherwise, are proprietary.

List of URLs and/or DOIs where artifacts are available:
https://doi.org/10.5281/zenodo.4006641

Baseline Experimental Setup, and Modifications Made for the
Paper

Relevant Hardware Details: The Summit supercomputer at
the Oak Ridge National Laboratory. We used eight nodes,

each containing two sockets, with one 22-core IBM POWER9

processors. Each socket was connected to three NVIDIA Volta

V100 GPUs each with 16GiB HBM 2, and 256GiB DDR4.
The network consists of dual-rail EDR InfiniBand connected

in a Non-blocking Fat Tree topology.

Operating systems and versions: Red Hat Enterprise Linux
version 7.6

Compilers and versions: GCC 8.1.1, CUDA 10.1.243
Libraries and versions: SLATE commit c9266da, Spectrum

MPI 10.3.1.2, ESSL 6.1.0-2, Netlib LAPACK 3.8.0

Key algorithms: LU factorization with and without pivoting,
recursive butterfly transforms

Modifications made for paper: SLATE was modified to
provide the RBT and iterative refinement. Additionally, the

performance of SLATE’s getrf_nopiv was improved. Fi-
nally, matrix generators were added to SLATE’s tester for

random, binary matrices, as well as the structured matrices

fielder, orthog, and gfpp. While not strictly a software
modification, the backward error provided by the SLATE tester

is

εSLATE =
‖r‖1

‖A‖1‖x‖1n
which we scaled to

ε =
‖r‖1

‖A‖1‖x‖1
in order to provide a better comparison with machine preci-

sion.

43

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:17:59 UTC from IEEE Xplore. Restrictions apply.

