
Design and Implementation of a Large Scale Tree-Based QR Decomposition
Using a 3D Virtual Systolic Array and a Lightweight Runtime

Ichitaro Yamazaki∗, Jakub Kurzak∗, Piotr Luszczek∗, Jack Dongarra∗†‡
∗University of Tennessee, Knoxville, TN 37996, USA

†Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
‡University of Manchester, Manchester, M13 9PL, UK

{iyamazak, kurzak, luszczek, dongarra}@eecs.utk.edu

Abstract—A systolic array provides an alternative comput-
ing paradigm to the von Neuman architecture. Though its
hardware implementation has failed as a paradigm to design
integrated circuits in the past, we are now discovering that
the systolic array as a software virtualization layer can lead
to an extremely scalable execution paradigm. To demonstrate
this scalability, in this paper, we design and implement a 3D
virtual systolic array to compute a tile QR decomposition
of a tall-and-skinny dense matrix. Our implementation is
based on a state-of-the-art algorithm that factorizes a panel
based on a tree-reduction. Using a runtime developed as
a part of the Parallel Ultra Light Systolic Array Runtime
(PULSAR) project, we demonstrate on a Cray-XT5 machine
how our virtual systolic array can be mapped to a large-scale
machine and obtain excellent parallel performance. This is
an important contribution since such a QR decomposition is
used, for example, to compute a least squares solution of an
overdetermined system, which arises in many scientific and
engineering problems.

Keywords-systolic array; QR decomposition; multithreading,
message-passing, dataflow; runtime;

I. INTRODUCTION

Current trends in microprocessor technology suggest that
emerging large-scale computers should have rapidly increas-
ing floating point capacities due to the growing numbers of
cores and of floating point units. On the other hand, their
memory capacities are expected to grow at a much slower
pace, eventually falling behind their arithmetic performance
by an order of magnitude [1], [2], [3]. On such computers,
it is unlikely that software without a strong scaling property
can utilize the full computing capacity of the compute nodes,
whose aggregated memory capacity can accomodate the
memory required to run the software for solving a given
problem.

The vast majority of modern computers are based on the
von Neumann architecture where the execution of software
is instruction-stream-driven by instruction counters. The sys-
tolic array provides an alternative computing paradigm that
is composed of matrix-like rows of processing units, each of
which is connected to a small number of nearest neighbors
in a mesh-like topology. Stated in another way, a systolic
array is a network of processors that compute and pass data

through the system. On such a systolic array, the execution of
an operation is message-driven or data-stream-driven by data
counters and triggered by the arrival of a data object. Though
the hardware implementations of such systolic arrays had
been haunted by an array of problems, the systolic array
becames very attractive as a parallel programming model
on modern computers when it is implemented as a software
layer like the Virtual Systolic Array (VSA) presented in [4].
Since this discovery, the concepts of 1D, 2D, and 3D systolic
arrays as virtualized software designs have been combined
with a distributed-memory dataflow runtime and delivered a
wide range of scalability results, but with varying levels of
achievable performance [5].

Our previous work [4] presented a 2D systolic array for
a tile dense QR decomposition algorithm with its panel
factorization based on a flat-tree reduction. Its strong scaling
performance for square matrices was superior to that of
the state-of-the-art software, and could potentially tackle the
challenges of utilizing the increasing levels of concurrency
on the emerging computers. To follow up this previous
work, in this paper, we free ourselves from the constraint
of a planar layout and present a 3D systolic array for a
hierarchical-tree variant of QR decomposition [6], [7]. Albeit
increasing the computational cost, this 3D systolic array
allows us to exploit an increased level of parallelism that
is difficult to exploit using the previous 2D systolic array,
especially for a tall-and-skinny matrix. This is an important
algorithm since such decomposition is used, for example, to
solve an overdetermined least-squares problem that arises in
many scientific and engineering problems.

For the hierarchical-tree based QR decomposition, the
optimal match between the chosen reduction-tree and the
underlying software and hardware layers is, for the most
part, system-dependent. Such an optimal match could be
found through experimentation, and thus may be guaranteed
to scale even beyond the current breed of tightly coupled
multicore supercomputers. In this paper, however, instead
of looking for such an optimal match, we focus on a more
generic tree (i.e., binary-tree on top of flat-trees) as our
reduction tree. We then present its performance on a tightly-

coupled system to demonstrate that this 3D systolic array
to perform this particular tree-reduction can exploit the
limited amount of parallelism during the tall-and-skinny QR
decomposition, and obtain a superior scaling compared with
the previous 2D systolic array.

Sections II and III motivate our current work and survey
the related works, respectively. Sections IV and V present
Parallel Ultra Light Systolic Array Runtime (PULSAR) and
describe our 3D VSA for the QR decomposition, respec-
tively. Section VI presents performance results to demon-
strate the scalability of our implementation, and Section VII
provides final remarks.

II. MOTIVATION FOR A MIXED PARADIGM
IMPLEMENTATION IN A WEAK SCALING SETTING

This work is primarily motivated by the success of our
previous software-defined systolic arrays [4]. As indicated
by the reviewers, the scope of that research was well-defined
and the experimental results were far beyond the accepted
state-of-the-art. However, the often raised issue was the
limited applicability along multiple conceptual axises: data
distribution, scaling scenarios, virtual systolic architecture,
memory management, and input problem types. The primary
goal of this article is to address these concerns, and also to
further discover the potential of this methodology to obtain
an extreme scalability.

Our first goal – making the software-defined systolic
arrays more general – has multiple aspects. In particular,
it includes the development of an independent runtime that
is fully decoupled from the user code and can only be
accessed through established programming interfaces. By
doing so, we allow for the reuse of the PULSAR runtime
across multiple application domains and also introduce the
possibility of replacing the runtime with another runtime
implemented according to a different design principle. While
general solutions tend to be flexible, they may also incur
additional overheads. Hence, one of our objectives is to
examine if broadening the scope of PULSAR retains the
original scalability and performance metrics.

Another addition made in this article is the weak scaling
implementation and evaluation. This partially stems from
making the runtime more general, but is also naturally driven
by the increases in the data sizes from the science do-
mains that require models using least-squares optimization.
Another aspect tested by the weak-scaling experiments is
testing for arbitrary sizes of many parameters that describe
the virtual systolic system, such as message counts and
queues, dimension of the virtual array, communication buffer
sizes, and so on. In fact, we discovered that in a strong
scaling study, it is possible to exhaust the available local
memory, which then precludes runs with data sets exceeding
the offending problem size. Simply put, weak scaling allows
the user to partition the data as well as the computation,
which enables larger mathematical models to be evaluated.

We also enable a virtual systolic array of a true 3-
dimensional structure, which maps directly to the 3-nested
loops of the QR algorithm. Such direct mapping lessens
the burden of restructuring the code and allows an easy
conceptualization of the virtual array structure without the
need for any translation process. Such a process would be
error-prone if performed manually, or require a substantial
software infrastructure if done automatically. Furthermore,
an added benefit of the proper handling of 3D structures is
the flexibility of mapping of both data and computation onto
the physical hardware, which often resembles 3D graphs.

The practical data sets, driven, by applications, are mostly
based on non-square matrix shapes, which may provide a
limited amount of parallelism. Hence, to exploit appropriate
levels of parallelism, we require a tree-based panel reduction
such that a large number of physical cores can be occupied
with computations as soon as the data dependencies of the
computations are resolved. Moreover, the runtime may need
to adjust its workings to match the workload, especially
when an algorithm has the distinct phases in the compu-
tation. For instance, the panel factorization phase of the QR
decomposition is latency-sensitive, uses small messages, and
does not contribute much to the computational load, hence
precluding the use of the common techniques to overlap
communication with computation. On the other hand, its
update phase is computationally intensive and makes the
right target for the overlapping and latency hiding tech-
niques. The scalability concerns dictate that these two phases
should not be run in sequence but rather intertwined together.
This leads to the mixed-paradigm programming with a mix
of latency-bound and throughput-oriented workloads. For a
PULSAR user, these distinct phases can be separated by the
use of distinct Virtual Data Processors (see Section IV), and
the runtime mixes them appropriately for good performance
while preserving the correctness of execution.

Finally, instead of enumerating and subsequently testing
all possible tree variants [6], [7], our focus in this paper is to
evaluate the virtual systolic runtime and its ability to handle
a mixed-paradigm workload that may not map optimally
onto the conceptual systolic array design. Moreover, the
mixed-workload, combined with a tile algorithm, features
the classical dataflow execution with the computational
load of a single operation raised to offset the software
overheads incurred by the data dependence tracking and data
synchronization. Another methodological item in the mix is
the heavy reliance on the light-weight reduction operations
that do not enjoy the luxury of increased computational
workload. This causes the natural flow of the algorithm to be
directly exposed to the software overheads of the runtime,
the system communication layer (an MPI implementation),
and, finally, the hardware latency, each of which cannot be
easily hidden by the pipeline mechanism inherent in the
systolic design. A study of this mixing and the influence
of these inefficiencies is one of our interests in this work.

III. RELATED WORK

The key publication by Kung and Leiserson [8] introduced
systolic arrays, focusing on their simple regular geometries
and data paths and introducing pipelining as a general
method for using these structures. Provenance of systolic
arrays could be found in array-like hardware structures that
include iterative and processor arrays, and cellular automata.

Our previous work focused on lifting the conceptual
design from the hardware level to the software level [4]. This
form of virtualization offered a number of possibilities that
could not have been matched easily, if at all, by hardware-
only solutions. Our practical focus was on an extreme form
of strong scaling of a square-matrix QR decomposition,
where only a small amount of workload was assigned to
a single virtual data processor. These virtual processors
were then mapped to thousands of tightly coupled multicore
CPUs. We provided the first implementation of a Virtual
Systolic Array and validated the potential of the methodol-
ogy for a large-scale dense linear algebra application.

A. Runtime Support for Scheduling

The task-superscalar runtime environment, QUeuing and
Runtime for Kernels (QUARK), provides a simple serial
library for a superscalar execution on multicore proces-
sors [9]. QUARK provides the dynamic runtime layer for
the PLASMA numerical library [10], [11] and has under-
gone substantial stress testing. QUARK has a number of
features critical to the operation of a numerical software
suite, such as error handling extensions and task cancellation
capabilities. Recently, it was extended for use with GPU
accelerators [12] and prototyped for a distributed memory
implementation [13].

The OMPSs task-superscalar system developed at the
Barcelona Supercomputer Center has variants that can target
grids [14], the Cell B. E. processor [15], multicore proces-
sors [16], [17], and GPUs [18]. The best known variant is
SMPSs, the multicore implementation, which is a compiler-
based system that uses #pragma directives to annotate
tasks that can be run in parallel and to decorate the data
parameters with read/write usage information. The main
thrust in OMPSs is to become part of the OpenMP standard.

The StarPU task-superscalar system was developed at
INRIA Bordeaux [19] to explore task scheduling in a
hybrid CPU/GPU environment. StarPU uses a history based
adaptive scheduling technique to assign tasks to devices (it
treats a GPU on par with an individual CPU core, potentially
leading to a non-optimal scheduling).

Several other approaches exist that take a serial code and
execute it on a parallel environment, such as Jade [20], [21]
Cilk [22], OpenMP [23], Sequoia [24], SuperMatrix [25],
Habanero [26], Hierarchical Place Trees [27], or the D-TEiP
task library [28].

IV. PULSAR RUNTIME

A. Programming Model

PULSAR offers a straightforward programming model
with a few simple abstractions to implement a systolic array
as a software layer. The main abstraction in PULSAR is
the Virtual Systolic Array (VSA), which is a set of Virtual
Data Processors (VDPs) connected by channels. The VDP
is a direct descendant of the Processing Element (PE) in
the traditional systolic array nomenclature. Each VDP is
uniquely identified by a tuple (a string of integers) and has a
counter defining its life span. The VDP contains executable
code, read-only global parameters, read/write persistent local
variables, and a set of input and output channels (see
Figure 1 for a schematic diagram). They communicate with
each other by sending data packets through a channel.

Figure 1. Schematic diagram of the Virtual Data Processor.

A channel is a static unidirectional connection between
two VDPs. In principle, it is a First In First Out (FIFO)
queue of packets, where the source VDP pushes packets to
its output channel and the destination VDP pops packets
from its input channel. On the corresponding VDP, each
input or output channel has an assigned slot identified by a
consecutive number starting at zero. When all input channels
of a VDP contain a data packet, the VDP can be fired and
can be scheduled for execution by the runtime. When fired,
the VDP can pop packets from its input channels, invoke
any computational kernels, and push packets to its output
channels. At each firing, the VDP’s counter is decremented,
and when it reaches zero, the VDP is destroyed.

At anytime during its execution, the VDP can pop from
or push to its input or output channels, respectively. Hence,
there are two basic modes of operations to any data stream,
either read-process-write/read-modify-write or read-write-
process (by-pass/pass-through). PULSAR also provides op-
tions to disable a channel at its creation and to enable,
disable, or destroy the channel during the execution of the
VSA. These options allows us to dynamically reconfigure
the network of VDPs, and will be used to implement the
QR decomposition in Section V-C. The VDP can also send
packets of different sizes, or create new packets, rather than

popping them from an input channel. For example, we create
packets to send the matrix transformations generated during
the QR decomposition.

new vsa
for each vdp do

new vdp
for each channel do

new channel
vdp→insert(channel)

end for
vsa→insert(vdp)

end for
vsa→run()
delete vsa

Figure 2. VSA construction.

To implement an algorithm using PULSAR, we build
a VSA by defining all the VDPs and their connections
(see Figure 2 for an illustration). Each VDP has its own
processing cycle, and can execute a sophisticated executable
code that may invoke any computational kernel, access
the read-only global parameters, read or write to locally
persistent data storage, and pop or push packets from input
channels or to output channels (see Figure 3 for an example).

for all inputs do
read a packet
[forward the packet]

end for
process packets
[create new packets]
for all outputs do

write a packet
end for

Figure 3. VDP cycle.

Once the VSA is launched, the control is passed to the
runtime, and the runtime propagates the data through the
VSA and dynamically schedules VDPs for execution. To
effectively utilize the physical core, we assign multiple
VDPs to each thread. Then, each thread continuously sweeps
its list of the VDPs in search of a ready VDP, i.e., the runtime
can launch the VDPs when at least one packet is in each of
its active input channels. By having multiple VDPs on each
thread, the runtime can avoid the idling time of the core as
long as at least one of the VDPs is ready. Hence, the last
piece of information required from the user is the function
that maps the VDPs to threads based on their tuples. This,
in principle, is a many-to-one mapping that maps each VDP
to a specific thread, but may map multiple VDPs to the
same thread. Two scheduling schemes, lazy and aggressive,

are available within the thread. The lazy scheme fires a
ready VDP once and moves on to another VDP, while the
aggressive scheme repeatedly fires the VDP as long as it is
ready. In the next section, we discuss the implementation
of the PULSAR runtime that decides which VDP should be
fired for the execution according to its data availability.

B. Runtime System

The PULSAR Runtime (PRT) is a lightweight layer that
maps the abstractions described in the previous section to
a distributed memory system with a multicore node archi-
tecture. The Message Passing Interface (MPI) is the mech-
anism used for the inter-node communication, while POSIX
Threads (Pthreads) is used for the intra-node multithreading.
Figure 4 shows a schematic diagram of the PRT structure.
The VSA is executed by a collection of MPI processes, each
of which lauches a number of worker threads and a proxy
thread dedicated to handling inter-node communication. In
our experiment, we ran PRT with one MPI process on each
distributed memory compute node, and let the MPI process
launch one thread on each of its physical cores, dedicating
one of these threads as the proxy. However, other mappings
are possible, such as having one MPI process on each socket
of a node or launching multiple threads on each core (i.e.,
oversubscribing).

Figure 4. Schematic diagram of the PULSAR runtime.

An intra-node channel is a local channel within the same
shared-memory node. It is a simple FIFO queue, connected
to a source VDP on one end and to a destination VDP on
the other (the mutual exclusion is enforced by a mutex). On
the other hand, a non-local inter-node channel is connected
to a local VDP on one end, while the other end is managed
by the proxy. The proxy uses a single queue to manage all
the incoming packets from the other nodes, while it uses one
queue per worker thread for outgoing packets (see Figure 4
for the schematic diagram of the queues). Upon reception
of an incoming packet from another node, the appropriate
local channel is located and the packet is moved from the

incoming queue to that channel. Sending an outgoing packet
is handled by moving the packet from the output channel of
the thread to the corresponding outgoing queue of the proxy,
and posting an asynchronous send. At the completion of the
send, the corresponding packet is removed from the outgoing
queue.

The proxy follows the cycle of serving communication
requests until all the communication queues are empty and
all the VDPs are destroyed. Because of the simplicity of the
underlying abstractions, the proxy only uses six MPI func-
tions (i.e., MPI_Isend, _Irecv, _Test, _Get_count,
_Barrier, and _Cancel) and spends most of its time
cycling through the three functions, MPI_Isend, _Irecv,
and _Test. Moreover, since the proxy is implemented as a
separate process, it does not require the thread safety of the
underlying MPI implementation.

In principle, the proxy implements the abstraction of
VDP-to-VDP communication. The routing of packets to
appropriate channels is accomplished by assigning consec-
utive numbers to all the channels connecting two VDPs.
These numbers are placed in the MPI tag and combined
with the sender rank to identify the destination channel on
the receiving side. Since the channel numbering is applied
independently for each pair of the nodes, the minimum
guaranteed range of MPI tag values of 16K should be more
than enough for the foreseeable future.

Overall, the PULSAR runtime provides the benefits of
• data-driven runtime scheduling,
• overlapping of communication and computation, based

only on non-blocking messaging,
• zero-copy shared-memory communication by relying

solely on aliasing of local data, and
• hiding the combined complexity of multithreading and

message-passing.
At the same time, the runtime introduces minimal scheduling
overheads, and assures portability by relying only on the
small rudimentary set of MPI and Pthreads functions.

V. HIERARCHICAL QR USING A 3D SYSTOLIC ARRAY

A. Algorithm

The Householder QR factorization [29] decomposes an
m-by-n matrix A into a product of an orthogonal matrix Q
and an upper-triangular matrix R; i.e., A = QR. To
compute such a factorization, the first step of a column-based
algorithm zeroes out all the entries of the first column below
the diagonal by applying a Householder transformation to
the matrix A from the left (i.e., A := (I − τvvT)A,
where τ is a scalar and v is a vector). This process is
applied recursively to the trailing submatrix to transform the
whole matrix A into an upper-triangular form. To exploit the
memory hierarchy or to reduce the communication latency
on a respective shared or distributed memory computer, a
block version of the algorithm divides the matrix A into

block columns. Then, the algorithm first transforms the
first block column, panel, into an upper-triangular form
and then applies the accumulated transformations to the
trailing submatrix at once (i.e., A := (I − V TV T)A,
where V is an m-by-nb matrix, T is an nb-by-nb upper-
triangular matrix, and nb is the block size). LAPACK [30]
and ScaLAPACK [31] implement this block algorithm for
the shared and distributed memory computers, respectively.

The block algorithm exploits a high-level of parallelism
during the trailing submatrix update, which dominates the
computational cost of the factorization, delivering a good
asymptotic scaling. However, the panel factorization ac-
cesses the matrix column-by-column. Hence, it is latency-
bounded with limited parallelism, limiting the strong scaling
of the factorization, especially for a tall-and-skinny matrix.
To improve the data access and parallel performance of
the block algorithm, a tile algorithm divides A into square
blocks, called tiles. The panel factorization then becomes
a tree-reduction of the tiles in the panel (see Section V-B
for a pseudocode). Compared to the block algorithm, this
tile algorithm is not only cache-friendly since each tile is
stored contiguously in memory, but it also exploits more
fine-grained parallelism because the elimination of each tile
can be immediately followed by the application of the corre-
sponding updates of the tiles to the right. PLASMA [10] and
DPLASMA [32] implements this on shared and distributed
memory computers using QUARK [9] and PaRSEC [33]
runtimes, respectively. Our first VSA implementation of the
QR decomposition [4] is also based on a tile algorithm,
obtaining a good strong-scaling for factorizing a square
matrix on a distributed memory computer.

A hierarchical QR algorithm [6] aims to improve the per-
formance of the tile algorithm, using a hierarchical tree for
the panel factorization and further exploiting the parallelism
and/or the hardware topology. The algorithm groups a set
of tiles in the panel into a domain that can be factorized
independently by a separate tree reduction, eliminating all
the tiles except the top tile of each domain. After this first
phase of the panel factorization, the top tiles of the domains
are gathered together for the second phase of the panel
factorization based on another tree reduction. As discussed
in Section I, the optimal match between the reduction-tree
and the underlying software and hardware layers is, for
the most part, system-dependent. Instead of looking for
such an optimal reduction-tree for a specific computer, in
Sections V-B and V-C, we describe a more generic reduction
tree and its 3D VSA implementation, respectively.

B. Reduction Tree

For our first VSA implementation of the tile QR factor-
ization [4], a flat-tree is used to factorize the entire panel,
where the top tile of the panel is used to eliminate the
remaining tiles of the panel in sequence. In this way, each
off-diagonal tile is brought into the local memory only

for j = 1, 2, . . . , nt do
flat-reduction of domains
for i = j, j + h, . . . ,mt do

dgeqrt(A(i, j))
for ` = j + 1, j + 2, . . . , nt

dormqr(A(i, j), A(i, `))
for k = i+ 1, i+ 2, i+ h− 1

dtsqrt(A(i, j), A(k, j))
for ` = j + 1, j + 2, . . . , nt

dtsmqr(A(i, j), A(k, j), A(i, `), A(k, `))
end for
binary-reduction of top tiles
for each level of binary-tree

for each pair (i, k) of tree
dttqrf(A(i, j), A(k, j))
for ` = j + 1, j + 2, . . . , nt

dttmqr(A(i, j), A(k, j), A(i, `), A(k, `))
end for

Figure 5. Pseudocode of hierarchical QR (binary-tree on flat-trees).

once, while the top diagonal tile stays in the local memory
throughout the panel factorization. Hence, the flat-tree can
exploit the data locality and is especially suited for a shared-
memory or tightly-coupled computer. Furthermore, it relies
on standard LAPACK routines, for which optimized kernels
may be available on a specific target computer. However,
the tiles are eliminated in sequence, and the flat-tree can
only exploit a limited amount of parallelism during the panel
factorization. This limits the parallel performance of the QR
decomposition, especially for a tall-skinny matrix.

To exploit more parallelism, our hierarchical QR imple-
mentation uses a binary-tree on top of flat-trees; namely,
we perform the flat-tree reduction of the tiles in a domain,
followed by the binary-tree reduction of the top tiles of
the domains. In comparison to the flat-tree, this hierarchical
tree maintains the data locality within each domain, while
exploiting more parallelism, since the flat-tree reductions of
the domains can be executed in parallel. Figure 5 shows
a pseudocode of our implementation, where A(i, j) is the
(i, j)-th tile of A, nt and mt are the respective numbers of
tiles in the column and row of A, h is the number of tiles
in each domain, and the required computational kernels are

• dgeqrt(A(i, j)) Performs QR factorization of A(i, j).
Places its R-factor and Householder reflectors in the
upper and lower triangle parts of A(i, j), respectively.

• dormqr(A(i, j), A(i, `)) Applies Householder reflec-
tors computed by dgeqrt(A(i, j)) to A(i, `) of the
trailing submatrix.

• dt[s|t]qrt(A(i, j), A(k, j)) Performs incremental QR
factorization of an off-diagonal tile by computing the
QR factorization of two stacked tiles A(i, j) and
A(k, j); where A(i, j) is an already-factorized upper-
triangular tile, and A(k, j) is also in an upper-triangular
form in dttqrt. Updates the R-factor in A(i, j) and
places Householder reflector coefficients in A(k, j).

• dt[s|t]mqr(A(i, j), A(k, j), A(i, `), A(k, `)) Applies

(a) Fixed domain boundary. (b) Shifted domain boundary.

Figure 6. Two strategies to break panels into domains

(a) Fixed domain boundary.

(b) Shifted domain boundary.

Figure 7. Execution traces using two strategies to break panels into
domains (see Figure 6). The red, orange, and blue traces represent the
flat-tree reduction of panels, the corresponding trailing submatrix updates
in flat-trees, and binary-tree reductions, respectively. With the fixed domain
boundary, during the second flat-tree reduction, only the first domain can
overlap with the binary-tree reduction. On the other hand, with the shifted
boundary, we see greater overlap of the flat-tree reductions.

the Householder transformations computed by
dt[s|t]qrt(A(i, j), A(k, j)) to the two tiles A(i, `) and
A(k, `) of the trailing submatrix.

While the first two kernels dgeqrt and dormqr are imple-
mented in LAPACK, the rest of the kernels are specifically
introduced for a tree-based QR factorization.

In our hierarchical QR implementation, all the domains
own the same number of tiles, h, except the last domain
which holds the remaining tiles. This essentially shifts the
domain boundary by one tile for each panel factorization,
and allows a better pipelining of the tasks in comparison to
fixing the domain boundary throughout the entire QR factor-
ization (see Figure 6 for illustration). Specifically, when the

A

43A

A 32 A 22 A 12

A 62 A 52 A 42

31A 21A 11

A 61A 51A 41

33 A 23A13A

A 63A 53

2

1

3

4

2

3 5

1

V

V

V21 V

V51V

V

V

31 11

61

V22V32 12

42V52 V62

41

545

1

2

3

4

1

2

V V V

V

23 1333

43 V53 V63

Figure 8. 3D Virtual Systolic Array for a hierarchical QR decomposition,
where the circles and lines represent the VDPs and channels, respectively.
The red and orange VDPs perform the flat-tree reduction, while the blue
VDPs perform the binary-reduction. The vertical channels by-pass the
transformation, while the dashed and solid horizontal channels pass the top
and remaining tiles, respectively. The numbers within the circles denote
the IDs of the threads assigned to the VDPs, where there are five available
threads in this example.

domain boundary is fixed, for all the flat-tree reductions,
the tiles in the same block row are used to eliminate the
remaining tiles in the domain, except for the top domain.
Since the top-tile goes through the binary reduction, the next
flat-tree reduction cannot start until the corresponding level
of the binary-tree reduction is completed (see Figure 7(a)
for an execution trace). On the other hand, when the domain
boundary is shifted, the current top-tile becomes the last-tile
of a domain at the next flat-tree reduction. Hence, the next
flat-tree reduction can start as soon as the corresponding tile
is updated by the current flat-tree reduction, hence allowing a
greater overlap between the tree-reductions (see Figure 7(b)
for an execution trace).

C. 3D Virtual Systolic Array

Figure 8 shows our 3D systolic array factorizing A of
6-by-3 tiles with h = 3. At the top level of the VDPs
(or right most in the figure), the red and orange VDPs are
responsible for the flat-tree reductions of the first panel,
where the red VDPs independently perform the flat-tree
reductions of the domains, and the orange VDP applies the
Householder transformation, generated by the corresponding
red VDP, to the tiles in the same block rows. To exchange
these Householder transformations, the vertical channel con-
nects the VDPs that belong to the same domain. Although
these Householder transformations are broadcasted through
a chain, each VDP passes the transformation to the next
VDP as soon as it receives the transformation and before
it applies the transformation to the local tile. Because of
this runtime feature to by-pass the packets, PRT can overlap
the communication of the transformation between the VDPs
with the application of the transformation on the VDPs.

At the next level of VDPs, the blue VDP performs one
step of the binary-tree reduction. For this, the top tile of
a domain is passed through the horizontal dashed channel
from the flat-tree to the binary-tree, while the rest of the
tiles are passed through the horizontal solid channels from
the current flat-tree to the next flat-tree. Since the domain
boundaries are shifted, the next flat-tree reduction can start
as soon as the VDP receives a tile from the current flat-

tree reduction; while in parallel, the blue VDPs perform the
binary-reduction of the top tiles.

As described in Section IV, PRT schedules a task only
when all the input channels contain packets. Hence, in order
to overlap the flat- and binary-reductions, the dashed channel
from the binary-tree to the flat-tree is initially deactivated.
Only when the flat-tree finishes processing all the tiles
except the last tile, will this channel from the binary-tree
reduction be activated, and the VDP waits for the arrival of
the last packet through the channel. Just like in the flat-tree
reduction, at each level of the binary-reduction, each VDP
is connected through the vertical channel that passes the
Householder transformation. Again, these transformations
are pushed to an output channel right away such that the
communication and computation can overlap. Finally, after
each binary-reduction of two top tiles, the second tile is
passed right to the flat-tree such that the VDP can perform
the last step of the flat-tree reduction.

To demonstrate how to implement VSA using PULSAR,
Figure 9 shows our implementation of QR decomposition
based on a flat-tree (domino QR), where the following
PULSAR interfaces are used:

• prt vdp new(tup, cnt, fnc, size loc, nin, nout) Create
a VDP with the arguments specifying its tuple and
initial counter, the name of subroutine to be executed,
the size of the local store for the persistent storage, and
the numbers of input and output channels.

• prt channel new(size pkt, tupin, chnin, tupout,
chnout) Create an output/input channel between two
VDPs with the arguments specifying the maximum
size of a packet to be sent/received, the tuple of the
sender/receiver, the slot number of the output/input
channel, the tuple of the receiver/sender, and the in-
put/output channel slot at the receiver/sender.

• prt vdp channel insert(vdp, chn, in|out, slot) Insert
an input/output channel to a VDP.

• prt vsa vdp insert(vsa, vdp) Insert a VDP to a VSA.
In Figure 9, the subroutine vdp_factor for calling
prt_vdp_new factorizes the panel by first calling dgeqrt
and then dtsqrt, while the subroutine vdp_update up-
dates the trailing submatrix by first calling dormqr and
then dtsmqr. Moreover, the structure qr_local_t stores
the local variables (e.g., two tiles used for the reduc-
tion, and the required transformation) on each VDP, and
prt_tuple_new2(i, j) creates a tuple of an integer-
pair (i, j).

D. Mapping VDPs to Threads

One of the benefits of using PULSAR is its flexibility
to map the VDPs to the threads. This flexiblity allows, for
instance, us to exploit the parallelism and/or to improve
the data locality during the execution of a VSA. For our
hierarchical QR implementation, we cyclically assign the
available threads to the VDPs. Figure 8 illustrates this

for i = 1, 2, . . . ,mt do
for j = i, i+ 1, . . . , nt do

// Create VDP.
if i == j then

vdp = prt vdp new(prt tuple new2(i, j), nt − i+ 1,
vdp factor, sizeof(qr local t), 3, 3);

else
vdp = prt vdp new(prt tuple new2(i, j), nt − i+ 1,

vdp update, sizeof(qr local t), 3, 3);
end if
// input channel 1 (receive A)
channel = prt channel new(nb ∗ nb∗sizeof(double),

prt tuple new2(i− 1, j), 1, prt tuple new2(i, j), 1);
prt vdp channel insert(vdp, channel, PrtInputChannel, 1);
if j > i then

// input channel 2 (receive V)
channel = prt channel new(nb ∗ nb∗sizeof(double),

prt tuple new2(i, j − 1), 2,
prt tuple new2(i, j), 2);

prt vdp channel insert(vdp, channel, PrtInputChannel, 2);
// input channel 2 (receive T)
channel = prt channel new(ib ∗ nb∗sizeof(double),

prt tuple new2(i, j − 1), 3
prt tuple new2(i, j), 3);

prt vdp channel insert(vdp, channel, PrtInputChannel, 3);
end if
if i < mt then

// output channel 1 (send A)
channel = prt channel new(nb ∗ nb∗sizeof(double),

prt tuple new2(i, j), 1,
prt tuple new2(i+ 1, j), 1);

prt vdp channel insert(vdp, channel, PrtOutputChannel, 1);
end if
if j < nt then

// output channel 2 (send V)
channel = prt channel new(nb ∗ nb∗sizeof(double),

prt tuple new2(i, j), 2,
prt tuple new2(i, j + 1), 2);

prt vdp channel insert(vdp, channel, PrtOutputChannel, 2);
// output channel 3 (send T)
channel = prt channel new(ib ∗ nb∗sizeof(double),

prt tuple new2(i, j), 3,
prt tuple new2(i, j + 1), 3);

prt vdp channel insert(vdp, channel, PrtOutputChannel, 3);
end if
prt vsa vdp insert(vsa, vdp); // Insert the VDP.

end for
end for

Figure 9. PULSAR Example Code to set up VSA of domino QR.

mapping where the five threads are cyclically assigned to
the VDPs. In this illustration, we only have one level of the
binary reduction. When we have multiple levels of the binary
reduction, a parent VDP is assigned to the same thread as
its first child. Hence, the number of threads assigned to a
tree is at most the number of leaves. Since only one packet
passes through each VDP, the child and parent VDPs cannot
be executed in parallel, while this mapping exploits the data
locality between the VDPs.

As discussed in Section IV-A, there are two scheduling
schemes, lazy and aggressive, that decide which one of
the ready VDPs is executed next within a thread. For our
tree-based QR, the lazy scheduling scheme often obtained
better core utilization than the aggressive scheme did. This
is because the lazy scheme encourages the overlapping
of the panel factorization with the trailing submatrix up-

23K 92K 184K 368K 737K
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Number of rows (m)

G
fl
o

p
/s

Hierarchical

Binary

Flat

Figure 10. Asymptotic tree-based QR scaling (n = 4, 608, 9K cores).

480 1920 3840 7680 15360
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of cores
G

fl
o

p
/s

Hierarical

Binary

Flat

Figure 11. Strong scaling of tree-based QR at (m,n) = (368640, 4608).

date through a mechanism commonly-known as lookahead.
Hence, though our implementation does not explicitly take
the mixed-paradigm into consideration, the execution of
the program automatically takes advantage of the mixed-
paradigm without much effort from the user. This is because
we use different VDPs for the panel factorization and for
the submatrix updates, and PRT dynamically schedules the
VDPs based on the data availability.

VI. PERFORMANCE RESULTS

We conducted our experiments on the Cray XT5 system
(Kraken) at the National Institute for Computational Sci-
ences, operated by the University of Tennessee, Knoxville
and hosted by the Oak Ridge National Laboratory. Each
node of Kraken has two 2.6GHz six-core AMD Opteron
processors and 16GB of main memory, and is connected by
a Cray SeaStar2+ router. The code was compiled using the
GNU 4.6.2 gcc compiler with -O3 optimization flag, and
linked to MKL 2011 sp1.8.273 and Cray MPICH2 5.3.5.
All the experiments were ran in double-precision.

Our objective is to compare the performance of our VSA
implementation of the tall-skinny QR decomposition using
three different tree configurations: 1) binary-tree, 2) flat-tree,
and 3) binary-tree on top of flat-trees. For the computational
kernels listed in Section V-B, we used the core blas kernels
from the PLASMA package [10]. The kernel calls the
optimized LAPACK subroutine if available, or otherwise,

requires two tunable parameters: block size nb and inner-
block size ib. To compare the optimal performance using
these three tree configurations, we run each configuration
using two tile sizes of nb = 192 and 240, and the inner-
block size of ib = 48. Furthermore, for the binary-on-flat
tree, we tested performance using each flat-tree to eliminate
either 6 or 12 tiles (i.e., h = 6 or 12). Below, we report the
best performance obtained using these setups.

For a square matrix, our flat-tree configuration obtains the
performance that is equivalent to that of our first VSA imple-
mentation of the QR decomposition (domino QR) [4]. This
domino QR not only obtained significant speedups over the
ScaLAPACK implementation of the QR decomposition in
the Cray LibSci package, but it also obtained the best perfor-
mance among hierarchical QR factorizations implemented
using another runtime system, PaRSEC [5]. In comparison
to the domino QR, our flat-tree QR sends packets between
the flat-trees through one level of the binary-tree. Hence, it
requires one additional step of communication to send the
top tiles between the two flat-trees, but this overhead was
insignificant in overall performance.

We first study the asymptotic scaling of our implementa-
tion by increasing the number of rows of A, while fixing the
number of columns at n = 4, 608. This corresponds to in-
creasing the number of data points, while fixing the number
of unknowns in an overdetermined system of our interest.
The figure clearly shows that for a tall-skinny matrix, the
parallel performance of the flat-tree suffers due to the lack
of parallelism that it can exploit. Even though the binary-tree
can exploit more parallelism, it may suffer from the lack of
data locality or the performance of the special kernels which
may not be optimized on this computer. On the other hand,
the binary-on-flat tree seems to balance the parallelism and
data locality and obtained the best performance among these
three configurations.

Next, in Figure 11, we show the strong scalability of the
tree QR where the matrix dimension is fixed at 368640-by-
4608. Again, the binary-on-flat (and binary) tree obtained
much better parallel scaling than the flat-tree. Hence, these
two reduction-trees have a better potential to utilize the large
number of cores on the emerging computers (see Section I).

A. Comparison Against Established and Research Solvers

The natural question to ask is how the results presented
here compare with the existing solutions. We have done such
comprehensive studies in [6], [7]. For completeness, here,
we reiterate these previously reported findings in a concise
fashion. The existing vendor or academic software still lacks
in support for tall-skinny matrices. In particular, the perfor-
mance of both Cray LibSci and open-source ScaLAPACK
lag behind that of tree-based QR reductions by at least
3-fold, and could be as much as an order of magnitude
slower. Specialized runtimes such as PaRSEC [33] can
achieve comparable performance [7], but their performance

is still slower by at least 10% in a strong scaling scenario,
and 20% or more in a weak scaling regime. We have
presented an extensive review and results from the various
implementations, including the exact data analysis, in our
prior papers [6], [7], and they still hold for the current
PULSAR implementation presented here.

VII. CONCLUSION

We used PULSAR to examine the potential of a virtual
systolic array as a parallel programming model to obtain
extreme scalability. We used a tree-based QR algorithm
on a tall-and-skinny matrix as an example, and presented
its performance on a Cray-XT5 system. Our performance
results demonstrated that by using a more sophisticated
tree, we can obtain much higher performance than that of
a domino QR which was presented at this conference last
year [4]. We are currently running larger-scale experiments
to further investigate the scalability of the algorithm and
to map other algorithms onto PULSAR. We also plan
to compare the performance of the VSA using different
runtimes. As we discussed in Section II, a different runtime
is implemented according to a different design principle,
and may perform better for a particular algorithm or on a
particular hardware than other runtimes do. We will also
conduct more detailed analysis of the effects of the VDP-
to-thread mapping function on the performance of PRT.

SOFTWARE

The PULSAR software is freely available, and can be
downloaded at http://icl.utk.edu/pulsar/. The package includes the
PULSAR Runtime (PRT) and a handful of examples. Docu-
mentation is distributed with the package and also available
online. The PULSAR license is the 3-Clause BSD-style
permissive free software license (properly called “modified
BSD”), which allows proprietary commercial use, and for
the software released under the license to be incorporated
into proprietary commercial products. With its version 1.0
release in August 2013, PULSAR currently supports classic
multicore processors. Though we plan to support them in a
future release, PULSAR does not yet provide a support for
GPU accelerators or Xeon Phi co-processors.

ACKNOWLEDGMENTS

This work is supported by grant #SHF-1117062: “Parallel
Unified Linear algebra with Systolic ARrays (PULSAR)”
from the National Science Foundation (NSF). The authors
would like to thank the National Institute for Computational
Sciences (NICS) for a generous time allocation on the
Kraken supercomputer.

REFERENCES

[1] P. Kogge , “Exascale computing study: Technology challenges
in achieving exascale systems,” DARPA Information Process-
ing Techniques Office, Tech. Rep. 278, 2008.

[2] V. Sarkar , “Exascale software study: Software challenges
in extreme scale systems,” DARPA Information Processing
Techniques Office, Tech. Rep. 159, 2008.

[3] J. Dongarra, P. Beckman et al., “The international exascale
software roadmap,” Int. J. High Perf. Comput. Applic., vol. 25,
no. 1, 2011 (to appear).

[4] J. Kurzak, P. Luszczek, M. Gates, I. Yamazaki, and J. Don-
garra, “Virtual systolic array for QR decomposition,” in IPDPS
2013, the 27th IPDPS. Boston, Massachusetts, USA: IEEE
Comp. Society Press, May 20-24 2013.

[5] G. Aupy, M. Faverge, Y. Robert, J. Kurzak, P. Luszczek,
and J. Dongarra, “Implementing a systolic algorithm for
QR factorization on multicore clusters with PaRSEC,” in
PROPER’2013, the 6th Workshop on Productivity and Perfor-
mance. Springer Verlag, Aug. 2013, to be published in LNCS.

[6] J. Dongarra, M. Faverge, T. Herault, M. Jacquelin, J. Langou,
and Y. Robert, “Hierarchical QR factorization algorithms for
multi-core clusters,” in IPDPS’2012, the 26th IPDPS. Shang-
hai, China: IEEE Comp. Society Press, May 21-25 2012.

[7] ——, “Hierarchical QR factorization algorithms for multi-core
clusters,” Parallel Computing, 2013.

[8] H. T. Kung and C. E. Leiserson, “Systolic arrays (for VLSI),”
in Sparse Matrix Proc.. Society for Industrial and Applied
Mathematics, 1978, pp. 256–282.

[9] A. YarKhan, J. Kurzak, and J. Dongarra, “QUARK Users’
Guide: QUeueing And Runtime for Kernels,” Innovative Com-
puting Laboratory, Univ. of Tenn., Tech. Rep., 2011.

[10] E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, J. Lan-
gou, H. Ltaief, P. Luszczek, and A. YarKhan, “PLASMA Users
Guide,” Univ. of Tenn., Innovative Computing Laboratory,
Tech. Rep., 2010.

[11] A. Haidar, H. Ltaief, A. YarKhan, and J. Dongarra, “Analysis
of dynamically scheduled tile algorithms for dense linear
algebra on multicore architectures,” Concurr. Comput. : Pract.
Exper., vol. 24, no. 3, pp. 305–321, Mar. 2011.

[12] J. Kurzak, P. Luszczek, M. Faverge, and J. Dongarra, “LU
factorization with partial pivoting for a multicore system with
accelerators,” IEEE Trans. Parallel Distrib. Syst., 2012.

[13] A. YarKhan, “Dynamic task execution on shared and dis-
tributed memory architectures,” Ph.D. dissertation, Univ. of
Tenn., December 2012.

[14] R. M. Badia, J. Labarta, R. Sirvent, J. M. Perez, J. M. Cela,
and R. Grima, “Programming grid applications with GRID
Superscalar,” J. Grid Comput., vol. 1, no. 2, pp. 151–170,
2003.

[15] J. M. Perez, P. Bellens, R. M. Badia, and J. Labarta, “CellSs:
Making it easier to program the Cell Broadband Engine pro-
cessor,” IBM J. Res. & Dev., vol. 51, no. 5, pp. 593–604, 2007.

[16] J. M. Pérez, R. M. Badia, and J. Labarta, “A dependency-
aware task-based programming environment for multi-core
architectures,” in Proc. of the 2008 IEEE Int. Conf. on Cluster
Computing, 29 September - 1 October 2008, Tsukuba, Japan.
IEEE, 2008, pp. 142–151.

[17] R. M. Badia, J. R. Herrero, J. Labarta, J. M. Perez, E. S.
Quintana-Orti, and G. Quintana-Orti, “Parallelizing dense and
banded linear algebra libraries using SMPSs,” Concurrency
Computat. Pract. Exper., vol. 21, no. 18, pp. 2438–2456, 2009.

[18] E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta, R. Mayo, and
E. S. Quintana-Ortí, “An Extension of the StarSs Programming
Model for Platforms with Multiple GPUs,” in Proc. of the 15th
Int. Euro-Par Conf. on Parallel Processing. Springer-Verlag,
2009, pp. 851–862.

[19] C. Augonnet and R. Namyst, “A unified runtime system for
heterogeneous multicore architectures,” in Proc. of the Euro-

Par 2008 Workshops - Parallel Processing, ser. Lecture Notes
in Comp. Sci.. Las Palmas de Gran Canaria, Spain: Springer,
August 2008, pp. 174–183.

[20] M. C. Rinard, D. J. Scales, and M. S. Lam, “Jade: a high-
level, machine-independent language for parallel program-
ming,” Comp., vol. 26, no. 6, pp. 28–38, 1993.

[21] M. C. Rinard and M. S. Lam, “The design, implementation,
and evaluation of Jade,” ACM Trans. Programming Lang. Syst.,
vol. 20, no. 3, pp. 483–545, 1998.

[22] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An efficient multithreaded
runtime system,” SIGPLAN Not., vol. 30, pp. 207–216, August
1995.

[23] L. Dagum and R. Menon, “OpenMP: An Industry Standard
API for Shared-Memory Programming,” Computational Sci.
Engineering, IEEE, vol. 5, no. 1, pp. 46 –55, 1998.

[24] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston,
J. Y. Park, M. Erez, M. Ren, A. Aiken, W. J. Dally, and
P. Hanrahan, “Sequoia: Programming the Memory Hierarchy,”
in Proc. of the 2006 ACM/IEEE Conf. on Supercomputing, ser.
SC ’06. New York, NY, USA: ACM, 2006.

[25] E. Chan, E. S. Quintana-Orti, G. Quintana-Orti, and
R. van de Geijn, “Supermatrix out-of-order scheduling of
matrix operations for SMP and multi-core architectures,” in
Proc. of the nineteenth annual ACM symposium on Parallel
algorithms and architectures, ser. SPAA ’07. New York, NY,
USA: ACM, 2007, pp. 116–125.

[26] R. Barik, Z. Budimlic, V. Cavè, S. Chatterjee, Y. Guo,
D. Peixotto, R. Raman, J. Shirako, S. Taşırlar, Y. Yan,
Y. Zhao, and V. Sarkar, “The Habanero Multicore Software
Research Project,” in Proc. of the 24th ACM SIGPLAN
Conf. Companion on Object Oriented Programming Systems
Languages and Applications, ser. OOPSLA ’09. New York,
NY, USA: ACM, 2009, pp. 735–736.

[27] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar, “Hierarchical Place
Trees: A Portable Abstraction for Task Parallelism and Data
Movement,” in Proc. of the 22Nd Int. Conf. on Languages and
Compilers for Parallel Computing, ser. LCPC’09. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 172–187.

[28] A. Zafari, M. Tillenius, and E. Larsson, “Programming Models
Based on Data Versioning for Dependency-aware Task-based
Parallelisation,” in Computational Sci. and Engineering (CSE),
2012 IEEE 15th Int. Conf. on, 2012, pp. 275–280.

[29] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed.
Baltimore, MD: The Johns Hopkins Univ. Press, 1996.

[30] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Dem-
mel, J. J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammar-
ling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide.
Philadelphia, PA: SIAM, 1992.

[31] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’
Guide. Philadelphia, PA: SIAM, 1997.

[32] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, H. Haidar,
T. Herault, J. Kurzak, J. Langou, P. Lemariner, H. Ltaief,
P. Luszczek, A. YarKhan, and J. Dongarra, “Distributed dense
numerical linear algebra algorithms on massively parallel ar-
chitectures: DPLASMA,” Electrical Engineering and Comp.
Sci. Dept., Univ. of Tenn., Tech. Rep. UT-CS-10-660, 2010.

[33] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier,
and J. Dongarra, “DAGuE: A generic distributed DAG engine
for high performance computing,” in Proc. of the Workshops
of the 25th IPDPS, 2011, pp. 1151–1158.

