International Journal of

HIGH PERFORMANCE
COMPUTING APPLICATIONS

Special Issue Article

The International Journal of High
Performance Computing Applications
27(3) 244-254

© The Author(s) 2012

Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342013488238
hpc.sagepub.com

®SAGE

Post-failure recovery of MPI
communication capability:
Design and rationale

Wesley Bland, Aurelien Bouteiller, Thomas Herault,
George Bosilca and Jack Dongarra

Abstract

As supercomputers are entering an era of massive parallelism where the frequency of faults is increasing, the MPI Standard
remains distressingly vague on the consequence of failures on MPl communications. Advanced fault-tolerance techniques
have the potential to prevent full-scale application restart and therefore lower the cost incurred for each failure, but they
demand from MPI the capability to detect failures and resume communications afterward. In this paper, we present a set of
extensions to MPI that allow communication capabilities to be restored, while maintaining the extreme level of perfor-
mance to which MPI users have become accustomed. The motivation behind the design choices are weighted against
alternatives, a task that requires simultaneously considering MPI from the viewpoint of both the user and the implemen-
tor. The usability of the interfaces for expressing advanced recovery techniques is then discussed, including the difficult

issue of enabling separate software layers to coordinate their recovery.

Keywords

Fault tolerance, message passing interface, user-level failure mitigation

l. Introduction

Innovation in science and engineering strongly depends on
the pervasive use of computer-assisted design and simula-
tion, thereby demanding breakthrough computing capabil-
ities. In the last decade, supercomputers have relied on
increasing the number of processors to deliver unrivaled per-
formance. The rationale behind this development is, essen-
tially, driven by the lower operational cost of designs
featuring a large number of low-power processors (Bright
et al., 2005). According to current projections in processor,
memory and interconnect technologies, and ultimately the
thermal limitations of semiconductors, this trend is expected
to continue into the foreseeable future (Dongarra et al.,
2011). An unfortunate consequence of harnessing such a
large amount of individual components is the resulting
aggregate unreliability. As system size increases exponen-
tially over the years, the improvements in component man-
ufacture are outpaced, and long-running applications
spanning the entire system experience increasing disruption
from failures (Schroeder and Gibson, 2007; Cappello, 2009).

Message passing, and in particular the Message Passing
Interface (MPI) (The MPI Forum, 2012), is the prevailing
approach for developing parallel applications on massive-
scale high-performance computing (HPC) systems. Histori-
cally, many MPI applications have relied on rollback

recovery to recover from failures, a strategy that can be
achieved without support from the MPI library. However,
recent studies outline that, in light of the expected mean
time between failures (MTBF) of exascale HPC systems
and beyond (Dongarra et al., 2011), checkpoint-restart-
based rollback recovery could underperform to the point
where replication would become a compelling option (Fer-
reira et al., 2011). The literature is rich in alternative recov-
ery strategies permitting better performance in a volatile,
high-failure-rate environment. The variety of techniques
employed is very wide, and notably include checkpoint—
restart variations based on uncoordinated rollback recovery
(Bouteiller et al., 2011), replication (Ferreira et al., 2011),
algorithm-based fault tolerance where mathematical prop-
erties are leveraged to avoid checkpoints (Davies et al.,
2011; Du et al., 2012), etc. A common feature found in
most of these advanced failure recovery strategies is that,

Innovative Computing Laboratory, University of Tennessee, Knoxuville,
TN, USA

Corresponding author:
George Bosilca, Innovative Computing Laboratory, University of
Tennessee, | 122 Volunteer Boulevard, Knoxville, TN 37996-3450, USA.
Email: bosilca@icl.utk.edu

http://www.sagepub.co.uk/journalsPermissions.nav
http://hpc.sagepub.com

Bland et al.

245

unlike historical rollback recovery where the entire appli-
cation is interrupted and later restarted from a checkpoint,
the application is expected to continue operating despite
processor failures, thereby reducing the incurred 1/0,
downtime and computation loss overheads. However, the
MPI Standard does not define a precise behavior for MPI
implementations when disrupted by failures. As a conse-
quence, the deployment of advanced fault-tolerance tech-
niques is challenging, taking a strain on software
development productivity in many applied science commu-
nities, and fault tolerant applications suffer from the lack of
portability of ad hoc solutions.

Several issues prevented the standardization of recovery
behavior by the MPI Standard. Most prominently, the
diversity of the available recovery strategies is, in itself,
problematic: there does not appear to be a single best prac-
tice, but a complex ecosystem of techniques that apply best
to their niche of applications. The second issue is that, with-
out a careful, conservative design, fault-tolerance additions
generally take an excruciating toll on bare communication
performance. Many MPI implementors, system vendors
and users are unwilling to suffer this overhead, an attitude
further reinforced by the aforementioned diversity of fault
tolerance techniques which results in costly additions being
best suited for somebody else’s problem.

In this paper, we describe a set of extended MPI routines
and definitions called user-level failure mitigation (ULFM
), that permit MPI applications to continue communicating
across failures, while avoiding the two issues described
above. The main contributions of this paper are (1) to iden-
tify a minimal set of generic requirements from MPI that
enable continued operations across failures; (2) to propose
a set of semantics that limit the complexity for MPI imple-
mentors, a feature that, beyond comfort, is paramount for
maintaining extreme communication performance; (3)
expose the rationale for the design choices and discuss the
consequences of alternative approaches; (4) illustrate how
high-level fault-tolerance techniques can benefit from the
proposed constructs; (5) discuss how these semantics and
constructs can be effectively used in production codes that
intermix multiple layers of libraries from distinct providers.

The rest of this paper is organized as follows: Section 2
provides a background survey of fault-tolerance techniques
and identifies common requirements, Section 3 gives an
overview of the goals of providing fault tolerance in the
MPI Standard, Section 4 describes the new constructs intro-
duced by ULFM, Section 5 explores some of the rationale
behind the ULFM design, Section 6 gives an overview of
some possible compositions of fault-tolerance techniques
on top of ULFM , Section 7 describes some of the previous
work with integrating fault tolerance within MPI, before we
conclude and look beyond the scope of MPI in Section 8.

2. Background

In this work, we consider the effect of fail-stop failures
(that is, when a processor crashes and stops responding

completely). Network failures are equally important to tol-
erate, but are generally handled at the link protocol level,
thereby relieving MPI programs from experiencing their
effect. Silent errors that damage the dataset of the applica-
tion (memory corruption) without hindering the capacity to
deliver messages (or resulting in a crash), are the sole
responsibility of the application to correct. The survey by
Cappello (2009) provides an extensive summary of fail-
stop recovery techniques available in the literature. Since
the focus of this work is to design an extension to the MPI
runtime to enable effective deployment of advanced fault
tolerance techniques, it is critical to understand the specifi-
cities, issues, common features and opportunities offered
by this wide range of recovery techniques.

2.1. Checkpoint—restart (with coordinated rollback)

Rollback recovery is based on the intuitive procedure of
restarting the failed application each time it is impacted
by a failure. In order to diminish the amount of lost compu-
tation, the progress of the application is periodically saved
by taking checkpoints. Should a failure happen, instead of
restarting the application from the beginning it will be
restarted from the last saved state, a more advanced state
toward the application completion. In a parallel applica-
tion, the matter is complicated by the exchange of mes-
sages: if the message initiation at the sender and its
delivery at the receiver cross the line formed by the state
of processes when reloaded from a checkpoint, the state
of the application may be inconsistent, and the recovery
impossible. The traditional approach is to construct a set
of coordinated checkpoints that eliminates such messages
completely, so that the checkpoint set is consistent (Chandy
and Lamport, 1985). However, in such a case, the consis-
tent recovery point is guaranteed only if the entire applica-
tion is restarted from the checkpoint set.

Many MPI libraries provide coordinated checkpointing
automatically, without application knowledge or involve-
ment (Buntinas et al., 2008; Hursey et al., 2007). Because
of'the use of system-based checkpoint routines, these libraries
have to be internally modified to remove the MPI state from
the checkpoints. However, these modifications do not alter
the interface presented to users and the performance hit on
communication routines is usually insignificant. More gener-
ally, coordinated rollback recovery has been widely deployed
by message-passing applications without any specific
requirements from the MPI implementation. The program
code flow is designed so that checkpoints are taken at points
when no messages have been injected into MPI (hence, the
network is empty and the checkpoint set consistent) (Silva
and Silva, 1998).

2.2. Checkpoint—restart (with partial rollback)

In checkpoint-restart with partial rollback recovery, pro-
cesses that have not been damaged by a failure are kept
alive and can continue computing as long as they do not

246

The International Journal of High Performance Computing Applications 27(3)

depend on a message from a failed process. To permit inde-
pendent recovery of processes restarted from a checkpoint,
a procedure called message logging (Alvisi and Marzullo,
1995; Elnozahy et al., 2002) stores supplementary informa-
tion every time communications are involved. The message
log is then used to direct the recovery of restarted processes
toward a state that is consistent with the global state of pro-
cesses that continued without restart. Recent advances in
message logging (Bouteiller et al., 2010; Esteban Meneses
and Kalé, 2010; Guermouche et al., 2012; Bouteiller et al.,
2011) have demonstrated that this approach can deliver a
compelling level of performance and may exceed the per-
formance of coordinated rollback recovery.

2.3. Replication

Replication (Ferreira et al., 2011) is the idea that in order to
provide fault tolerance for an application, rather than chang-
ing the application to incorporate fault-tolerance techniques
or spend time writing checkpoints to disk and then perform-
ing full-system restarts, an application can execute multiple
concurrent copies of itself simultaneously. In most varia-
tions, the replicates need to remain strongly synchronized,
and messages’ delivery are effectively atomic commits to
multiple targets. As long as one of the replicates is still alive,
no data loss has happened and the application can continue.
New clones of failed processes can be recreated on the fly to
ensure continued protection from further failures. While
replication has a large overhead from duplicating computa-
tion and requiring heavy synchronization on message deliv-
eries, it has been shown to provide a higher level of
efficiency than checkpoint/restart under the extreme pres-
sure of numerous, frequent failures.

2.4. Migration

Process migration (Chakravorty et al., 2006; Wang et al.,
2008) is a form of fault tolerance which combines advanced,
proactive failure detectors with some other form of fault tol-
erance, often checkpoint/restart. To reduce the increasing
overhead of other forms of fault tolerance at scale, process
migration detects that a failure is likely to occur at a partic-
ular process and moves it (or replicates it) to a node in the
system less likely to fail. Migration requires accurate failure
predictors to be useful, but when successful, it can reduce the
overhead of other fault tolerance mechanisms significantly.

2.5. Transactions

Transactional-based computation can be seen as a form of
speculative progress with lightweight checkpoints. The
basic idea is that the algorithm is divided into blocks of
code. Each block is concluded with a construct that decides
the status of all communication operations which occurred
within the block, as opposed to checking the status of each
communication operation as it occurs (Skjellum, 2012). If
the construct determines that a process failure had occurred

in the preceding block, it allows the application to return to
the status before the beginning of the block, giving it the
opportunity to execute the block again (after replacing the
failed process).

2.6. Algorithm-based fault tolerance

Algorithm-based fault tolerance (Davies et al., 2011; Du
et al., 2012) is a family of recovery techniques based on
algorithmic properties of the application. In some naturally
fault-tolerant applications, when a failure occurs, the appli-
cation can simply continue while ignoring the lost processes
(typical of master—slave applications). In other cases, the
application uses intricate knowledge of the structure of
the computation to maintain supplementary, redundant data,
that is updated algorithmically and forms a recovery dataset
that does not rely on checkpoints. Although generally exhi-
biting excellent performance and resiliency, algorithm-based
fault tolerance requires that the algorithm is innately able to
incorporate fault tolerance and therefore might be a less gen-
eralist approach.

3. Design goals

After evaluating the strengths and weaknesses of the previ-
ous efforts toward fault tolerance both within MPI and with
other models, we converged on four overarching goals for
ULFM. More specifics on the design, rationale and gener-
ally how ULFM meets these goals can be found in Sections
4 and 5.

Flexibility in fault response is paramount: not all applica-
tions have identical requirements. In the simple case of a
Monte Carlo master—worker application that can continue
computations despite failures, the application should not
have to pay for the cost of any recovery actions; in contrast,
consistency restoration interfaces must be available for
applications that need to restore a global context (a typical
case for applications with collective communications). As
a consequence, and in sharp contrast with previous
approaches (see Section 7), we believe that MPI should not
attempt to define the failure recovery model or to repair
applications. It should inform applications of specific condi-
tions that prevent the successful delivery of messages, and
provide constructs and definitions that permit applications
to restore MPI objects and communication functionalities.
Such constructs must be sufficient to express advanced
high-level abstractions (without replacing them), such as
transactional fault tolerance, uncoordinated checkpoint/
restart, and programming language extensions. The failure
recovery strategies can then be featured by independent por-
table packages that provide tailored, problem specific recov-
ery techniques and drive the recovery of MPI on behalf of
the applications.

Resiliency refers to the ability of the MPI application
not only to survive failures, but also to recover into a con-
sistent state from which the execution can be resumed. One
of the most strenuous challenges is to ensure that no MPI

Bland et al.

247

operation stalls as a consequences of a failure, for fault tol-
erance is impossible if the application cannot regain full
control of the execution. An error must be raised when a
failure prevents a communication from completing. How-
ever, we propose that such a notice indicates only the local
status of the operation, and does not permit inferring
whether the associated failure has impacted MPI operations
at other ranks. This design choice avoids expensive consen-
sus synchronizations from obtruding into MPI routines, but
leaves open the danger of some processes proceeding una-
ware of the failure. Therefore, supplementary constructs
must be sparingly employed in the application code to let
processes which have received an error resolve their
divergences.

Productivity and the ability to handle the large number
of legacy codes already deployed in production is another
key feature. Backward compatibility (i.e. supporting
unchanged non fault tolerant applications) and incremental
migration are necessary. A fault-tolerant API should be
easy to understand and use in common scenarios, as com-
plex tools have a steep learning curve and a slow adoption
rate by the targeted communities. To this end, the number
of newly proposed constructs must be small, and have clear
and well-defined semantics that are familiar to users.

Performance impact outside of recovery periods should
be minimal. Failure protection actions within the implemen-
tation must be outside the performance critical path, and
recovery actions triggered by the application only when nec-
essary. As most functions are left unmodified (as an exam-
ple, the implementation of collective operations), they
continue to deliver the extraordinary performance resulting
from years of careful optimization. Overheads are tolerated
only as a consequence of actual failures.

4. ULFM constructs

ULFM was proposed as an extension to the MPI Forum' to
introduce fault-tolerance constructs in the MPI standard. It
is designed according to the criterion identified in the pre-
vious section: to be the minimal interface necessary to
restore the complete MPI capability to transport messages
after failures. As requested by our flexibility goal, it does
not attempt to define a specific application recovery strat-
egy. Instead, it defines the set of functions that can be used
by applications (or libraries and languages that provide
high-level fault-tolerance abstractions) to repair the state
of MPI. In this section, we summarize the new definitions
and functions added by ULFM ; the rationale behind these
design choices will be discussed in Section 5.

4.1. Failure reporting

Failures are reported on a per-operation basis, and indicate
essentially that the operation could not be carried out suc-
cessfully because a failure occurred on one of the processes
involved in the operation. For performance reasons, not all
failures need to be propagated, in particular, processes that

do not communicate with the failed process are not
expected to detect its demise. Similarly, during a collective
communication, some processes may detect the failure,
while some other may consider that the operation was suc-
cessful; a particularity that we name non-uniform error
reporting. Let’s imagine a broadcast communication using
a tree-based topology. The processes that are high in the
tree topology, close to the root, complete the broadcast ear-
lier than the leaves. Consequently, these processes may
report the successful completion of the broadcast, before
the failure disrupts the communication, or even before the
failure happens, while processes below a failed process
cannot deliver the message and have to report an error.

The first new construct, MPI__COMM_REVOKE, is the
most crucial and complex, and is intended to resolve the
issues resulting from non-uniform error reporting. As seen
above, if non-uniform error reporting is possible, the view
of processes, and accordingly the actions that they will
undergo in the future, may diverge. Processes that have
detected the failure may need to initiate a recovery procedure,
but they have the conflicting need to match pending opera-
tions that have been initiated by processes that have pro-
ceeded unaware of the failure, as otherwise these may
deadlock while waiting for their operation to complete. When
such a situation is possible, according to the communication
pattern of the application, processes that have detected that
recovery action is needed and intend to interrupt following the
normal flow of communication operations can release other
processes by explicitly calling the MPT_COMM_REVOKE
function on the communication object. Like many other MPI
constructs MPT__COMM_REVOKE is a collective operation
over the associated communicator. However, unlike any
other collective MPI constructs it does not require a sym-
metric call on all processes, a single processes in the commu-
nicator calling the revoke operation ensure the communicator
will be eventually revoked. In other words it has a behavior
similar to MPT_ ABORT with the exception that it does not
abort processes, instead it terminate all ongoing operations
on the communicator and mark the communicator as impro-
per for future communications.

As an example, in Figure 1, four processes are communi-
cating in a point-to-point pattern. Process 2 is waiting to
receive a message from process 3, which is waiting to
receive a message from process 0, itself waiting to receive
a message from process 1. In the meantime, process 1 has
failed, but this condition is detected only by process 0, as
other processes do not communicate with process 1 directly.
At this point, without a new construct, the algorithm would
reach a deadlock: the messages that processes 2 and 3 are
waiting for will never arrive because process 0 has branched
to enter recovery. To resolve this scenario, before switching
to the recovery procedure, process 0 calls MPT__COMM__
REVOKE, which notifies all other processes in the commu-
nicator that a condition requiring recovery actions has been
reached. When receiving this notification, any communica-
tion on the communicator (ongoing or future) is interrupted
and a special error code returned. From this point, any

248

The International Journal of High Performance Computing Applications 27(3)

0

SCOTED pailed Revoke
A
1——

=1

Revoked

3
Revoked Revoked

Figure |. An example of a scenario where MPI_COMM_RE-
VOKE is necessary to resolve a potential deadlock in the
communication pattern.

operation (point-to-point or collective) on the communicator
returns that same error code, and the communicator becomes
effectively unusable for any purpose. Then, all surviving
processes can safely enter the recovery procedure of the
application, knowing that no alive process belonging to that
communicator can deadlock on a communication that will
not happen.

4.2. Rebuilding communicators

The next construct provides a recovery mechanism: MPT__
COMM__SHRINK. Although the state of a communicator is
left unchanged by process failures, and point-to-point oper-
ations between non-failed processes are still functional, it is
to be expected that most collective communication will
always raise an error, as they involve all processes in the
communicator. Therefore, to restore full communication
capacity, MPI communicators objects must be repaired. The
MPI_ COMM_SHRINK function create a new functional
communicator based on an existing, revoked communicator
containing failed processes. It does this by creating a dupli-
cate communicator (in the sense of MPI_ COMM_DUP) but
omitting any processes which are agreed to have failed by all
remaining processes in the shrinking communicator. If there
are new process failures which are discovered during the
shrink operation, these failures are absorbed as part of the
operation.

4.3. Continue without revoke

Revoking a communicator is an effective but heavy-handed
recovery strategy, as no further communication can happen
on the revoked communicator, and a new working com-
municator can only be created by calling MPT_COMM__
SHRINK. Depending on the application communication
pattern, the occurrence of a failure may never result in a
deadlock (an opportunity that is impossible to detect at the
implementation level, but that may be known by the pro-
grammer, typically in a domain decomposition application).
In accordance to the flexibility principle, such applications

should not have to pay for the cost of complete recovery
when they can simply continue to operate on the communi-
cator without further involving the failed processes.

4.4. Retrieving the local knowledge about
failed processes

The next two functions, MPI_COMM_FAILURE_ACK
and MPI_COMM_FAILURE_GET_ ACKED are intro-
duced as a lightweight mechanism to continue using
point-to-point operations on a communicator that contains
failed processes. Using these functions, the application can
determine which processes are known to have failed, and
inform the MPI library that it acknowledges that no future
receive operation can match sends from any of the reported
dead processes. MPI_COMM_FAILURE_GET_ACKED
returns the group containing all processes which were
locally known to have failed at the time the last MPI__
COMM_FAILURE_ACK was called. These functions can
be used on any type of communicator, be it revoked or not.

The operation of retrieving the group of failed processes
is split into two functions for two reasons. First, it permits
multiple threads to synchronize on the acknowledge, to pre-
vent situations were multiple thread read a different group of
failed processes. Second, the acknowledge acts as a mechan-
ism for alerting the MPI library that the application has been
notified of a process failure, permitting to relax error report-
ing rules for “wildcard” MPI_ANY_SOURCE receives.
Without an acknowledgement function, the MPI library
would not be able to determine whether the failed process
is a potential matching sender, and would have to take the
safe course of systematically returning an error, thereby pre-
venting any use of wildcard receives after the first failure.
Once the application has called MPI__COMM_FAILURE_
ACK, it becomes its responsibility to check that no posted
“wildcard” receive should be matched by a send at a
reported dead process, as MPI stops reporting errors for such
processes. However, it will continue to raise errors for
named point-to-point operations with the failed process as
well as collective communications.

4.5. Ensuring consistent state

The last function permits deciding on the completion of an
algorithmic section: MPT__COMM_AGREE. This function,
which is intrinsically costly, is designed to be used spar-
ingly, for example when a consistent view of the status of
a communicator is necessary, such as during algorithm
completion. This operation performs an agreement algo-
rithm, computing the conjunction of boolean values pro-
vided by all alive processes in a communicator. Dead
processes “‘participate” with the default value ’false’. It
is important to note that this function will continue success-
fully even if a communicator has known failures (or if fail-
ures happen during the operation progress).

Bland et al.

249

4.6. Beyond communicators

While communicator operations are the historic core of
MPI, the standard has been extended over the years to sup-
port other types of communication contexts, namely shared
memory windows (with explicit put/get operations) and
collective file I/0. The same principles described in this
paper are extended to these MPI objects in the complete
proposal; in particular, windows and files have a similar
Revoke function. A notable difference, though, is that file
and window object do not have repair functions. These
objects are initially derived from a communicator object,
and the expected recovery strategy is to create a repaired
copy of this communicator, before using it to create a new
instance of the window or file object. While windows also
have the failure introspection function MPT_WIN_GET_
FAILED, which is useful for continuing active target
operations on the window when failed processors can be
ignored (similarly to point-to-point operations on a com-
municator), all file operations are collective, hence this
function is not provided, as the only meaningful continua-
tion of a failure impacting a file object is to revoke the file
object. It should be noted that in the case of file objects,
only failures of MPI processes (that may disrupt collective
operations on the file) are addressed. Failures of the file
backend itself are already defined in MPI-2.

5. Design rationale

In this section we discuss the rationale behind the proposed
design by taking the view of MPI implementors in analyz-
ing the challenges and performance implications that result
from possible implementations, and explain why sometime
counterintuitive designs are superior. While presenting
implementation details or practical results is outside the
scope of this paper, our claims that the proposed design
does indeed achieve excellent performance is supported
by an implementation, presented in Bland et al. (2012a).

5.1. Failure detection

Failure detection has proven to be a complex but crucial
area of fault-tolerance research. Although in the most
adverse hypothesis of a completely asynchronous system,
failures are intractable in theory, the existence of an appro-
priate failure detector permits resolving most of the theore-
tical impossibilities (Chandra and Toueg, 1996). One of the
crucial goals of ULFM is to prevent deadlocks from arising,
which indeed requires the use of some failure detection
mechanism (in order to discriminate between arbitrarily
long message delays and failures). However, because the
practicality of implementing a particular type of failure
detector strongly depends on the hardware features, the
specification is intentionally vague and refrains from for-
cing a particular failure detection strategy. Instead, it leaves
open to the implementations choices that better match the
target system. On some systems, hardware introspection

may be available and provide total awareness of failures
(typically, an IPMI capable batch scheduler). However,
on many systems, a process may detect a failure only if it
has an active open connection with the failed resource, or
if it is actively monitoring its status with heartbeat mes-
sages. In the latter situation requiring complete awareness
of failures of every process by every process would gener-
ate an immense amount of system noise (from heartbeat
messages injected into the network and the according treat-
ments on the computing resources to respond to them), and
it is known that MPI communication performance is very
sensitive to system noise (Petrini et al., 2003). Furthermore,
processes that are not trying to communicate with the dead
process do not need to be aware of its failure, as their oper-
ations are with alive processors and therefore deadlock-
free. As a consequence, to conserve generality and avoid
extensive generation of system noise, failure detection in
ULFM requires only to detect failures of processes that are
active partners in a communication operation, so that this
operation eventually returns an appropriate error. In the
ideal case, the implementation should be able to turn on
failure monitoring only for the processes it is expecting
events from (such as the source or destination in a point-
to-point operation). Some cases (such as wildcard receives
from any source) may require a wider scoped failure detec-
tion scheme, as any processor is a potential sender. How-
ever, the triggering of active failure detection can be
delayed according to implementation internal timers, so
that latency critical operations do not have to suffer a per-
formance penalty.

5.2. Communication objects status

A natural conception is to consider that detection of failures
results in MPI automatically altering the state of all com-
munication objects (i.e. communicators, windows, etc.) in
which the associated process appears. In such a model, it
is understood that the failure “damages™ the communica-
tion object and renders it inappropriate for further commu-
nications. However, a complication is hidden in such an
approach: the state of MPI communication objects is the
aggregate state of individual views by each process of dis-
tributed system. As failure awareness is not expected to be
global, the implementation would then require internal and
asynchronous propagation of failure detection, a process
prone to introduce jitter. Furthermore, MPI messages
would be able to cross the toggling of the communication
object into an invalid state, resulting in a confuse semantic
where operations issued on a valid communication object
would still fail, diluting the meaning of a valid and invalid
state of communication objects.

We decided to take the opposite stance on the issue, fail-
ures never automatically modify the state of communication
objects. Even if it contains failed processes, a communicator
remains a valid communication object. Instead, error report-
ing is not intended to indicate that a process failed, but to
indicate that an operation cannot complete. As long as no

250

The International Journal of High Performance Computing Applications 27(3)

failures happen, the normal semantic of MPI must be
respected. When a failure has happened, but the MPI opera-
tion can proceed without disruption, it completes normally.
Obviously, when the failed process is supposed to participate
to the result of the operation, it is impossible for the opera-
tion to succeed, and an appropriate error is returned. Posting
more operations that involve the dead processes is allowed,
but is expected to result in similar errors.

There are multiple advantages to this approach. First, the
consistency of MPI objects is always guaranteed, as their
state remains unchanged as long as users don’t explicitly
change it with one of the recovery constructs. Second, there
is no need to introduce background propagation of failure
detections to update the consistent state of MPI objects,
because operations that need to report an error do actively
require the dead process’ participation, thereby active fail-
ure detection is forced only at the appropriate time and
place.

5.3. Local or uniform error reporting

In the ULFM design, errors notify the application that an
operation could not satisfy its MPI specification. However,
most MPI operations are collective, or have a matching call
at some other process. Should the same error be returned
uniformly at all ranks that participated in the communica-
tion? Although such a feature is desirable for some users,
as it permits easily tracking the global progress of the appli-
cation (and then infer a consistent synchronized recovery
point), the consequences on performance are dire. This
would require that each communication conclude with a
global agreement operation to determine the success or fail-
ure of the previous communication as viewed by each
process. Such an operation has been shown to require at
least O(#?) messages (where 7 is the number of processes
participating in the communication), and would thus
impose an enormous overhead on communication. With
regards to the goal of maintaining unchanged level of per-
formance, it is clearly unacceptable to double, at best, the
cost of all communication operations, even when no failure
happened.

As a consequence, in ULFM, the reporting of errors has a
local semantic: the local completion status (in error, or suc-
cessfully) cannot be used to assume whether the operation
has failed or succeeded at other ranks. In many applications,
this uncertainty is manageable, because the communication
pattern is simple enough. When the communication pattern
does not allow such flexibility, the application is required
to resolve this uncertainty itself by explicitly changing the
state of the communication object to Revoked. Indeed, it is
extremely difficult for MPI to assess whether a particular
communication pattern is still consistent (it would require
computing global snapshots after any communication),
while the user can know through algorithm invariants when
it is the case. Thanks to that flexibility, the cost associated
with consistency in error reporting is paid only after an

actual failure has happened, and applications that do not
need consistency can enjoy unchanged performance.

5.4. Restoring consistency and communication
capabilities

Revoking a communication object result in a definitive
alteration of the state of the object, that is consistent across
all processes. This alteration is not to be seen as the (direct)
consequence of a failure, but as the consequence of the user
calling a specific operation on the communication object.
In a sense, revoking a communication object explicitly
achieves the propagation of failure knowledge that has
intentionally not been required, but is provided when the
user determines necessary. Another important feature of
that change of state is that it is definitive. After a commu-
nication object has been revoked, it can never be repaired.
The rationale is to avoid the matching to have to check for
stale messages from past incarnations of a repaired commu-
nication object. Because the object is discarded defini-
tively, any stale message matches the revoked object and
is appropriately ignored without modifications in the
matching logic. In order to restore communication capac-
ity, the repair function derive new, fresh communication
objects, that do not risk intermixing pre-failure operations.

5.5. Library construction

At the heart of all of the design decisions in ULFM was a
minimalistic approach which encouraged extensions via
supplementary libraries. Because fault-tolerance research
shows such a clear need in the future and no single practice
has emerged as dominant, ULFM provides the foundations
to construct new consistency models on top of MPI as a
library. For instance, if an application is willing to pay the
performance cost of globally consistent collective opera-
tions which uniformly return error codes among participat-
ing processes, it can create a library which amends the
existing collective operations with an agreement operation
to decide the status of the communication. Further discus-
sion of composing fault-tolerant techniques on top of
ULFM can be found in Section 6.

While not specifically mentioned in the ULFM specifi-
cation, library composition is a complex topic that required
some consideration in the design. To ensure that libraries
could interoperate and maintain a consistent view of the
system throughout the software stack, a sample library
stack was envisioned to demonstrate the feasibility of
ULFM with other libraries. Figure 1 demonstrates one pos-
sible method of propagating failure information up through
the stack to the application, then performing a top-down
recovery to repair communication and continue the algo-
rithm. As the figure shows, the recovery operations should
occur at the highest level first, rather than the lowest. This
is especially true when the algorithm requires the replace-
ment of failed processes with new processes. If this replace-
ment occurs at the lowest level, transparent to libraries and

Bland et al.

251

applications which sit on top of it, the MPI communicators
lose their consistency. For example, if an application pro-
vides a communicator to a library, rank 2 in the communi-
cator fails and the library automatically spawns a new
process and inserts it into the communicator, the original
application has no knowledge of this new process and
therefore cannot bring it back into the original application.
However, if the original application is responsible for
repairing the communicator by recreating failed processes
and providing the repaired communicator to the library,
both levels can now communicate with the replacement
process and the application can continue.

6. Composition of fault-tolerant libraries
and applications

ULFM was specifically created not to promote any partic-
ular form of fault tolerance over another. Instead, it was
designed to enable the support of many types of fault-
tolerance techniques provided either via extension libraries
or independent packages, with a portable and efficient
interface. The portability claim is paramount, as one of the
major obstacles for progress in the fault-tolerance area is
the lack of consistent interfaces to retrieve and handle pro-
cess failures from multiple MPI implementations. With
ULFM constructs, as fault tolerance evolves as a research
field and new ideas come about, their implementations can
be built using the consistent and portable set of constructs
with minimal overhead. This section will expand on how
existing fault-tolerance techniques from Section 2 could
be constructed in conjunction with ULFM.

6.1. Automatic methods

As fault tolerance continues to evolve, checkpoint/restart
will continue to be a popular design for legacy codes and
therefore should be supported by any new fault-tolerant
environments. ULFM supports the coordinated rollback
form of checkpoint/restart without modification as there are
many libraries which function with the existing MPI Stan-
dard (Duell, 2002). However, partial rollback forms of
checkpoint/restart can be developed which could take
advantage of the additions in ULFM without requiring the
application to restart entirely. Most of the event-logging
mechanisms can be implemented in a portable way by
using the already standardized PMPI interface. When a fail-
ure happens, the message logging library can revoke com-
municators internally in the PMPI hooks, silently swap
them with replacements obtained by the usual shrink,
spawn, merge combination, and continue.

In the case of replication and migration, the PMPI hooks
are usually used to redirect messages to the appropriate tar-
get, or to integrate the consistent delivery protocol to mul-
tiple replicates. When operations are addressed to other
processes, the library can intercept the MPI calls and recal-
culate their targets. For example, the library might redirect
the communication to point to the currently active target

depending on which replica is being used or if a process has
migrated. When a failure happens, the similar internal hot
swapping of the communication object can be realized in
the PMPI interface.

By employing message-logging techniques and using
ULFM constructs, the application might not need to roll
back any processes, but could use an MPI_COMM_A-
GREE function to decide the status of the failed process
and then consistently replay the messages that were sent
to the recovered process.

6.2. Algorithm-based fault tolerance

Algorithm-based fault-tolerant (ABFT) codes are another
form of application that could easily be directly integrated
with ULFM. For ABFT codes which tolerating the lost of
processes, a simple MPTI_COMM_REVOKE followed by
MPI_COMM_SHRINK approach could restore functional-
ity by dropping failed processes. Other applications which
require a full set of processes to continue can replace the
failed processes by adding a call to MPT__COMM__ SPAWN,
and reintegrating the new processes in the original set. To
the best of the authors’ knowledge, neither of these types
of applications require another level of complexity through
an external library, but receive all of the fault-tolerance
support they require through ULFM.

6.3. Transactional fault tolerance

Transactional fault tolerance can also be implemented as a
library on top of ULFM by adding a new function that
remaps to MPT__COMM_AGREE to determine the comple-
tion status of previous operations and, on success, saves
any necessary data to stable storage, or, on failure, loads the
necessary data from storage and returns to a previous point
in the code. It would also be necessary to perform opera-
tions to replace failed processes using existing MPI-2
dynamic processing functions. Timers and bailouts that are
defined in some transactional frameworks can be intro-
duced in PMPI hooks.

7. Related work

Gropp and Lusk (2004) describe methods using the then
current version of the MPI Standard to perform fault toler-
ance. They described methods including checkpointing,
MPI_ERRHANDLERs, and using inter-communicators
to provide some form of fault tolerance. They outline the
goals of providing fault tolerance without requiring
changes to the MPI Standard. However, at the time of writ-
ing, fault tolerance was still an emerging topic of research
with few solutions beyond checkpointing and simple ABFT
in the form of master—worker applications. As fault toler-
ance has evolved to include those paradigms mentioned
in Section 2, the requirements on the MPI implementation
have also grown, and the limited functionality emphasized
are insufficient for general communication purposes.

252

The International Journal of High Performance Computing Applications 27(3)

Another notable effort was FT-MPI (Fagg and Don-
garra, 2000). The overreaching goal was to support ABFT
techniques, it thereby provide three failure modes adapted
to this type of recovery techniques, but difficult to use in
other contexts. In the Blank mode, failed processes were
automatically replaced by MPI_PROC_NULL; messages
to and from them were silently discarded and collective
communications had to be significantly modified to cope
with the presence of MPI__PROC_NULL processes in the
communicator. In the Replace mode, faulty processes were
replaced with new processes. In the Shrink mode, the com-
municator would be changed to remove failed processes
(and ranks reordered accordingly). In all cases, only
MPI_COMM_WORLD would be repaired and the applica-
tion was in charge of rebuilding any other communicators.
No standardization effort was pursued, and it was mostly
used as a playground for understanding the fundamental
concepts. A major distinction with the ULFM design is that
when FT-MPI detects a failure, it repairs the state of MPI
internally according to the selected recovery mode, and
then only triggers the coordinated user recovery handle at
all nodes. Library composition is rendered difficult by the
fact that recovery preempts the normal flow of execution
and returns to the highest level of the software stack with-
out alerting intermediate layers that a failure happened.

A more recent effort to introduce failure handling
mechanisms was the run-through stabilization proposal
(Hursey et al., 2011). This proposal introduced many new
constructs for MPI including the ability to “validate” com-
municators as a way of marking failure as recognized and
allowing the application to continue using the communica-
tor. It included other new ideas such as failure handlers for
uniform failure notification. Because of the implementa-
tion complexity imposed by resuming operations on failed
communicators, this proposal was eventually unsuccessful
in its introduction to the MPI Standard.

Simultaneously with the proposed changes to the MPI
Standard, Checkpoint-on-Failure (CoF) (Bland et al., 2012b)
is a new protocol designed to permit supporting forward
recovery strategies in the context of the existing MPI stan-
dard. In this strategy, when a failure happens, MPI operations
return an error, but do not abort the application (a behavior
defined as a “high-quality” implementation in MPI-2). How-
ever, it is not expected from MPI that communications can
continue or resume at a later time. Instead of trying to recover
immediately, the entire application undergoes checkpoint.
Because the checkpoints are taken only after effective failures
have happened, the traditional overhead of customary peri-
odic checkpoint is eliminated and checkpoints are indeed
taken at the optimal interval (one checkpoint per fault). After
the checkpoints are taken, the application undergoes a com-
plete restart, because, unlike in ULFM, MPI communications
cannot be repaired without such a drastic measure. Once that
full restart is completed, the application can proceed with its
forward recovery strategy (typically including communicat-
ing) to restore the dataset of processes that have failed before
completing their checkpoint.

Application
LIB1_ERR_FAILURE » Repair() » repaired_comm

Library 1 l

LIB2_ERR_FAILURE

Library 2 l

MPI_ERR_PROC_FAILED

RepairLib1(libl_comm)

RepairLib2(lib2_comm)

Figure 2. An example of library construction, error propagation,
and recovery through the software stack.

8. Conclusion

Simple communication interfaces, such as sockets or
streams, have been featuring robust fault tolerance for
decades. It may come as a surprise that specifying the beha-
vior of MPI when fail-stop failures strike is so challenging.
In this paper we have identified the contentious issues,
rooted in the fact that the state of MPI objects is implicitly
distributed and that specifying the behavior of collective
operations and communication routines requires a careful,
precise investigation of unexpected consequences on the
concepts as well as on the performance. We first took a
review of the field of fault tolerance and recovery methods;
most require that MPI can restore the full set of communi-
cation functionalities after a failure happened. Then, we
proposed the ULFM interface, which responds to that
demand, and took the critical viewpoint of the implementor
unwilling to compromise performance, on a number of hid-
den, but crucial issues regarding the state of MPI objects
when failure happen. Lastly, we took the viewpoint of MPI
users, and depicted how the ULFM specification can be
used to support high-level recovery strategies.

We believe that, beyond MPI, the insight gained in the
ULFM design is applicable to other communication middle-
ware relying on generic concepts such as stateful communi-
cation objects representing the context of a communication
or defining collective operations. In particular, the pitfalls
associated with defining a particular type of recovery strat-
egy that matches only a niche of applications, rather than
defining the minimal set of functionalities that permit restor-
ing communication capabilities, as well as the caveats of
returning uniform errors and its implementation cost should
highlight similar difficulties in any type of distributed mem-
ory framework, and we hope some of the insight presented in
this paper can be reused in this context.

ULFM is currently considered for standardization by
the MPI Forum. More libraries and applications are
being adapted to take advantage of its new constructs.
As these developments conclude, a more compelling
argument for ULFM will take shape and hopefully drive
its adoption as a critical part of the future versions of the
MPI standard.

Bland et al.

253

Funding

This document describes combined research conducted
under the following contracts: NSF-0904952 and NSF-
1144042 between the U.S. National Science Foundation
and the University of Tennessee, and DE-FCO02-
11ER26059 supported by the U.S. Department of Energy.

Note

1. The interested reader may refer to chapter 17 of the com-
plete draft, available from http://fault-tolerance.org/
ulfm/ulfm-specification

References

Alvisi L and Marzullo K (1995) Message logging: pessimistic,
optimistic, and causal. In: Proceedings of the 15th Interna-
tional Conference on Distributed Computing Systems (ICDCS
1995). Los Alamitos, CA: IEEE CS Press, pp. 229-236.

Bland W, Bouteiller A, Herault T, Hursey J, Bosilca G and Don-
garra JJ (2012 a) An evaluation of User-Level Failure Mitiga-
tion support in MPI. In: Traff JL, Benkner S and Dongarra J
(eds.) 19th EuroMPI, Vienna, Austria. Berlin: Springer.

Bland W, Du P, Bouteiller A, Herault T, Bosilca G and Dongarra
JJ (2012 b) A Checkpoint-on-Failure protocol for algorithm-
based recovery in standard MPI. In: 18th Euro-Par, Rhodes
Island, Greece. Berlin: Springer.

Bouteiller A, Bosilca G and Dongarra J (2010) Redesigning the
message logging model for high performance. Concurrency
and Computation: Practice and Experience 22(16): 2196—
2211.

Bouteiller A, Herault T, Bosilca G and Dongarra JJ (2011) Corre-
lated set coordination in fault tolerant message logging proto-
cols. In: Proceedings of Euro-Par’ll (II) (Lecture Notes in
Computer Society, vol. 6853). Berlin: Springer, pp. 51-64.
DOI: http://dx.doi.org/10.1007/978-3-642-23397-5_6.

Bright A, Ellavsky M, Gara A, et al. (2005) Creating the
BlueGene/L supercomputer from low-power SoC ASICs. In:
Solid-State Circuits Conference, Digest of Technical Papers
(ISSCC), volume 1. Piscataway, NJ: IEEE, pp. 188—189. DOI:
10.1109/ISSCC.2005.1493932.

Buntinas D, Coti C, Herault T, et al. (2008) Blocking vs. non-
blocking coordinated checkpointing for large-scale fault toler-
ant MPI protocols. Future Generation Computer Systems
24(1): 73-84. DOI: 10.1016/j.future.2007.02.002.

Cappello F (2009) Fault tolerance in petascale/exascale systems:
Current knowledge, challenges and research opportunities.
International Journal of High Performance Computing Appli-
cations 23(3): 212.

Chakravorty S, Mendes CL and Kalé LV (2006) Proactive fault tol-
erance in MPI applications via task migration. In: HiPC 2006,
the IEEE High performance Computing Conference. Los Ala-
mitos, CA: IEEE Computer Society Press, pp. 485-496.

Chandra TD and Toueg S (1996) Unreliable failure detectors for reli-
able distributed systems. Journal of the ACM 43(2): 225-267.

Chandy KM and Lamport L (1985) Distributed snapshots: deter-
mining global states of distributed systems. Transactions on
Computer Systems 3(1): 63-75.

Davies T, Karlsson C, Liu H, Ding C and Chen Z (2011) High per-
formance Linpack benchmark: a fault tolerant implementation
without checkpointing. In: Proceedings of the 25th ACM Inter-
national Conference on Supercomputing (ICS 2011). New
York: ACM Press.

Dongarra J, Beckman P, et al. (2011) The international exascale
software roadmap. International Journal of High Performance
Computing Applications 25(11): 3-60.

Du P, Bouteiller A, et al. (2012) Algorithm-Based Fault Tolerance
for dense matrix factorizations. In: 17th SIGPLAN PPoPP.
New York: ACM Press, pp. 225-234.

Duell J (2002) The Design and Implementation of Berkeley Lab’s
Linux Checkpoint/Restart. Technical Report LBNL-54941.
Elnozahy ENM, Alvisi L, Wang YM and Johnson DB (2002)
A survey of rollback-recovery protocols in message-passing

systems. ACM Computing Survey 34: 375-408.

Esteban Meneses CLM and Kalé LV (2010) Team-based message
logging: Preliminary results. In: 3rd Workshop on Resiliency
in High Performance Computing (Resilience) in Clusters,
Clouds, and Grids (CCGRID 2010).

Fagg G and Dongarra J (2000) FT-MPI: Fault Tolerant MPI, sup-
porting dynamic applications in a dynamic world. In:
EuroPVM/MPI.

Ferreira K, Stearley J, Laros J, et al. (2011) Evaluating the viabi-
lity of process replication reliability for exascale systems. In:
2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC). ACM Request
Permissions, pp. 1-12.

Gropp W and Lusk E (2004) Fault tolerance in message passing
interface programs. International Journal of High Perfor-
mance Computing Applications 18: 363-372. DOI: 10.1177/
1094342004046045.

Guermouche A, Ropars T, Snir M and Cappello F (2012) HydEE:
failure containment without event logging for large scale send-
deterministic MPI applications. In: 2012 IEEE 26th Interna-
tional Parallel Distributed Processing Symposium (IPDPS),
pp. 1216 —1227. DOI: 10.1109/IPDPS.2012.111.

Hursey J, Graham RL, Bronevetsky G, Buntinas D, Pritchard H
and Solt DG (2011) Run-through stabilization: An MPI pro-
posal for process fault tolerance. In: EuroMPI 2011: Proceed-
ings of the 18th EuroMPI Conference, Santorini, Greece.

Hursey J, Squyres J, Mattox T and Lumsdaine A (2007) The
design and implementation of checkpoint/restart process fault
tolerance for Open MPL. In: IEEE International Parallel and
Distributed Processing Symposium, 2007 (IPDPS 2007), pp.
1-8. DOI: 10.1109/TPDPS.2007.370605.

Petrini F, Frachtenberg E, Hoisie A and Coll S (2003) Performance
evaluation of the Quadrics interconnection network. Cluster
Computing 6(2): 125-142. DOI: 10.1023/A:1022852505633.

Schroeder B and Gibson GA (2007) Understanding failures in
petascale computers. Journal of Physics: Conference Series
78: 012022.

Silva LM and Silva JG (1998) System-level versus user-defined
checkpointing. In: Proceedings of the The 17th IEEE Sympo-
sium on Reliable Distributed Systems (SRDS ‘98), Washing-
ton, DC. Los Alamitos, CA: IEEE Computer Society Press,
p. 68.

254

The International Journal of High Performance Computing Applications 27(3)

Skjellum A (2012) Middle-out Transactional Requirements on
Exascale Parallel Middleware, Storage, and Services. Techni-
cal Report UABCIS-TR-2012-020312, University of Alabama
at Birmingham, Computer and Information Sciences.

The MPI Forum (2012) MPI: A Message-Passing Interface Stan-
dard, Version 3.0. Technical report.

Wang C, Mueller F, Engelmann C and Scott SL (2008) Proactive
process-level live migration in HPC environments. In: SC ‘08
Proceedings of the 2008 ACM/IEEE conference on Supercom-
puting. Piscataway, NJ: IEEE Press, pp. 1-12.

Author biographies

Wesley Bland is a Graduate Research Assistant in the Inno-
vative Computing Laboratory at the University of Tennes-
see, Knoxville. He will be defending his thesis on methods
to add fault tolerance to high-performance computing
middle-wares, specifically MPI. He received his B.S.
degree at Tennessee Technological University in Cooke-
ville, TN in 2007 and his M.S. degree from the University
of Tennessee, Knoxville in 2009. Upon graduation, he will
begin a Postdoctoral Appointment at Argonne National
Laboratory in Chicago, IL.

Aurelien Bouteiller is currently a researcher at the Innovative
Computing Laboratory, University of Tennessee. He
received is Ph.D. from University of Paris in 2006 on the sub-
ject of rollback recovery fault tolerance. His research is
focused on improving performance and reliability of distrib-
uted memory systems. Toward that goal, he investigated auto-
matic (message-logging-based) checkpointing approaches in
MPI, algorithm-based fault tolerance approaches and their
runtime support, mechanisms to improve communication
speed and balance within nodes of many-core clusters, and
employing emerging data flow programming models to
negate the raise of jitter on large-scale systems. These works
resulted in over thirty publications in international confer-
ences and journals and three distinguished paper awards from
IPDPS and EuroPar. He his also a contributor to Open MPI
and one of the leading designer of MPI Forum efforts toward
fault-tolerance interfaces.

Thomas Herault is a Research Scientist in the Innovative
Computing Laboratory at the University of Tennessee,

Knoxville. His research focuses on fault-tolerance in high-
performance computing, middleware for communication and
data-flow environment in distributed memory systems. He
received his B.S. and M.S. degrees in computer science from
the Paris-Sud University at Orsay, France. He defended his
PhD in computer science on failure detection and mending
in self-stabilizing systems at the Paris-Sud University, Orsay,
France, in 2003, then joined the Grand-Large INRIA team
and the Parall team of the Informatics Research Laboratory
of'the University of Orsay, France, where he held the position
of assistant professor for 5 years. In 2008, he then joined the
Innovative Computing Laboratory of the University of Ten-
nessee, Knoxville.

George Bosilca holds an Assistant Research Professor at the
University of Tennessee. He received his Ph.D. from Univer-
sity of Paris in 2003 in the domain of Parallel Architectures
and programming models. He joined the University of Ten-
nessee in 2003 as a Post-doctoral Researcher. He specialized
in several aspects of high-performance computing, from
low-level drivers up to high-level programming paradigms.
He is actively involved in several projects preparing the soft-
ware stack for the challenges of tomorrow’s hardware
requirements, in terms of heterogeneity, degree of paralle-
lism, scalability and resilience. He remains an active contri-
butor and lead architect of several software packages, such
as FT-MPI, Open MPI, and PaRSEC.

Jack Dongarra holds an appointment at the University of
Tennessee, Oak Ridge National Laboratory, and the Univer-
sity of Manchester. He specializes in numerical algorithms in
linear algebra, parallel computing, use of advanced-computer
architectures, programming methodology, and tools for
parallel computers. He was awarded the IEEE Sid Fernbach
Award in 2004 for his contributions in the application of
high-performance computers using innovative approaches;
in 2008 he was the recipient of the first IEEE Medal of
Excellence in Scalable Computing; in 2010 he was the first
recipient of the STAM Special Interest Group on Supercom-
puting’s award for Career Achievement; and in 2011 he was
the recipient of the IEEE IPDPS 2011 Charles Babbage
Award. He is a Fellow of the AAAS, ACM, IEEE, and SIAM
and a member of the National Academy of Engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

