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Abstract—We present a portable and highly-optimized Deep
Neural Network (DNN) algorithm and its implementation tech-
niques. Our approach is a novel combination of existing HPC
techniques that methodically applies autotuning as well as data
layout and low-level optimizations that achieve performance
matching and/or exceeding what is possible with either re-
verse engineering and manual assembly coding or proprietary
vendor libraries. The former was done inside the maxDNN
implementation and the latter is represented by cuDNN. Our
work may be directly applied to the most time consuming
part of DNN workflow, namely the training process which
often needs a restart when it stagnates due to, for example,
diminishing gradients and getting stuck in local minima. With
the result of performance tests on a consumer-grade GPU
with the latest High Bandwidth Memory (HBM) stack, our
methodology can match a server grade hardware at a fraction
of the price. Another tuning sweep on a new GPU architecture
from a different vendor also attests to the portability of our
approach and the quality of our implementation.

1. Introduction

Machine Learning with Deep Neural Networks (DNN)
has undergone a tremendous growth since the early days
with projects such as DistBelief[1] that sought to harness
the power of distributed computing. DNNs may be used
to solve many machine learning tasks[2]. However, it was
the pioneering work and the performance brought by GPUs
and the DNN design called AlexNet[3] that changed the
applicability and practical appeal of the methods. The new
hardware allowed for drastically improved training time
which now could be done in a week even for more than
ten neural network layers. In fact, all of the entries for the
ILSVRC challenge[4] now feature GPUs.

The Berkeley Caffe project[5] takes as input a DNN
design in JSON format and automates the process of training
and evaluation of the resulting neural network. NVIDIA’s
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GPUs currently enjoy support for Deep Learning through the
Caffe[5], cuDNN[6] and maxDNN[7] projects. Caffe includes
direct calls to cuBLAS, cuDNN implements convolutional
kernels natively, and maxDNN uses reverse engineered
binary opcodes targeting Maxwell GPUs. Support for AMD
GPUs is much less complete and our current work explores
the feasibility of the Fury X card for Deep Learning and
our results affirm not only the suitability of the AMD’s
first High Bandwidth Memory hardware but prove it to be
competitive when used with the optimization techniques we
propose in this paper. However, without a methodology for
development of machine learning algorithms the resulting
implementation might become highly suspect[8]. We seek
to avoid problems of this kind by proposing an approach
that takes an existing kernel for a dense matrix or tensor
operation that demonstrates high efficiency on an OpenCL-
enabled accelerator and turn it into HPC DNN with generic
design that can serve a variety of deep learning tasks and
network designs.

2. Contributions and Relevance

The contributions of this paper are as follows:
1) We use HPC techniques to bring deep learning to AMD
accelerators through the use of OpenCL. The achieved
performance levels are competitive with what is reported
in literature for the server level GPU cards from NVIDIA
branded as Maxwell architecture.
2) We present the methodology of how to proceed from an
HPC formulation of a dense matrix and/or tensor kernel and
use it as a starting point to obtain a highly optimized and yet
generic implementation of a Convolutional Neural Network
kernel that can be used for a variety of neural networks to
allow the machine learning expert both the flexibility and
efficiency without the burden of low-level manual tuning.
We call the resulting code a local memory kernel.
3) We use autotuning for the final stage of our methodology
to remove the need to write and rewrite the optimized



code manually and limit the performance of the final im-
plementation of what can be conceived by the HPC expert.
Instead, we parameterize our implementation and thus create
a search space that we subsequently explore which results
in generation of numerous kernel codes. As an outcome,
we get a much broader range of kernels variants which are
likely to be missed by a human expert but are optimal in
terms of performance due to the right interaction between
parameters, optimizing compiler, and hardware components.
It is worth noting that this is very important for a high-level
kernel language provided by OpenCL that lacks intrinsics
(for example for wide data load instructions), special data
types (such hardware specific vectors), etc. In fact, OpenCL
kernel implementations are subject to very aggressive code
optimizations that might counter the intentions expressed by
the HPC developer.

4) As far as we know, we present the first HPC implementa-
tion that uses standard OpenCL rather than NVIDIA CUDA
or assembly/binary code that is common in deep learning
community. This makes the OpenCL-enabled platforms
available for HPC deep learning and provides the users
with portability across a wider range of hardware while still
training their neural networks with high efficiency.

5) We use as our implementation platform a consumer-grade
GPU hardware from AMD — a few hundred dollar card, the
first one to feature High Bandwidth Memory (HBM) stack
that interfaces GPU compute units with the main memory
through silicon interposers. The achieved results compare
favorably with the high-end cards from NVIDIA such as
Titan X programmed with lower-level code.

6) We focus only on the single node performance because
this is still one of the main bottlenecks in large distributed
deep learning networks. In fact, the gradient update may be
reformulated to facilitate multi-GPU training and support so
called data parallelism, model parallelism, and the hybrid
approach[9]. The stochastic gradient descent method[10]
allows to focus HPC effort at the single node level were the
majority of performance is extracted through the methodol-
ogy presented here and relies on communication between
the nodes that resembles a halo exchange to scale the
neural network training process to large distributed memory
installations[11], [12], [13].

3. Background and Motivation

Convolutional Neural Networks (CNN)[14] are a machine
learning technique well suited for classification and recogni-
tion tasks for images. As a supervised learning process, the
input data first comes in and the neural network computes the
outputs in the feed-forward stage. Because the ground truth
outputs are known during training, the error is computed
between the correct and computed outputs which is then used
to back-propagate it back through the network. The training
phase dominates the time spent on computational tasks of
learning and classification/recognition and, consequently,
Stochastic Gradient Descent (SGD) method was proposed
to further speedup that phase and successfully applied to
large data sets [15]. The basic idea of SGD is to compute

TABLE 1. COMPARISON OF TERMS USED BY CUDA AND OPENCL TO
DESCRIBE VERY SIMILAR CONCEPTS.

NVIDIA CUDA
Term or Syntax

Khronos OpenCL
Term or Syntax

GPU Hardware Components

SM, SMX CU
streaming multiprocessor ~ compute unit

scalar core
host thread

processing element (PE)
host program

thread block  work-group
thread  work item
grid  NDRange

shared (per-block) memory
local memory

texture cache

kernel

PTX"

local memory
private memory
image

program

IL#

GPU Software Constructs

__global__ void K ()
void K(float =*X)
float «F;

__shared__ float =*B;

__kernel void K ()
void K(__global float =X)
__global float *F;
__local float =*B;

int tx = threadIdx.x int tx = get_local_id(0)
int bx = blockIdx.x int bx = get_group_id(0)
__syncthreads () barrier (CLK_LOCAI_MEM_FENCE)

TPTX is Parallel Thread Execution
# IL is Intermediate Language

the correction to weights based on a small batch of example
inputs (images) and the details are beyond the scope of this
writing.

Convolutional Neural Networks (CNN) were inspired by
the visual cortex of mammals [16] and are a variant of MLP
with sparser connectivity that emphasizes spatial locality of
perception. The current trend in the design of CNNs is to
increase the number of layers and thus they are often called
Deep Neural Networks (DNN). Further more, the layers do
not have uniform size, connectivity, nor the same activation
function. In fact, there exist very successful DNN designs
that feature multiple activation functions (including sigmoid,
ReLu, and max-pooling/subsampling), mix fully-connected
and sparsely-connected layers, and drastically vary in the
size and shape of the layers. This may be easily observed
in the design of AlexNet [3] which won the ImageNet
competition in 2012 and whose high-level design is shown
in Fig. 1. Detailed analysis of this network is clearly beyond
the scope of this writing but in summary, the layers in
the network refine their specialization during training and
become responsible for recognizing more abstract features
the further from the left towards to the right the layer is
located. Also, some of the layers on the left and closer to the
inputs “learn” to act in a matter very similar to what can be
achieved with widely used image processing algorithms such
as edge detection or contour detection and the connectivity
between these layers reflects the spatial locality of such
methods. At the far right end of the network the signals
communicated to the layers already contain information about
higher abstraction features such as facial features and generic
shapes of objects. Those are dealt with fully connected layers
that operate based on principles of MLP [17].

Finally, we focus here on OpenCL concepts and code
which have their straightforward equivalents in NVIDIA
CUDA. Unfortunately, some of the terms and code constructs
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Figure 1. Deep Neural Network called AlexNet [3].

between the two might be contradictory when understood
superficially. For this reason, we provide Table 1 to serve
as a lookup glossary of terms and code snippets to guide
the reader familiar with one of the technologies and not the
other. More detailed analysis of the subject is beyond the
scope of this writing and has been done by others[18], [19].

4. Related Work

Berkeley Caffe [5] is a deep learning framework devel-
oped by the Berkeley Vision and Learning Center. It’s one
of the most famous package because of it’s performance and
community support. At the early version, it was using the
highly optimized single precision matrix-matrix multiplica-
tion (SGEMM) in cuBLAS [20] from NVIDIA to carry out
convolution operations on GPU.

Due to the high demand, NVIDIA released their Deep
Neural Network library (cuDNN) [6]. It contains CUDA
kernels of commonly used DNN operations like pooling,
forward and backward convolution. It may be used as a
Caffe back end to speed up the training process.

Nervana Systems developed an assembler for NVIDIA
Maxwell (MaxAs) [21] by reverse engineering the binary of
Maxwell kernels. The single precision matrix-matrix multiply
SGEMM kernel written by Nervana Systems using MaxAs is
5% faster than cuBLAS for certain input matrix sizes on the
GTX980 card. MaxDNN [7] adopted the SGEMM kernel into
the forward propagation operation. It reaches 96.3% of peak
performance on the fifth layer of the Overfeat network [22]
on GTX980. Nervana Systems released their deep learning
framework and called it neon [23] with a full set of kernels
developed with their assembler. The framework also supports
half-precision floating-point arithmetic (FP16) which lowers
required bandwidth without loosing much accuracy [24],
[25], [26].

An active area of research is the use the Fast Fourier
Transform (FFT) to compute the convolution. The main
difference from the direct approach is that the algorith-
mic complexity is substantially lowered with FFT. There
are known examples of efficient implementations of this
approach for DNNs [27]. We do not use this technique
in this work because it differs in critical algorithmic and
implementation aspects such as: the work group (thread
block) and loop structure, data layout, and padding of the
intermediate data objects. Our goal is to compare against
direct approaches that were used for established network
designs [22], [28]. Furthermore, striding is a much more
serious consideration with FFT-based convolution due to

sparsification of the computed data and a need for pruned
FFTs as opposed to the dense FFT especially for the left-
hand-side layers that are close to the input.

Finally, it is obviously possible to compute the convolu-
tions by following the mathematical formula directly. This
is in fact the approach pursued by the older network designs
such as cuda-convnet2! [9]. While the publicly available
implementations use GPUs and achieve acceptable level of
performance, the main drawback is a large optimization space
required for optimal code that works well across the varying
shapes of neural layers. The relative sizes of input images,
filters, and output images change between the initial, middle,
and final convolutional layers of the network. The image
batch size also plays an important role and performance
often drops as the number of images in a batch drops
below a few tens of images [6]. The programming burden
associated with optimization and then retuning, when the
network design changes, is often too high to justify the
effort to get the performance that can be achieved with other
methods, especially with our local memory kernel approach
that we present below.

The most recent research in Deep Learning focuses on
using recursive formulation of the matrix-matrix multiply
formulation that reduces the number of operations in the
convolutions of the CNN layers. One such example is the use
of the Strassen formula in CNN [29]. Another one is the use
of the Winograd algorithm [30]. In general, the techniques
arising from the arithmetic complexity theory may also be
applied to further reduce computational complexity of the
code at the algorithmic level and reduce the computation
time (but not necessarily increase the performance).

S. Algorithm and Implementation Details

This section explains our implementation of the local
memory convolutional kernel for AMD GPUs using OpenCL
and introduces the BEAST autotuning framework and the
tuning procedure itself that depends on both software and
hardware restrictions called constraints, and, finally, the
optimization based on characteristics of the computationally
demanding convolution layers.

5.1. GEMM based convolution

The convolutional layer can be viewed as an operation
which takes two 4D tensor as inputs and the output is another

1. https://github.com/akrizhevsky/cuda-convnet2
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Figure 2. Input images, filters, and output images
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Figure 3. The Im2col approach from Caffe that uses cuBLAS before
cuDNN was available.

4D tensor as well. This is shown in Fig. 2 with 3D batches
of 2D images repeated N times and 3D filter batches with
C-sized features repeated K times. In other words, the input
images are aggregated as [ € RV*CH>*W \where N is the
batch size, C is the input feature size, H and W are the input
image’s width and height (the input images are scaled to a
unified size before processing by CNN). The filter operation
is also represented by a 4D tensor: F € REXK*RxS \where
K is the output feature size and R, S are the height and
weight of the filter. The output images O € RV*K*PXQ with
P and Q as the size of a single output image. Each output
feature k € [0,K) of an output image n € [0, N) is computed
by summing the 2D convolutions between input image and
filters:

00 (k) = Zcconvz (1(c), F) (k) )
By the definition of 2D convolution, the output element with
index (p,q) where p € [0,P), g € [0,Q) is computed by the
following:
x Flgi)lfr,sflfs(k))

2

The inner-most triple nested loop that computes the above
tensor product is similar in structure to a general matrix-
matrix multiplication (GEMM) if the data layout is enforced
and data duplication is performed if necessary. This leads
to the so called Im2col approach used in Caffe [5] and
other deep learning frameworks such as Torch [31] and
Theano [32]. It casts each image into columns of the matrix,
then calls highly optimized BLAS routines [33], [20], [34] for
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Figure 4. New convolutional kernel optimized for local memory reuse.

the best performance through vendor libraries. Fig. 3 shows
a more detailed view of the Im2col approach whereby the
input images on the left are copied into the Temp Matrix
of size C xR xS by Nx P xQ in the middle. A single
input image will have to be repeated in the Temp Matrix
for correct operation when passed to the underlying BLAS
library. This repetition is done at least 9 times for a 3-by-3
filter and can be much higher for larger filters and for the
back-propagate stage. Temp Matrix has to fit in the device
memory of the GPU which limits the size of each individual
image and the number of images in a batch. Even though
an optimized matrix multiply routine is called, the potential
performance benefit is limited because the same image is
repeated in the Temp Matrix multiple times and has to be
moved through the memory hierarchy multiple times. Also
the work might have to be divided into several small single
precision matrix multiplication calls to fit into the limited
GPU memory, which would also reduce performance due to
diminished parallelism and greater kernel launch overhead.

Fig. 4 shows our idea of a new local memory convolu-
tional kernel that tackles the key problems associated with the
Im2col approach. There is no longer duplication of input
images in the device memory and OpenCL local memory
is used more efficiently. It also removes the size limitations
imposed on the the device memory of the GPU. In particular,
with much lower memory requirement it is now possible
to train the network with larger image batch sizes which
speeds up the process and/or allows an earlier discovery of
a failed convergence, e.g., due to learning stagnation, that
may happen because of suboptimal value of the learning
rate. The bandwidth usage is lowered by creating a single
kernel that eliminates the extra device memory loads/stores
when compared with Im2col that uses SGEMM kernels.
This required us to change the data layout which precludes
the use of standard library interfaces for matrix operations.
Instead, for the purpose of training CNNs, we designed,
implemented, and autotuned a new GPU kernel: the local
memory convolutional kernel.

There are two extra sets of parameters originating in
convolution layers: padding and stride. Padding is used to
expand the input image to valid size by adding zeros around
the boundaries in order to compute correct outputs when the
filter is centered close to the edge and a part of the filter



must extend outside of the image — a common technique to
compute a convolution without branch divergence. Finally,
padding is required when computing back-propagation to
update the filter. Stride is the displacement of the filter
between consecutive outputs within a single image. Stride
is usually used in early layers of the network to quickly
lower the output image size while retaining the essential
information. The use of stride would also make the FFT
approach for these layers inefficient because large portion of
the output will be discarded and thus would require truncated
FFT that are hard compute efficiently. Note that “stride” in
the context of this paper is different from its usual HPC
meaning: CNN stride is the distance skipped in a layer of
the network rather than HPC stride that is a distance skipped
in the memory that often happens due to linearization of
multidimensional arrays.

5.2. Implementation of the kernel

Figure 5 gives the comparison between the SGEMM
kernel from cIBLAS[34] and a example of our generated
local memory convolution kernel for forward-feed. They
share similar structure but our kernel has more integer
arithmetic that computes the corresponding indices. More
precisely, the index of C x R x § dimension (in figure 3 and 4)
is changing as the main loop index k increase. Integer modulo
division is computed to get the updated (c,r,s) indices for
checking the padding and the address offset for input image
access. To minimize the performance impact from integer
arithmetic, we feed the parameters from the layer as constants
at compile time.

Another issue is the data layout. The most natural layout
from the data management perspective is called NCHW for
the order in which the dimensions are linearized in memory.
This layout has been used in most of the packages because
it makes it straightforward to read the image data from a
file and pack them into GPU memory image by image. For
example, NCHW is the default layout for cuDNN but CHWN
is also supported with less performance, though. On the other
hand, maxDNN prominently features the CHWN layout. It
is worth noting that NCHW has several drawbacks from
the perspective of writing GPU kernels where most of the
performance is extracted. First, the dimensions of images
might not be divisible by the hardware group size, resulting
in non-coalesced memory access. Second, it is advantageous
to have tunable parameters available inside the kernels’ code
for potential optimization and NCHW does not naturally
lend itself to this technique. In our parametrized kernel code,
we use as parameters the filter dimensions R and S. As a
result, the compiler encounters these parameters as constants
in the generated code which gives plenty of opportunity to
use a variety of advanced compiler optimizations. Third, in
addition to the computation time, it is important to consider
the layout translation and mapping time that might dominate
the execution under some circumstances. For example, when
copying the input data and applying padding, the NCHW
layout causes branch divergence between work items but
with CHWN the whole work group would apply padding

without the divergence because the HW dimension remains
the same for all work items in the group.

For the back-propagation during the training process, the
two kernels are implemented in the same manner, but they
accept slightly different input data. The convolutional kernel
propagates the error from output images and flipped filters
and it computes the convolution which propagates the error
one layer back (to the left). The local memory convolution
kernel takes the errors from both layers and computes the
convolution to update the weights in the filters.

5.3. Use of Autotuning

The Bench-testing environment for automated software
tuning (BEAST) is an autotuning framework. According to
the authors, “BEAST follows the classic recipe for automated
software tuning. First, a computational kernel is implemented
and parameterized with a set of tunable parameters (tiling
sizes, implementation options, hardware switches), which
define the search space. Then pruning constraints are applied
to trim the search space to a manageable size. Then the
variants that pass the pruning process are compiled, run and
benchmarked, and the best performers are identified.” [35] We
used these tools to make our kernels suitable for autotuning
and Figs. 7, 8, 9, and 10 are based on the obtained results
which are described in Section 6. In order to fully explore
the search space and find the optimal performance, our
autotuning sweeps included parameters that turned out to
be unsuitable for compilation, execution, or both. The space
pruning takes place automatically and causes only a marginal
overhead because the invalid kernels error out early. The
benefit is that keeping the search space large allowed us to
explore the expanded parameter set and avoid the problem
with excessive pruning that occurs if even a single parameter
is overly constrained. In a multidimensional search space
pruning a single dimension automatically reduces the space
in all other dimensions that are intertwined by construction.

5.4. GEMM search space

The GEMM tuning parameters have been studied on
various GPUs on both CUDA [36] and OpenCL [37]. There
were 5 major parameters picked here for our new local
memory convolutional kernel. Fig. 6 shows the computation
assigned to a single work group (thread block) in one iteration.
Each work group is formed with Mppy by Nppy work
items (threads). A sub-matrix of size Mprx by Nprx of
output images matrix is going to be computed by a single
work group. Each work item has Mryp by Nryp elements
stored in their registers, with Mryp = Mprx/Mpy and
Nrup = Nprk/Npiy. At each iteration, two small matrices
are constructed in local memory. One matrix is formed from
input images with size Mprx by Kprx and the other one is
from filters with size Mprx by Kprx. Kprk is also the size
of the inner loop of our local memory convolution kernel. A
single work item will compute data indicated by dark blue
rectangles.



1| for (int k=0; k<K;
2 __local floatx plA =
__local floatx plB =

k+=16) |
1A + idxx97+idy;
1B + idxx97+idy;

6| barrier (CLK_LOCAL_MEM_FENCE) ;

8 //Load next submatrix into local memory

15 for (int i=0; i<96; i+=16)
16 plA[i] = A[i];

17 for (int i=0; i<96; i+=16)
18 plB[i] = B[ix1ldb];

barrier (CLK_LOCAL_MEM_FENCE) ;

//Inner computation loop

28 //Move to next submatrix
29 A += lé6xlda;
30 B += 16;

31}

1| for (int k=0;
2 __local floatx plA = 1A + idxx97+idy;
3 __local floatx plB = 1B + idxx97+idy;
4 int x = p * stride_u + r;

5 int y = g » stride_v + s;

6 barrier (CLK_LOCAL_MEM_FENCE) ;

k<K; k+=16) {

8 //Load next submatrix into local memory
9 //Check 1if it’s in the padding region
10 if( x < pad_h || x >= H+pad_h ||

11 y < pad_w || y >= Wt+pad_w )

12 for (int i1=0; 1<96; i+=16)

13 plA[i] = O;

14 else

15 for (int i=0; 1<96; i+=16)

16 plA[i]=A[index+Cc*N+xH+«W+r*N«W+s*N+1i];
17 for (int i1=0; i<96; i+=16)

18 plB[i] = B[ix1ldb];

19

20 //Update indices for next submatrix
21 s += 16; r += s/S; s = s%S;

22 c += r/R; r = r%R;

barrier (CLK_LOCAL_MEM_FENCE) ;

25 //Inner computation loop
26

28 //Move to next submatrix
29 A += 16%1da;

30 B += 16;

31}

Figure 5. Comparison between SGEMM kernel from cIBLAS (left) and generated local memory convolution kernel (right).
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Figure 6. Autotuning Parameters for CNN transformed into matrix-matrix
multiplication.

In order to limit our search space, all the constraints
from the algorithm, software, and hardware levels have to be
applied. At the algorithm level, Mp;x has to be multiple of
Mpiy; Mprk has to be multiple of Mpyy, and Kprg has to
be multiple of both Mpyys and Npjys to ensure that we don’t
need any boundary check in our main loop. For the software
level, parameters from the convolutional layer are also taken
into consideration. For example, in the forward-feed, we
would pick Mprx which can divide N and Np g can divide
K so that the output images can be divided into work groups
perfectly.

Assigning a variable to either SGPR (scalar general
purpose register) or VGPR (vector general purpose register)
is controlled by the compiler (sometimes called register
coloring). Yet, the total number of needed registers is the
responsibility of the programmer by the use of local variables
and it should not exceed the hardware limit because it

14
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Figure 7. The histogram of performances from 2056 kernels on Alexnet L2.

will lower the occupancy: we imposed a minimum of 2
active work groups per CU (compute unit) as a constraint
to maintain a sufficient performance level and to prune the
search space accordingly.

AMD APP Profiler (part of AMD CodeXL suite) can
be used to reveal low-level parameters of the hardware that
might not otherwise be available from the card specification.
For the tested Fury X card, we observed 102 SGPRs , 256
VGPRs , and LDS (local data store corresponding to shared
memory in CUDA) size of 32768. All these numbers are
reported per CU.

6. Performance Results

The tested GPU was the AMD Fury X with peak single-
precision (FP32) performance of 8602 Gflop/s and core
frequency of 1050 MHz. AMD Radeon R9 Fury X is the
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water-cooled high-end solution (compared with the basic
Fury card which is air-cooled), which features 4096 GCN
(Graphics Core Next) cores and 8.9 billion transistors with
TDP of 275 W and the liquid cooler capable of dissipating
up to 500 W (a potential for overclocking for even higher
performance). Fury X features 4GiB of HBM memory —
a 3D stacked memory that uses a silicon interposer. The
memory takes up to 94% less space than the traditional
design, is much faster, and has lower latency (due to being

closer to the GPU), and much higher bandwidth of 512 GB/s.

It runs at much lower frequency (500 MHz) through a 4096-
bit memory interface.

Fig. 7 shows the distribution of the 2056 working kernels
of AlexNet layer 2 (L2) across the performance range — other
layers produced similar histograms. Performance ranged from
44.7 to 5735.8 Gflop/s. The best kernel achieved 66.7% of
peak performance and 82 kernels are better than 5000 Gflop/s.

Fig. 8 gives an idea of how large the tuning space can
be. The dimension of the heat map corresponds to 4 out
of 5 tuning parameters: (Mpsy X Npiy) X (Mryr X NTHR)-
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And for each heatmap block, the best result from different
Mpr g (the Sth parameter) trials are picked. The figure has
total of 17 columns of possible work group configurations
(Mpiym X Npryr) and 254 rows of possible pixel assignment
configurations (Mrgr X Nrugr). 76.7% (3314) of the kernels
were invalid and pruned by BEAST during the search
space exploration and code generation. Only 3.4% (145)
of the kernels failed at runtime due to compilation errors or
hardware constraints. Both reasons contribute to the empty
white areas in the heatmap. Nearly 20% (859) of the kernels
were valid and are represented in the heatmap with the color
corresponding to the achieved performance level. The darkest
red indicates the best performance of 5735.8 Gflop/s and the
closer to that shade of red a heatmap area is, the higher the
performance was for the corresponding kernel.

The 5 heatmaps in Fig. 9 are taken from 5 columns
of Fig. 8 and reshaped: each column becomes another 2D
heatmap with the pixels assigned to configurations of Mryg



TABLE 2. THE PERFORMANCE OF CONVOLUTIONAL LAYERS IN ALEXNET WITH BATCH SIZE N = 128.

Alexnet | Forward feed | Back propagate (input) | Back propagate (filter)
Neural Performance  Time | Performance Time Performance Time

layer (Gflop/s) (ms) (Gflop/s) (ms) (Gflop/s) (ms)

L1 4972.0 4.5 4161.5 43

L2 5511.2 10.4 4795.5 12.0 2174.9 26.4

L3 5493.5 52 4936.4 5.8 3444.5 8.3

L4 5018.7 7.6 4878.5 7.8 3658.4 10.5

L5 4983.2 5.1 4964.6 52 3069.7 8.3
Combined Forward | 5238.2 32.8 | Combined Backward | 3558.1 84.3

and Nrpr on the x and y axes. The two best kernels here are
from the same pixel assignments as 13 x 6 but with different
work group configurations: 8 x 16 and 16 x 16.

Fig. 10 demonstrates the performance difference between
our best local memory convolution kernel for AlexNet’s
second layer (L2) and the corresponding SGEMM kernel
configuration. Each dot represents one set of tuning pa-
rameters. The x-axis and y-axis indicate the convolution
kernel and SGEMM performance, respectively. There is
visible correlation between the two. The Pearson correlation
coefficient p is 0.808 (p = 1 implies ideal linear correlation).
However, the configurations of the best convolution kernel
achieving 5735.8 Gflop/s translate to only 5205.1 Gflop/s of
SGEMM. On the other hand, the best SGEMM kernels at
5560.6 Gflop/s achieve 5394.8 Gflop/s for the convolution. In
other words, the best SGEMM kernel configuration does not
guarantee the best convolution kernel. The group in top left
corner indicates that the parameters with sufficiently good
performance (~4500 Gflop/s) for SGEMM may produce poor
performance for convolution and achieve under 1000 Gflop/s.

Table 2 shows the performance of our convolutional
kernels for the layers of AlexNet with batch size N = 128.
The last column represents updating the filters, whose size
(K X C x R x §) usually is much smaller than either the input
or the output images. Hence, there is a trade-off between
occupancy and data reuse in local memory as the kernels
have to pass the data between each other. The autotuning
selects the best configuration but filter updates were still
significantly slower than the kernels from the other two
columns. It takes about one hour to autotune for single layer
of the network. Compare that to the entire network training
time, which could take weeks (repeatedly running the same
set of kernels). The table may be used to compare our
kernels to other libraries that run on NVIDIA Titan X [38]
(comparisons against most codes favor our implementation
by a large margin). Although we have not integrated our
kernels into a deep learning framework, the time in other
layers (ReLU and pooling) are usually around 10 ms and can
be found in the Caffe output log. Our kernels show similar
performance with other widely used optimized libraries by
hardware or machine learning software vendors that use
assembly (cuDNN) or binary code (maxDNN).

Finally, we would like to stress the performance porta-
bility of our methodology. Table 3 shows the tuning re-
sult from the recently released NVIDIA GTX1080 GPU
based on the Pascal micro-architecture for each layer of
Alexnet (forward-feed). The theoretical peak performance

TABLE 3. THE PORTABLE PERFORMANCE ACROSS LAYERS AND
ARCHITECTURES.

Alexnet | AMD Fury X |  Nvidia GTX1080

Forward | Performance % of Performance % of
feed (Gflop/s) peak (Gflop/s) peak
L1 4972.0 57.8% 5279.2 66.3%
L2 5511.2 64.0% 5553.9 69.7%
L3 5493.5 63.9% 5595.8 70.2%
L4 5018.7 58.3% 5163.5 64.8%
LS 4983.2 57.9% 47325 59.4%

of GTX1080 is at 7967 Gflop/s — a close-enough match of
Fury X’s 8602 Gflop/s. Our autotuning approach gives us at
least 57% of peak performance across all the layers on two
totally different architectures. Fig. 11 also demonstrates the
need for a kernel to be tuned for specific architecture. Each
dot represents one set of tuning parameters. The x-axis and
y-axis indicate performance on AMD Fury X and Nvidia
GTX1080, respectively, for the forward-feed of Alexnet L2.
Both are also highly correlated (p = 0.792), but in some cases,
like the column of points around x = 1000, good performance
may be achieved on GTX1080 but not on Fury X and vice
versa.

7. Conclusions and Future Work

In this paper, we proposed a methodology that allows
systematic reformulation of simple dense matrix/tensor kernel
written into a highly optimized CNN implementation in
OpenCL. The resulting code is our new local memory
convolution kernel for OpenCL-enabled GPUs that may
serve as a very efficient implementation for a variety of
convolutional layers in Deep Neural Network (DNN). Our
local memory convolution kernel does not require extra
temporary memory storage so that the limited memory of
the GPU can be used more efficiently and a larger batch
size N may be chosen for faster training of the network
without a need to upgrade to a higher-end GPU with larger
memory. We also showed that it is possible to implement a
tunable kernel for convolution and achieve high performance
without resorting to intricate coding practices and bogging
down the code with lower-level details involving hardware
architecture information and instruction-specific intrinsics.
In fact, the code variants we generated were expressed
in standard OpenCL that can be moved to new hardware
and allow the local OpenCL compiler to generate platform-
specific binary. The flexibility of our approach also allows to



tune specifically for each layer in the network because our
approach permits different layer parameters and this results
in different search space with narrowly targeted code for
optimal performance. The performance portability across
different layers and hardware architectures makes it possible
to achieve good performance while trying a new network or
system without putting extra efforts to optimize the code for
1t.

In the future, our next step would be to integrate our
kernel generator and autotuner directly into a deep learning
framework, so that the kernel can be automatically generated
and tuned by only specify the CNN parameters at the level
of network (rather than kernel) design by a machine learning
expert. Also, the ReLU and pooling layers are usually used
right after convolutional layers in modern DNN designs. This
makes it possible to merge these layers into a single kernel
to further lower the number of memory transactions and
unnecessary data transfers between the levels of the memory
hierarchy. Finally, yet another future direction is to investigate
the complexity-reducing algorithms such as Winograd[30] for
the layers with 3-by-3 filter size. Theoretically, this algorithm
requires much less floating-point operations but it has to be
implemented with care to limit the use of the register file.
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