
Parallel Computing 85 (2019) 1–12

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Comparing the performance of rigid, moldable and grid-shaped

applications on failure-prone HPC platforms

�

Valentin Le Fèvre

a , Thomas Herault b , Yves Robert a , b , ∗, Aurelien Bouteiller b , Atsushi Hori c ,
George Bosilca

b , Jack Dongarra

b , d

a Ecole Normale Superieure de Lyon, France
b University of Tennessee, Knoxville, USA
c RIKEN Center for Computational Science, Japan
d University of Manchester, UK

a r t i c l e i n f o

Article history:

Received 31 July 2018

Revised 16 February 2019

Accepted 18 February 2019

Available online 22 February 2019

a b s t r a c t

This paper compares the performance of different approaches to tolerate failures for applications execut-

ing on large-scale failure-prone platforms. We study (i) Rigid applications, which use a constant num-

ber of processors throughout execution; (ii) Moldable applications, which can use a different number

of processors after each restart following a fail-stop error; and (iii) GridShaped applications, which are

moldable applications restricted to use rectangular processor grids (such as many dense linear algebra

kernels). We start with checkpoint/restart, the de-facto standard approach. For each application type, we

compute the optimal number of failures (i.e. that maximizes the yield of the application) to tolerate be-

fore relinquishing the current allocation and waiting until a new resource can be allocated, and we deter-

mine the optimal yield that can be achieved. For GridShaped applications, we also investigate Application

Based Fault Tolerance (ABFT) techniques and perform the same analysis, computing the optimal number of

failures to tolerate and the associated yield. We instantiate our performance model with realistic applica-

tive scenarios and make it publicly available for further usage. We show that using spare nodes grants

a much better yield than currently used strategies that restart after each failure. Moreover, the yield is

similar for Rigid , Moldable and GridShaped applications, while the optimal number of failures to toler-

ate is very high, even for a short wait time in between allocations. Finally, Moldable applications have

the advantage to restart less frequently than Rigid applications.

© 2019 Elsevier B.V. All rights reserved.

1

b

b

a

t

a

a

t

R

p

c

R

t

b

u

u

e

e

h

0

. Introduction

Consider a long-running job that requests N processors from the

atch scheduler. Resilience to fail-stop errors 1 is typically provided

y a Checkpoint/Restart (C/R) mechanism, the de-facto standard

pproach for High-Performance Computing (HPC) applications. Af-

er each failure on one of the nodes used by the application, the

pplication restarts from the last checkpoint but the number of

vailable processors decreases, assuming the application can con-

inue execution after a failure (e.g., using ULFM [4]). Until which
� A preliminary version of this paper has appeared in the Proceedings of the 2018

esilience workshop co-located with EuroPar.
∗ Corresponding author.

E-mail address: yves.robert@ens-lyon.fr (Y. Robert).
1 We use the terms fail-stop error and failure indifferently.

r

t

w

t

p

ttps://doi.org/10.1016/j.parco.2019.02.002

167-8191/© 2019 Elsevier B.V. All rights reserved.
oint should the execution proceed before requesting a new allo-

ation with N fresh nodes from the batch scheduler?

The answer depends upon the nature of the application. For a

igid application, the number of processors must remain constant

hroughout the execution. The question is then to decide the num-

er F of processors (out of the N available initially) that will be

sed as spares. With F spares, the application can tolerate F fail-

res. The application always executes with N − F processors: After

ach failure, then it restarts from the last checkpoint and continues

xecuting with N − F processors, the faulty processor having been

eplaced by a spare. After F failures, the application stops when the

(F + 1) st failure strikes, and relinquishes the current allocation. It

hen asks for a new allocation with N processors, which takes a

ait time, D , to start (as other applications are most likely using

he platform concurrently). The optimal value of F obviously de-

ends on the value of D , in addition to the application and re-

https://doi.org/10.1016/j.parco.2019.02.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2019.02.002&domain=pdf
mailto:yves.robert@ens-lyon.fr
https://doi.org/10.1016/j.parco.2019.02.002

2 V. Le Fèvre, T. Herault and Y. Robert et al. / Parallel Computing 85 (2019) 1–12

Fig. 1. Example of node failures substituted by spare nodes in a 2-D GridShaped application.

a

p

a

a

r

a

p

r

f

s

t

a

a

s

t

R

t

v

d

t

t

i

t

s

w

2

S

a

A

2

t

p

p

s

r

c
silience parameters. The wait time typically ranges from several

hours to several days if the platform is over-subscribed (up to 10

days for large applications on the K -computer [29]). The metric to

optimize here is the (expected) application yield, which is the frac-

tion of useful work per second, averaged over the N resources, and

computed in steady-state mode (expected value for multiple batch

allocations of N resources).

For a Moldable application, the problem is different: Here we

assume that the application can use a different number of proces-

sors after each restart. The application starts executing with N pro-

cessors; after the first failure, the application recovers from the last

checkpoint and is able to continue with only N − 1 processors, al-

beit with a slowdown factor N−1
N . After how many failures F should

the application decide to stop

2 and accept to produce no progress

during D , in order to request a new allocation? Again, the metric

to optimize is the application yield.

Finally, consider an application which must have a given shape

(or a set of given shapes) in terms of processor layout. Typically,

these shapes are dictated by the application algorithm. In this

paper, we use the example of a GridShaped application, which

is required to execute on a rectangular processor grid whose

size can dynamically be chosen. Most dense linear algebra ker-

nels (matrix multiplication, LU, Cholesky and QR factorizations) are

GridShaped applications, and perform more efficiently on square

processor grids than on elongated rectangle ones. The application

starts with a (logical) square p × p grid of N = p 2 processors. Af-

ter the first failure, execution continues on a p × (p − 1) rectan-

gular grid, keeping p − 1 processors as spares for the next p − 1

failures (Fig. 1 (b)). After p failures, the grid is shrunk again to a

(p − 1) × (p − 1) square grid (see Fig. 1 (d)), and so on. We address

the same question: After how many failures F should the applica-

tion stop working on a smaller processor grid and request a new

allocation, in order to optimize the application yield?

Many GridShaped applications can also be protected from fail-

ures by using Algorithm-Based Fault Tolerant techniques (ABFT), in-

stead of Checkpoint/Restart (C/R). ABFT is a widely used approach

for linear algebra kernels [5,18] . We present how we can model

ABFT techniques instead of C/R and we perform the same analy-

sis: We compute the optimal number of failures to tolerate before

relinquishing the allocation, as well as the associated yield.

Altogether, the major contribution of this paper is to present

a detailed performance model and to provide analytical formu-

las for the expected yield of each application type. We instanti-

ate the model for several applicative scenarios, for which we draw

comparisons across application types. Our model is publicly avail-
2 Another limit is induced by the total application memory Mem tot . There must

remain at least � live processors such that Mem tot ≤ � × Mem ind , where Mem ind is the

memory of each processor. We ignore this constraint in the paper but it would be

straightforward to take it into account.

o

u

Y

p

p

o
ble [25] so that more scenarios can be explored. Notably, the pa-

er quantifies the optimal number of spares for the optimal yield,

nd the optimal length of a period between two full restarts; it

lso qualifies how much the yield and total work done within a pe-

iod are improved by deploying Moldable applications w.r.t. Rigid

pplications. Finally, for GridShaped applications, the paper com-

ares the use of C/R and ABFT under various frameworks. Our main

esult is that using spare nodes grants a significantly higher yield

or every kind of application, even for short wait times. We also

how that the number of failures to tolerate before resubmitting

he application is very high, meaning that it is possible that the

pplication never needs to be resubmitted. Finally, we show the

dvantage of Moldable applications: While the yield obtained is

imilar for Rigid and Moldable applications, Moldable applica-

ions can tolerate more failures and thus restart more rarely than

igid ones. This means that a Moldable application is more likely

o terminate before being resubmitted.

The rest of the paper is organized as follows. Section 2 pro-

ides an overview of related work. Section 3 is devoted to formally

efining the performance model. Section 4 provides formulas for

he yield of Rigid , Moldable and GridShaped applications using

he C/R approach, and for the yield of GridShaped applications us-

ng the ABFT approach. All these formulas are instantiated through

he applicative scenarios in Section 5 , to compare the different re-

ults. Finally, Section 6 provides final remarks and hints for future

ork.

. Related work

We first survey related work on checkpoint-restart in

ection 2.1 . Then we discuss previous contributions on Moldable

pplications in Section 2.2 . Finally, we provide a few references for

BFT techniques in Section 2.3

.1. Checkpoint-restart

Checkpoint/restart (C/R) is the most common strategy employed

o protect applications from underlying faults and failures on HPC

latforms. Generally, C/R periodically outputs snapshots (i.e ., check-

oints) of the application global distributed state to some stable

torage device. When a failure occurs, the last stored checkpoint is

etrieved and used to restart the application.

A widely-used approach for HPC applications is to use a fixed

heckpoint period (typically one or a few hours), but it is sub-

ptimal. Instead, application-specific metrics can (and should) be

sed to determine the optimal checkpoint period. The well-known

oung/Daly formula [9,31] yields an application optimal checkpoint

eriod,
√

2 μC seconds, where C is the time to commit a check-

oint and μ the application Mean Time Between Failures (MTBF)

n the platform. We have μ =

μind , where N is the number of pro-
N

V. Le Fèvre, T. Herault and Y. Robert et al. / Parallel Computing 85 (2019) 1–12 3

c

d

t

i

i

t

(

r

i

2

i

o

i

v

r

t

e

t

n

i

j

i

c

a

m

a

a

c

a

s

t

r

s

c

t

e

t

o

y

2

a

o

b

i

c

t

a

d

p

w

c

r

I

s

t

o

d

d

a

3

m

o

3

m

s

t

o

3

a

n

s

o

3

Y

t

i

t

a

w

c

i

I

b

s

t

p

b

p

c

o

m

R

M

s

w

3

t

c

q

i

3 In datacenters, failures can actually be correlated in space or in time. But to

the best of our knowledge, there is no currently available method to analyze their

impact without the IID assumption.
essors enrolled by the application and μind is the MTBF of an in-

ividual processor [19] .

The Young/Daly formula minimizes platform waste, defined as

he fraction of job execution time that does not contribute to

ts progress. The two sources of waste are the time spent tak-

ng checkpoints (which motivates longer checkpoint periods) and

he time needed to recover and re-execute after each failure

which motivates shorter checkpoint periods). The Young/Daly pe-

iod achieves the optimal trade-off between these sources to min-

mize the total waste.

.2. Moldable and GridShaped applications

Rigid and Moldable applications have been studied for long

n the context of scientific applications. A detailed survey on vari-

us application types (Rigid , Moldable , malleable) was conducted

n [12] . Resizing application to improve performance has been in-

estigated by many authors, including [7,20,26,27] among others. A

elated recent study is the design of a MPI prototype for enabling

olerance in Moldable MapReduce applications [14] .

The TORQUE/Maui scheduler has been extended to support

volving, malleable, and Moldable parallel jobs [23] . In addition,

he scheduler may have system-wide spare nodes to replace failed

odes. In contrast, our scheme does not assume a change of behav-

or from the batch schedulers and resource allocators, but utilizes

ob-wide spare nodes: A node set including potential spare nodes

s allocated and dedicated to a job at the time of scheduling, that

an be used by the application to restart within the same job after

 failure. At the application level, spare nodes have become com-

on in HPC centers since more than a decade [28] . Recent work

ims at sharing spare-nodes across the whole platform to achieve

 better global resource utilization [22] .

An experimental validation of the feasibility of shrinking appli-

ation on the fly is provided in [3] . In this paper, the authors used

n iterative solver application to compared two recovery strategies,

hrinking and spare node substitution. They use ULFM, the fault-

olerant extension of MPI that offers the possibility of dynamically

esizing the execution after a failure. Finally, in [13,17] , the authors

tudied Moldable and GridShaped applications that continue exe-

uting after some failures. They focus on the performance degrada-

ion incurred after shrinking or spare node substitution, due to less

fficient communications (and in particular collective communica-

ions). A major difference with our work is that these studies focus

n recovery overhead and do not address overall performance nor

ield.

.3. ABFT

ABFT stands for Algorithm-Based Fault Tolerant techniques. It is

 widely used approach for linear algebra kernels. Since the pi-

neering paper of Huang and Abraham [18] , ABFT protection has

een successfully applied to dense LU [10] , LU with partial pivot-

ng [30] , Cholesky [16] and QR [11] factorizations, and more re-

ently to sparse kernels like SpMxV (matrix-vector product) and

riangular solve [24] .

In a nutshell, ABFT consists of adding a few checksum vectors

s extra columns of each tile, which will be used to reconstruct

ata lost after a failure. The checksums are maintained by ap-

lying the kernel operations to the extra columns, just as if they

ere matrix elements. The beauty of ABFT is that these checksums

an be used to recover from a failure, without any rollback nor

e-execution, by reconstructing lost data and proceeding onward.

n addition, the failure-free overhead induced by ABFT is usually

mall, which makes it a good candidate for the design of fault-

olerant linear algebra kernels. We refer to [5,10] for recent surveys

n the approach.
Altogether, we are not aware of any previous study aiming at

etermining the optimal number of spares as a function of the

owntime and resilience parameters, for a general divisible-load

pplication of either type (Rigid , Moldable or GridShaped).

. Performance model

This section reviews the key parameters of the performance

odel. Some assumptions are made to simplify the computation

f the yield. We discuss possible extensions in Section 6 .

.1. Application/platform framework

We consider perfectly parallel applications that execute on ho-

ogeneous parallel platforms. Without loss of generality, we as-

ume that each processor has unit speed: We only need to know

hat the total amount of work done by p processors within T sec-

nds requires p
q T seconds with q processors.

.2. Mean time between failures (MTBF)

Each processor is subject to failures which are IID (independent

nd identically distributed) random variables 3 following an Expo-

ential probability distribution of mean μind , the individual proces-

or MTBF. Then the MTBF of a section of the platform comprised

f i processors is given by μi =

μind
i

[19] .

.3. Checkpoints

Processors checkpoint periodically, using the optimal

oung/Daly period [9,31] : For an application using i processors,

his period is
√

2 C i μi , where C i is the time to checkpoint with

 processors. We consider two cases to define C i . In both cases,

he overall application memory footprint is considered constant

t Mem tot , so the size of individual checkpoints is inversely linear

ith the number of participating/surviving processors. In the first

ase, the I/O bandwidth is the bottleneck (which is often the case

n HPC platforms – it takes only a few processors to saturate the

/O bandwidth); then the checkpoint cost is constant and given

y C i =

Mem tot
τio

, where τ io is the aggregated I/O bandwidth. In the

econd case, the processor network card is the bottleneck, and

he checkpoint cost is inversely proportional to number of active

rocessors: C i =

Mem tot
τxnet ×i

, where τ xnet is the available network card

andwidth, i.e. the bandwidth available for one and only one

rocessor, and

Mem tot
i

the checkpoint size. In this second case, the

ost of checkpointing (and recovery) increases when the number

f processors decreases, since each processor has to read more and

ore application data from stable storage: This does not impact

igid applications, but it may represent an important overhead for

oldable and GridShaped applications.

We denote the recovery time with i processors as R i . For all

imulations we use R i = C i , assuming that the read and write band-

idths are identical.

.4. Wait time

Job schedulers allocate nodes to given applications for a given

ime. They aim at optimizing multiple criteria, depending on the

enter policy. These criteria include fairness (balancing the job re-

uests between users or accounts), platform utilization (minimiz-

ng the number of resources that are idling), and job makespan

4 V. Le Fèvre, T. Herault and Y. Robert et al. / Parallel Computing 85 (2019) 1–12

r

c

c

n

h

b

c

a

t

s

e

f

i

t

t

a

w

s

t

c

s

s

r

w

W

I

fi

r

t

f

a

y

Y

Y

4

e

e

r

N

s N
(providing the answer as fast as possible). Combined with a high

resource utilization (node idleness is usually in the single digit per-

centage for a typical HPC platform), a job has to wait a Wait Time

(D) between its submission and the beginning of its execution.

Job schedulers implement the selection based on the list of sub-

mitted jobs, each job defining how many processors it needs and

for how long. That definition is, in most cases, unchangeable: An

application may use less resources than what it requested, but the

account will be billed for the requested resources, and it will not

be able to re-dimension the allocation during the execution.

Thus, if after some failures, an application has not enough re-

sources left to efficiently complete, it will have to relinquish the

allocation, and request a new one. During the wait time D , the ap-

plication does not execute any computation to progress towards

completion: Its yield is zero during D seconds.

3.5. Objective.

We consider a long-lasting application that requests a resource

allocation with N processors. We aim at deriving the optimal num-

ber of failures F that should be tolerated before paying the wait

time and requesting a new allocation. We aim at maximizing the

yield Y of the application, defined as the fraction of time during

the allocation length and wait time where the N resources perform

useful work. More precisely, the yield is defined by the following

formula:

Y =

total time spent computing for all processors

number of processors × flow time since start of application

.

Of course a spare does not perform useful work when idle, pro-

cessor do not compute when checkpointing or recovering, re-

execution nodes not account for actual work, and no processor is

active during wait time. All this explains that the yield will always

be smaller than 1. We will derive the value of F that maximizes Y
for the three application types using C/R (and both C/R and ABFT

for GridShaped applications).

4. Expected yield

This section is the core of the paper. We compute the expected

yield for each application type, Rigid (Section 4.1), Moldable

(Section 4.2) and GridShaped (Section 4.3), using the C/R approach,

and compare it with ABFT for GridShaped in Section 4.4 .

4.1. Rigid application

We first consider a Rigid application that can be parallelized at

compile-time to use any number of processors but cannot change

this number until it reaches termination. There are N processors

allocated to the application. We use N − F for execution and keep

F as spares. The execution is protected from failures by checkpoints

of duration C N−F . Each failure striking the application will incur an

in-place restart of duration R N−F , using a spare processor to re-

place the faulty one. However, when the (F + 1) st failure strikes,

the job will have to stop and perform a full restart, waiting for a

new allocation of N processors to be granted by the job scheduler.

We define T R as the expected duration of an execution period

until the (F + 1) st failure strikes. The first failure is expected to

strike after μN seconds, the second failure μN−1 seconds after the

first one, and so on. We relinquish the allocation after F + 1 fail-

ures and wait some time D . As faults can also happen during the

checkpoint and the recovery, this means that:

T R =

N−F ∑

i = N
μi + D. (1)
What is the total amount of work W R computed during a pe-

iod T R ? During the sub-period of length μi , there are
μi √

2 C N−F μN−F

heckpoints, each of length C N−F . The failure hits one of live pro-

essors, either a working processor or a spare. In both cases, the

umber of live processors decreases. if the failure hits a spare, it

as no immediate impact on the application, except that the num-

er of available spares decreases. If the failure hits a working pro-

essor, which happens with probability N−F
i

, some work is lost,

nd a restart is needed. During each sub-period, and weighting

he cost by the probability of the failure hitting a working proces-

or during that sub-period, the work lost by each processor by the

nd of the sub-period is in average

√

2 C N−F μN−F

2 · N−F
i

(see [19] for

urther details). Each time there is a failure, the next sub-period

s thus started by a restart R N−F with probability N−F
i +1

, except for

he first sub-period which always starts by a restart (it corresponds

o reading input data at the beginning of the allocation). All in

ll, during the sub-period of length μi with i � = N , each processor

orks during

1

1 +

C N−F √

2 C N−F μN−F

·
(

μi − R N−F · N − F

i + 1

−
√

2 C N−F μN−F

2

· N − F

i

)

econds. The first fraction corresponds to the proportion of

he time that is used for useful computations and not for

heckpointing. This fraction is actually:
period time

period time + checkpoint time
=√

2 C N−F μN−F √

2 C N−F μN−F + C N−F
which is equivalent to the former fraction after

implification.

Finally, each processor works during

1

1 +

C N−F √

2 C N−F μN−F

·
(

μN − R N−F −
√

2 C N−F μN−F

2

· N − F

i

)

econds in the first sub-period of length μN as it always starts by

eading the initial data.

There are N − F processors at work, hence, re-arranging terms,

e obtain that

 R =

N − F

1 +

C N−F √

2 C N−F μN−F

·
N−F ∑

i = N

(

μi − (R N−F +

√

2 C N−F μN−F

2

) · N − F

i

)

(2)

ndeed, the factor for R N−F is N−F
i +1

for all subperiods except the

rst one, i.e. N − F ≤ i ≤ N − 1 , which means it is equivalent to
N−F

i
with N − F + 1 ≤ i ≤ N. Moreover, N−F

N−F = 1 which is the cor-

esponding factor for the first subperiod, so by summing all the

erms we get to
∑ N−F

i = N R N−F · N−F
i

.

During the whole duration T R of the period, in the absence of

ailures and protection techniques, the application could have used

ll the N processors to compute continuously. Thus the effective

ield with protection for the application during T R is reduced to

 R :

 R =

W R

N · T R

.2. Moldable application

We now consider a Moldable application that can use a differ-

nt number of processors after each restart. The application starts

xecuting with N processors. After the first failure, the application

ecovers from the last checkpoint and is able to continue with only

 − 1 processors, after paying the restart cost R N−1 , albeit with a

lowdown factor N−1 of the parallel work per time unit. After F + 1

V. Le Fèvre, T. Herault and Y. Robert et al. / Parallel Computing 85 (2019) 1–12 5

f

a

u

T

t

t

W

s

c

g

T

w

p

p

s

W

Y

4

a

w

c

g

t

m

i

t

a

w

l

g

s

a

n

o

w

a

t

a

a

a

fi

6

p

t

t

8

f

a

s

e

p

g

c

f

p

t

M

t

h

q

w

a

w

g

n

t

1

1

p

t

t

T

q

T

W

t

p

s

p

p∑

c

R

w

n

a

p

p

R

a

p

c

f

ailures, the application stops, just as it was the case for a Rigid

pplication.

We define T M

as the expected duration of an execution period

ntil the (F + 1) st failure strikes. The length of a period is

 M

=

N−F ∑

i = N
μi + D, (3)

he same as for Rigid applications.

However, for the total amount of work W M

during a period,

hings are slightly different. To compute the total amount of work

 M

during a period T M

, we proceed as before and consider each

ub-period. During the sub-period of length μi , there are
μi √

2 C i μi

heckpoints, each of length C i . There is also a restart R i at the be-

inning of each sub-period, and the average time lost is

√

2 C i μi
2 .

he probability that the failure strikes a working processor is al-

ays 1, because all alive processors are working during each sub-

eriod. Overall, there are i processors at work during the sub-

eriod of length μi , and each of them actually works during

μi − R i −
√

2 C i μi

2

1 +

C i √

2 C i μi

econds. Altogether, we derive that

 M

=

N−F ∑

i = N
i × μi − R i −

√

2 C i μi

2

1 +

C i √

2 C i μi

(4)

The yield of the Moldable application is then:

 M

=

W M

N · T M

.3. GridShaped application

Next, we consider a GridShaped application, defined as a mold-

ble execution which requires a rectangular processor grid. Here

e mean a logical grid, i.e. a layout of processes whose communi-

ation pattern is organized as a 2D grid, not a physical processor

rid where each processor has four neighbors directly connected

o it. Indeed, there is little hope to use physical grids today. Some

odern architectures have a multi-dimensional torus as physical

nterconnexion network, but the job scheduler never guarantees

hat allocated nodes are adjacent, let alone are organized along

n actual torus. This means that the actual time to communicate

ith a logically adjacent processor is variable, depending upon the

ength of the path that connects them, and also upon the con-

estion of the links within that path (these links are likely to be

hared by other paths). Other architecture communicate through

 hierarchical interconnexion switch, hence a 2D processor grid is

ot meaningful for such architectures. Altogether, this explains that

ne targets logical process grids, not physical processor grids. Now

hy do the application needs a process grid? State-the-art linear

lgebra kernels such as matrix product, LU, QR and Cholesky fac-

orizations, are most efficient when the data is partitioned across

 logical grid of processes, preferably a square, or at least a bal-

nced rectangle of processes [21] . This is because the algorithms

re based upon outer-product matrix updates, which are most ef-

ciently implemented on (almost) square grids. Say you start with

4 working processors, arranged as a 8 × 8 process grid. When one

rocessor fails, the squarest grid would be 63 = 9 × 7 , and then af-

er a second failure we get 62 = 31 × 2 which is way too elongated

o be efficient. After the first failure, it is more efficient to use a
 × 7 grid and keep 7 spares; then we use spares for the next 7

ailures, after which we shrink to a 7 × 7 grid (and keep 7 spares),

nd so on.

For the analysis, assume that the application starts with a

quare p × p grid of N = p 2 processors. After the first failure, ex-

cution continues on a p × (p − 1) rectangular grid, keeping p − 1

rocessors as spares for the next p − 1 failures. After p failures, the

rid is shrunk again to a (p − 1) × (p − 1) square grid, and the exe-

ution continues on this reduced-size square grid. After how many

ailures F should the application stop, in order to maximize the ap-

lication yield?

The derivation of the expected length of a period and of the to-

al work is more complicated for GridShaped than for Rigid and

oldable . To simplify the presentation, we outline the computa-

ion of the yield only for values of F of the form F = 2 p f − f 2 ,

ence p 2 = F + (p − f) 2 , meaning that we stop shrinking and re-

uest a new allocation when reaching a square grid of size (p −
f) × (p − f) for some value of f < p to be determined. Obviously,

e could stop after any number of faults F , and the publicly avail-

ble software [25] shows how to compute the optimal value of F

ithout any restriction.

We start by computing an auxiliary variable: On a (p 1 − 1) × p 2
rid with p 1 ≥ p 2 , the expected time to move from p 2 − 1 spare

odes to no spare nodes will be denoted by T G (p 1 , p 2). It means

hat the number of computing nodes never changes and is (p 1 −
) p 2 . It always starts with a restart R (p 1 −1) p 2

, because having p 2 −
 spare nodes means that a failure just occurred on one of the p 1 p 2
rocessors that were working just before that failure, and we had

o remove a row from the process grid. As previously this time is

he sum of all the intervals between each failure, namely:

 G (p 1 , p 2) =

(p 1 −1) p 2 ∑

i = p 1 p 2 −1

μi .

Going from p 2 processors down to (p − f) 2 processors thus re-

uire a time

 G = μp 2 +

f−1 ∑

g=0

(
T G (p − g, p − g) + T G (p − g, p − g − 1)

)
+ D.

e simply add the time before the first failure and the wait time

o the time needed to move from a grid of size p 2 to (p − 1) 2 , to

(p − 2) 2 , ..., to (p − f) 2 .

Similarly, we define the auxiliary variable W G (p 1 , p 2) as the

arallel work when moving from a (p 1 − 1) × p 2 grid with p 2 − 1

pare nodes to a (p 1 − 1) × p 2 grid with no spare node, where

 1 ≥ p 2 . There are (p 1 − 1) p 2 processors working during all sub-

eriods. Without restart and re-execution, this work is (p 1 − 1) p 2 ·
 (p 1 −1) p 2
i = p 1 p 2 −1

μi . Any failure which hits one of the working pro-

essors calls for a restart R (p 1 −1) p 2
and incurs some lost work:√

2 C (p 1 −1) p 2

2 in average. The first sub-period starts with a restart

 (p 1 −1) p 2
,because the application (distributed on a grid of p 1 × p 2

as previously hit by a failure, except if this is the beginning of a

ew allocation (which case will be dealt with later on). Then, for

ll other sub-periods, a restart is taken if one of (p 1 − 1) p 2 com-

uting processors was hit by a failure. This means that the sub-

eriod with i processors alive (of length μi) starts with a restart

 (p 1 −1) p 2
with probability

(p 1 −1) p 2
i +1

, for i ≤ p 1 p 2 − 2 . Similarly, for

ll sub-periods with i processors alive, we lose the expected com-

ute time

√

2 C (p 1 −1) p 2
μ(p 1 −1) p 2

2 with probability
(p 1 −1) p 2

i
. Finally, the

heckpoint period evolves with the number of processors, just as

or Moldable applications. We derive the following formula:

6 V. Le Fèvre, T. Herault and Y. Robert et al. / Parallel Computing 85 (2019) 1–12

W

− 1)

p 2 −

 p 2 μ(p

2

r

1

f

t

t

c

p

i

c

a

t

m

a

t

d

w

p

t

t

g

f

w

a

Fig. 2. Example of data redundancy and checksuming in an ABFT factorization. Each

white square represents a matrix tile; numbers in the square represent the rank

on which this tile is hosted; grey tiles represent the checksums and their replica

(symbolized by the = arrow). In this case, p = 3 , n = 6 b.
 G (p 1 , p 2) =

(p 1 − 1) p 2

1 +

C (p 1 −1) p 2 √

2 C (p 1 −1) p 2
μ(p 1 −1) p 2

×
(

μp 1 p 2 −1 − R (p 1 −1) p 2 −
√

2 C (p 1 −1) p 2 μ(p 1 −1) p 2

2

· (p 1
p 1

+

(p 1 −1) p 2 ∑

i = p 1 p 2 −2

(

μi − R (p 1 −1) p 2 ·
(p 1 − 1) p 2

i + 1

−
√

2 C (p 1 −1)

Going from p 2 processors down to (p − f) 2 processors thus cor-

responds to a total work

W G =

p 2

1 +

C
p 2 √

2 C
p 2

μ
p 2

·
(

μp 2 − R p 2 −
√

2 C p 2 μp 2

2

)

+

f−1 ∑

g=0

(W G (p − g, p − g) + W G (p − g, p − g − 1))

We use the previously computed function just as we did with the

time and we add the work done during the first sub-period on the

initial grid of size p 2 (this is the special case for the beginning of

an allocation that was mentioned above). Its computation is similar

to that of other subperiods.

The yield of the GridShaped application is then:

Y G =

W G

N · T G
where N = p 2 .

4.4. ABFT for GridShaped

Finally, in this section, we investigate the impact of using

Algorithm-Based Fault Tolerant techniques, or ABFT, instead of

Checkpoint:Restart (C/R). Just as before, we build a performance

model that uses first-order approximations. In particular, we do

not consider overlapping failures, thereby allowing for a failure-

free reconstruction of lost data after a failure. This first-order ap-

proximation is accurate up to a few percent, whenever the failure

rate is not too high, or more precisely, when the MTBF remains an

order of magnitude higher than resilience parameters [19] . Note

that this is the case for state-of-the-art platforms, but may prove

otherwise whenever millions of nodes are assembled in the forth-

coming years.

Consider a matrix factorization on a p × p grid. The matrix is

of size n × n and is partitioned into tiles of size b × b . These tiles

are distributed in a 2D block-cyclic fashion across processors. Let-

ting n = pbr, each processor initially holds r 2 tiles. Every set of p

consecutive tiles in the matrix is checksummed into a new tile,

which is duplicated for resilience. These two new tiles are added

to the right border of the matrix and will be distributed in a 2D

block-cyclic fashion across processors, just as the original matrix

tiles. In other words, we add 2 pr 2 new tiles, extending each tile

row of the matrix (there are pr such tile rows) with 2 r new tiles.

Fig. 2 illustrates this scheme: The white area represents the orig-

inal user matrix of size n × n , split in tiles of size b × b , and dis-

tributed over a p × p process grid. The number in each tile repre-

sents the rank that hosts a given tile of the matrix. There are two

groups of tile-columns of checksums: The light grey ones check-

sum the right end of the matrix, and the dark grey ones checksum

the left part of the matrix. For a bigger matrix, more groups would

be added, each group accumulate the sum of p consecutive tile-

columns of the matrix. In each group, there are two tile-columns:

The checksum and its replica. These new tiles will be treated as

regular matrix tiles by the ABFT algorithm, which corresponds to a
 p 2
1

 1 −1) p 2 · (p 1 − 1) p 2
i

))

atio 2 pr 2

p 2 r 2
=

2
p of extra work, and to a failure-free slowdown factor

 +

2
p [5] .

Now, if a processor crashes, we finish the current step of the

actorization on all surviving processors, and then reconstruct the

iles of the crashed processor as follows:

• For each tile lost, there are p − 1 other tiles (the ones involved

in the same checksum as the lost tile) and at least one check-

sum tile (maybe two if the crashed processor did not hold any

of the two checksum tiles for that lost tile). This is what is

needed to enable the reconstruction. We solve a linear system

of size b and reconstruct the missing tile for a time propor-

tional to b 3 + pb 2 .
• We do this for the r 2 tiles of the crashed processor, for a total

time of O (r 2 (b 3 + pb 2) τa) , where τ a is the time to perform a

floating-point operation.

Doing so, we reconstruct the same tile as if we had completed

he factorization step without failure.

Then, there are two cases: The ABFT algorithm relies on a pro-

ess grid, so the application behaves similarly to a GridShaped ap-

lication. If spare nodes are available, one of them is selected and

nserted within the process grid at the place of the crashed pro-

essor, at a cost of communicating O (r 2 b 2) matrix coefficients (the

mount of data held by the faulty processor). If, on the other hand,

here are no spare nodes, we have to start the redistribution of the

atrix onto a p × (p − 1) grid. The distribution is operated in par-

llel across the p grid rows. Within a processor row, most of the

iles will have to change owner to keep enforcing a 2D block-cyclic

istribution, which implies O (n
2

p) = O (r 2 pb 2) communications as

e redistribute everything on every row. Since all rows operate in

arallel, the time for the redistribution is O (r 2 pb 2 τ c), where τ c is

he time to communicate a floating point number. Altogether, the

otal cost to recover from a failure is O (r 2 b 2 (bτa + p(τa + τc))) .

In the following, we compute the expected yield of a linear al-

ebra kernel protected by ABFT. Again, we consider numbers of

ailures of the form F = 2 p f − f 2 so that p 2 = F + (p − f) 2 . Again,

e could stop after any number of faults F , and the publicly avail-

ble software [25] shows how to do so.

V. Le Fèvre, T. Herault and Y. Robert et al. / Parallel Computing 85 (2019) 1–12 7

T

A

s

t

a

s

a

i

c

t

c

t

s

h

T

j

t

f

W

w

n

R

a

R

T

r

c

f

p

t

o

W

Fig. 3. Optimal yield as function of the wait time, for the different types of appli-

cations.

Y

w

5

s

t

F

S

5

f

a

n

1

s

e

t

a

p

o

i

a

f

G

t

o

w

t

s

G

h

t

t

p

i

t

r

c

8
We first compute the expected time between two full restarts:

 ABF T =

(p− f) 2 ∑

i = p 2
μi + D.

s previously, we tolerate failures up to reaching a processor grid

ize of (p − f) × (p − f) , each inter-arrival time being the MTBF of

he platform with the corresponding number of alive processors.

Now, we define the auxiliary variable W ABFT (p 1 , p 2) as the par-

llel work when moving from a (p 1 − 1) × p 2 grid with p 2 − 1

pare nodes to a (p 1 − 1) × p 2 grid with no spare node. There

re (p 1 − 1) p 2 processors working during all sub-periods, just as

t was the case for GridShaped applications. A failure-free exe-

ution would imply a parallel work of 1

1+ 2 p

∑ (p 1 −1) p 2
i = p 1 p 2 −1

μi which is

he total time of computation divided by overhead added with the

hecksum tiles. However, for each failure we need to reconstruct

he lost tiles and either pay a redistribution cost (during the first

ub-period where we just reduced the size of the grid because we

ad no spare) or a communication cost to send data to one of the

p 2 − 1 spare nodes (all other sub-periods where we select a spare).

his happens if and only if the failure stroke a working processor

ust as in the GridShaped case, i.e. with probability
(p 1 −1) p 2

i +1
. In

he end, since there are (p 1 − 1) p 2 processors at work, we get the

ollowing formula:

 ABF T (p 1 , p 2)

=

(p 1 − 1) p 2

1 +

2
p

(

μp 1 p 2 −1 −RD p 1 +

(p 1 −1) p 2 ∑

i = p 1 p 2 −2

(
μi − RP · (p 1 − 1) p 2

i + 1

))

,

here RP is the cost to replace a faulty processor by a spare,

amely

P = r 2 (b 3 + pb 2) τa + r 2 b 2 τc ,

nd RD i is the cost to redistribute data, namely

D i = r 2 (b 3 + pb 2) τa +

n 2

i
τc .

o compute these values, we proceed as follows:

• The reconstruction of the lost tiles always takes r 2 (b 3 + pb 2)

floating-point operations, and the enrollment of the spare re-

quires that it receives r 2 b 2 floating-point values, which directly

leads to the value of RP , which is independent of the number

of processors;
• However, when we redistribute the tiles to shrink the grid, the

time needed increases as the number of processors decreases

because each of them has to gather more data: It requires O (n
2

i
)

communications when redistributing from a i × j grid of pro-

cessors to a (i − 1) × j grid, or similarly from a j × i grid to a

j × (i − 1) grid, where j = i or j = i − 1 .

Overall, going from a p × p grid to a (p − f) × (p − f) grid cor-

esponds to a total work of W ABF T . At the beginning of the allo-

ation, we need to read the input data, then we wait for the first

ailure to happen (giving a work of μp 2 − R p 2 during the first sub-

eriod that we divide by the overhead added by the checksum

iles) and then we use our auxiliary variables to decrease the size

f the grid step by step. This leads to the following:

 ABF T =

p 2 (μp 2 − R p 2)

1 +

2
p

+

f−1 ∑

i =0

(W ABF T (p − i, p − i) + W ABF T (p − i, p − 1 − i)) .
The yield of the application protected with ABFT is then:

 ABF T =

W ABF T

N · T ABF T

here N = p 2 .

. Applicative scenarios

We consider several applicative scenarios in this section. We

tart with a platform inspired from existing ones in Section 5.1 ,

hen we study the impact of several key parameters in Section 5.2 .

inally, we compare ABFT and C/R for a GridShaped application in

ection 5.3 .

.1. Main scenario

As a main applicative scenario using C/R, we consider a plat-

orm with 22,250 nodes (150 2), with a node MTBF of 20 years,

nd an application that would take 2 min to checkpoint (at 22,250

odes). In other words, we let N = 22 , 500 , μind = 20 y and C i = C =
20 s . These values are inspired from existing platforms: The Titan

upercomputer at OLCF [15] , for example, holds 18,688 nodes, and

xperiences a few node failures per day, implying a node MTBF be-

ween 18 and 25 years. The filesystem has a bandwidth of 1.4TB/s,

nd nodes altogether aggregate 100TB of memory, thus a check-

oint that would save 30% of that system should take in the order

f 2 min to complete. In other words, C i = C = 120 seconds for all

 ≤ 18, 688.

Fig. 3 shows the yield that can be expected if doing a full restart

fter an optimal number of failures, as a function of the wait time,

or the three kind of applications considered (Rigid , Moldable and

ridShaped). We also plot the expected yield when the applica-

ion experiences a full restart after each failure (NoSpare). First,

ne sees that the three approaches that avoid paying the cost of a

ait time after every failure experience a comparable yield, while

he performance of the NoSpare approach quickly degrades to a

mall efficiency (30% when the wait time is around 14 h).

The zoom box to differentiate the Rigid , Moldable and

ridShaped yield shows that the Moldable approach has a slightly

igher yield than the other ones, but only for a minimal fraction of

he yield. This is expected, as the Moldable approach takes advan-

age of all living processors, while the GridShaped and Rigid ap-

roaches sacrifice the computing power of the spare nodes wait-

ng for the next failure. However, the size of the gain is small

o the point of being negligible. The GridShaped approach expe-

iences a yield whose behavior changes in steps: It starts with a

onstant slope, under the Rigid yield, until the wait time reaches

h at which point both Rigid and GridShaped yields are the same.

8 V. Le Fèvre, T. Herault and Y. Robert et al. / Parallel Computing 85 (2019) 1–12

Fig. 4. Optimal number of failures tolerated between two full restarts, as function

of the wait time, for the different types of applications.

Fig. 5. Optimal length of allocations, for the different types of applications.

Fig. 6. Maximum wait time allowed to reach a target yield.

h

a

R

t

I

w

t

a

b

w

8

t

s

5

t

(

1

1

a

i

The slope of GridShaped then becomes smaller, exhibiting a better

yield than Rigid and slowly reaching the yield of Moldable . If we

extend the wait time, or change the configuration to experience

more phase changes (as is done in Section 5.2 below), the yield of

GridShaped would reach the same value as the yield of Moldable ,

at which point the slope of GridShaped would change again

and become higher. This phenomenon is explained by the next

figures.

Fig. 4 shows the number of failures after which the application

should do a full restart, to obtain an optimal yield, as a function

of the wait time, for the three kind of applications considered. We

observe that this optimal is quickly reached: Even with long wait

times (e.g. 10h), 170 to 250 failures (depending on the method)

should be tolerated within the allocation before relinquishing it.

This is small compared to the number of nodes: Less than 1% of

the resource should be dedicated as spares for the Rigid approach,

and after losing 1% of the resource, the Moldable approach should

request a new allocation.

This is remarkable, taking into account the poor yield obtained

by the approach that does not tolerate failures within the alloca-

tion. Even with a small wait time (assuming the platform would

be capable of re-scheduling applications that experience failures

in less than 2 h), Fig. 3 shows that the yield of the NoSpare ap-

proach would decrease to 70%. This represents a waste of 30%,

which is much higher than the recommended waste of 10% for re-

silience in the current HPC platforms recommendations [6,8] . Com-

paratively, keeping only 1% of additional resources (within the allo-

cation) would allow to maintain a yield at 90%, for every approach

considered.

The GridShaped approach experiences steps that correspond to

using all the spares created when redeploying the application over

a smaller grid before relinquishing the allocation. As illustrated in

Fig. 3 , the yield evolves in steps, changing the slope of a linear ap-

proximation radically when redeploying over a smaller grid. This

has for consequence that the maximal yield is always at a slope

change point, thus at the frontier of a new grid size. It is still re-

markable that even with very small wait times, it is more benefi-

cial to use spares (and thus to lose a full row of processors) than

to redeploy immediately.

Fig. 5 shows the maximal length of an allocation: After such

duration, the job will have to fully restart in order to maintain the

optimal yield. This figure illustrates the real difference between the

Rigid and Moldable approaches: Although both approaches are ca-

pable of extracting the same yield, the Moldable approach can

do so with significantly longer periods between full restarts. This

is important when considering real life applications, because this

means that the applications using a Moldable approach have a
igher chance to complete before the first full restart, and over-

ll will always complete in a lower number of allocations than the

igid approach.

Finally, Fig. 6 shows an upper limit of the duration of the wait

ime in order to guarantee a given yield for the three applications.

n particular, we see that to reach a yield of 90%, an application

hich would restart its job at each fault would need that restart

o be done in less than 6 min whereas the Rigid and GridShaped

pproaches need a full restart in less than 3 h approximately. This

ound goes up to 7 h for the Moldable approach. In comparison,

ith a wait time of 1 h, the yield obtained using NoSpare is only

0%. This shows that, using these parameters, it seems impossible

o guarantee the recommended waste of 10% without tolerating (a

mall) number of failures before rescheduling the job.

.2. Varying key parameters

We performed a full-factorial 4 level design simulation to assess

he impact of key parameters. We tried all combinations of MTBF

5 years, 10 years, 20 years, 50 years), checkpointing cost (2 min,

0 min, 30 min, 60 min) and application size (50 × 50 = 2500 ,

50 × 150 = 22500 , 250 × 250 = 62500 , 350 × 350 = 122500). Not

ll results are presented for conciseness, but they all give very sim-

lar results compared to the main scenario of Section 5.1 .

V. Le Fèvre, T. Herault and Y. Robert et al. / Parallel Computing 85 (2019) 1–12 9

Fig. 7. Yield and optimal allocation length of as a function of the wait time with N = 350 × 350 , and C = 10 min.

f

t

w

c

M

a

w

a

T
Fig. 7 shows the yield and the corresponding allocation length

or different values of the MTBF, when using the largest applica-

ion size N = 350 × 350 . The top subfigure is for μind = 5 years

hile the bottom subfigure is for μind = 50 years. The checkpoint

ost is C i = C = 10 min. As expected, the yield increases when the
TBF increases. However, the variation of the allocation length is

 bit different. At first, it decreases with the MTBF (for example,

ith a wait time of 10 h, it decreases from around 150 days to

round 100 days when μind decreases from 50 years to 20 years).

his is because the optimal number of faults allowed is not much

10 V. Le Fèvre, T. Herault and Y. Robert et al. / Parallel Computing 85 (2019) 1–12

Fig. 8. Optimal number of faults before rescheduling the application for different application sizes.

t

o

e

1

a

c

o

t

i

T

A

C

t

w

C

o

W

i

a

h

s

f

r

higher when μind = 20 years, thus it decreases the overall alloca-

tion length. However, when we reach limit behaviors with short

node MTBF, the number of failures to tolerate explodes and in-

creases the allocation length. We can also see that the alloca-

tion length for GridShaped applications tends to follow that of a

Moldable application when μind decreases.

Fig. 8 shows the optimal number of faults to tolerate for the

four different application sizes (with μind = 20 years and C i = C =
10 min). We can see from this experiment that the number of tol-

erated failures stays within a small percentage of the total number

of processors. In particular, the optimal number of failures allowed

for every type of application stays below or equals 2% of the total

application size in all the four cases.

Fig. 9 aims at showing the impact of the checkpointing cost on

the allocation length. The trend is that it does not depend on the

checkpointing cost. This can be explained by the fact that the al-

location length does not take into account the checkpoint/restart

strategy into its computation, only the MTBF and the number of

failures allowed. Overall, the impact of the checkpointing cost stays

minimal compared to the impact of the wait time or the MTBF.

Finally, Fig. 10 describes the yield obtained when using different

models for the checkpointing cost: Either the checkpoint is con-

stant (independent of the number of processors: Left figure) or it

is inversely proportional to the number of processors (right figure).

As these plots show, the difference between the two models does

not have a noticeable impact on the yield of the applications. This

can be explained as follows: As Fig. 8 showed, only a small number

of faults is allowed before resubmission, in comparison to the ap-

plication size. Changing the number of active processors by a few

percentage does not really make a difference for the checkpoint

cost, which remains almost the same in both models.

5.3. Comparison between C/R and ABFT

In this subsection, we present the results of ABFT and C/R

strategies, for a GridShaped application. In order to compare both

strategies, we introduce ABFT parameters, and use data from the

Titan platform [2] :
• We use tiles of size 180 × 180, i.e. we let b = 180 . We set r =
325 ; so that a node holds 325 2 = 105625 tiles.

• These values give a total of almost 25.5GB used by each node,

which corresponds to 80% of the memory of a node in Titan.
• Overall, the total memory of the application is 8 p 2 r 2 b 2 bytes,

so we set the checkpointing cost to be 8 p 2 r 2 b 2

1 . 4 ×1024 4
, using 1.4 TB/s

for the I/O bandwidth of the Titan platform. With r and b set

as mentioned, we get C i = C ≈ 25 . 5 N
1 . 4 ×1024 ≈ N

56 . 3 .
• Titan has 18,688 cores for a peak performance of 17.59 PFlop/s.

We derive a performance per core of 987 GFlop/s, i.e. τa =
1

987 ×1024 3
.

• Using the same reasoning, we derive that τc =

1
87 . 2 ×1024 3

.

Fig. 11 presents the yield obtained by both strategies with ei-

her no spare processors (NoSpare and NoSpare-ABFT) or with the

ptimal number of spare processors (GridShaped for the C/R strat-

gy and ABFT for the ABFT strategy). In Fig. 11 , we use N = 150 ×
50 and μind = 20 years. Unsurprisingly, the ABFT strategy grants

 better yield than the C/R strategy with a yield very close to 1,

ompared to ≈ 0.8 for C/R. This is largely due to the fact that the

verhead added by the ABFT is 2
p and so is negligible compared to

he checkpoint overhead. Moreover, the reconstruction of the tiles

s done in parallel so it does not induce any significant overhead.

his can also be seen when we do not use any spare: C/R and

BFT follow the same trend but ABFT is always more efficient than

/R, which exactly shows that the checkpoint overhead is larger

han the ABFT overhead, since it is the only source (along with the

ait time) of wasted time if F = 0 . For a wait time of 10 h the

/R strategy gives a yield of 0.820 while ABFT grants a better yield

f 0.973 (0.364 and 0.426 respectively with no spare processors).

e can see on the right figure that the allocation lengths are sim-

lar for both strategies. However, for some values, ABFT will have

 shorter allocation length, mostly due to the fact that its over-

ead is small and does not depend on the number of alive proces-

ors; hence loosing a few nodes implies a greater slowdown than

or the C/R strategy where the checkpointing period is adapted

egularly.

V. Le Fèvre, T. Herault and Y. Robert et al. / Parallel Computing 85 (2019) 1–12 11

Fig. 9. Optimal number of faults before rescheduling the application for different checkpointing costs.

Fig. 10. Constant checkpoint cost (C i = 60 min) on the left, and increasing checkpoint cost (C i =

N
i

× 60 min) on the right, with μind = 5 years and N = 350 × 350 .

Fig. 11. Comparison of ABFT and C/R strategies for a GridShaped application, N = 150 × 150 and μind = 20 years.

G

s

6

M

s

a

s

m

n

p

s

w

f

o

t

t

t

t

j

t

a

w

d
The conclusion of this comparative study is that, for a

ridShaped application, ABFT uses a very small percentage of

pare resources and grants a better yield than classical C/R.

. Conclusion

In this paper, we have compared the performance of Rigid ,

oldable and GridShaped applications when executed on large-

cale failure-prone platforms. We have mainly focused on the C/R

pproach, because it is the most widely used approach for re-

ilience. For each application type, we have computed the opti-

al number of faults that should be tolerated before requesting a

ew allocation, as a function of the wait time. Through realistic ap-

licative scenarios inspired by state-of-the-art platforms, we have
hown that the three application types experience an optimal yield

hen requesting a new allocation after experiencing a number of

ailures that represents a small percentage of the initial number

f resources (hence a small percentage of spares for Rigid applica-

ions), and this even for large values of the wait time. On the con-

rary, the NoSpare strategy, where a new allocation is requested af-

er each failure, sees its yield dramatically decrease when the wait

ime increases. We also observed that Moldable applications en-

oy much longer execution periods in between two re-allocations,

hereby decreasing the total execution time as compared to Rigid

pplications (and GridShaped applications lying in between).

GridShaped applications may also be protected using ABFT, and

e have compared the efficiency of C/R and ABFT for a typical

ense matrix factorization problem. As expected, using ABFT leads

12 V. Le Fèvre, T. Herault and Y. Robert et al. / Parallel Computing 85 (2019) 1–12

[

[

[

[

[

to even better yields than C/R for a wide variety of scenarios, in

particular for larger problem sizes for which ABFT scales remark-

ably well.

Future work will be devoted to exploring more applicative sce-

narios, and running actual experiments using ULFM [4] . We also

intend to extend the model in several directions. On the applica-

tion side, we aim at dealing with non-perfectly parallel applica-

tions but instead with applications whose speedup profile obeys

Amdahl’s law [1] . On the platform side, we aim at adapting the

model to heterogeneous platforms and at doing more experiments

with different values for the recovery and checkpoint costs as

bandwidths are different when reading or writing data. We will

also introduce a more refined speedup profile for GridShaped ap-

plications, with an execution speed that depends on the grid shape

(a square being usually faster than an elongated rectangle). On

the resilience side, we will explore the case with different costs

for checkpoint and recovery. More importantly, we will address

the combination of ABFT and C/R (instead of dealing with either

method individually). Such a combination would allow to tolerate

for several failures striking within the same computational step:

The idea would be to use ABFT to recover from a single failure and

to rollback to the last checkpoint only in the case of multiple fail-

ures. Such a combination would enable us to go beyond first-order

approximations and single-failure scenarios. Finally, we would like

to investigate the case for correlated failures. Even if a theoretical

analysis seems out of reach, we could generate failures with mod-

els accounting for correlation but optimize for the current model,

and check how the correlations affect the results.

Acknowledgments

This research is partially supported by the NSF (award

1564133). We would like to thank the reviewers for their com-

ments and suggestions.

Supplementary material

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.parco.2019.02.002 .

References

[1] G. Amdahl , The validity of the single processor approach to achieving large

scale computing capabilities, in: AFIPS Conference Proceedings, 30, AFIPS Press,
1967, pp. 4 83–4 85 .

[2] APEX , APEX Workflows, Research report, SAND2016-2371 and LA-UR-15-29113.
LANL, NERSC, SNL, 2016 .

[3] R.A. Ashraf, S. Hukerikar, C. Engelmann, Shrink or substitute: handling process
failures in HPC systems using in-situ recovery, CoRR (2018) arXiv: 1801.04523 .

[4] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, J. Dongarra, Post-failure recovery

of MPI communication capability: design and rationale, Int. J. High Perform.
Comput. Appl. 27 (3) (2013) 244–254, doi: 10.1177/1094342013488238 .

[5] G. Bosilca , R. Delmas , J. Dongarra , J. Langou , Algorithm-based fault tolerance
applied to high performance computing, J. Parallel Distrib. Comput. 69 (4)

(2009) 410–416 .
[6] F. Cappello , A. Geist , W. Gropp , S. Kale , B. Kramer , M. Snir , Toward exascale

resilience: 2014 update, Supercomput. Front. Innov. 1 (1) (2014) .
[7] W. Cirne , F. Berman , Using moldability to improve the performance of super-
computer jobs, J. Parallel Distrib. Comput. 62 (10) (2002) 1571–1601 .

[8] CORAL , : Collaboration of Oak Ridge, Argonne and Livermore National Lab-
oratorie, DRAFT CORAL-2 BUILD STATEMENT OF WORK, Technical Report,

LLNL-TM-7390608, Lawrence Livermore National Laboratory, 2018 .
[9] J.T. Daly , A higher order estimate of the optimum checkpoint interval for

restart dumps, Future Generation Comp. Syst. 22 (3) (2006) 303–312 .
[10] P. Du , A. Bouteiller , et al. , Algorithm-based fault tolerance for dense matrix

factorizations, in: PPoPP, ACM, 2012, pp. 225–234 .

[11] P. Du , P. Luszczek , S. Tomov , J. Dongarra , Soft error resilient QR factorization for
hybrid system with GPGPU, J. Comput. Sci. 4 (6) (2013) 457–464 . Scalable Al-

gorithms for Large-Scale Systems Workshop (ScalA2011), Supercomputing 2011
[12] P. Dutot , G. Mounié, D. Trystram , Scheduling Parallel Tasks Approximation Al-

gorithms, in: J.Y. Leung (Ed.), Handbook of Scheduling - Algorithms, Models,
and Performance Analysis, CRC Press, 2004 .

[13] A. Fang , H. Fujita , A .A . Chien , Towards understanding post-recovery efficiency

for shrinking and non-shrinking recovery, in: Euro-Par 2015: Parallel Process-
ing Workshops, Springer, 2015, pp. 656–668 .

[14] Y. Guo , W. Bland , P. Balaji , X. Zhou , Fault tolerant MapReduce-MPI for HPC
clusters, in: Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, SC 2015, Austin, TX, USA,
November 15–20, 2015, 2015, pp. 34:1–34:12 .

[15] S. Gupta , T. Patel , C. Engelmann , D. Tiwari , Failures in large scale systems:

Long-term measurement, analysis, and implications, in: Proceedings of the In-
ternational Conference for High Performance Computing, Networking, Storage

and Analysis, SC ’17, New York, NY, USA, 2017, pp. 4 4:1–4 4:12 .
[16] D. Hakkarinen , P. Wu , Z. Chen , Fail-stop failure algorithm-based fault tolerance

for Cholesky decomposition, Parallel Distrib. Syst. IEEE Trans. 26 (5) (2015)
1323–1335 .

[17] A. Hori, K. Yoshinaga, T. Herault, A. Bouteiller, G. Bosilca, Y. Ishikawa, Sliding

substitution of failed nodes, in: Proceedings of the 22Nd European MPI Users’
Group Meeting, in: EuroMPI ’15, ACM, New York, NY, USA, 2015, pp. 14:1–

14:10, doi: 10.1145/2802658.2802670 .
[18] K.-H. Huang , J.A. Abraham , Algorithm-based fault tolerance for matrix opera-

tions, Comput. IEEE Trans. C–33 (6) (1984) 518–528 .
[19] T. Hérault, Y. Robert (Eds.), Fault-Tolerance Techniques for High-Performance

Computing, Springer Verlag, 2015.

[20] J.E. Moreira , V.K. Naik , Dynamic resource management on distributed systems
using reconfigurable applications, IBM J. Res. Dev. 41 (3) (1997) 303–330 .

[21] A. Petitet , H. Casanova , J. Dongarra , Y. Robert , R.C. Whaley , Parallel and dis-
tributed scientific computing: a numerical linear algebra problem solving en-

vironment designer’s perspective, in: J. Blazewicz, K. Ecker, B. Plateau, D. Trys-
tram (Eds.), Handbook on Parallel and Distributed Processing, Springer Verlag,

1999 . Available as LAPACK Working Note 139.

22] S. Prabhakaran , M. Neumann , F. Wolf , Efficient fault tolerance through dynamic
node replacement, in: 18th Int. Symp. on Cluster, Cloud and Grid Computing

CCGRID, IEEE Computer Society, 2018, pp. 163–172 .
23] S. Prabhakaranw , Dynamic Resource Management and Job Scheduling for High

Performance Computing, Ph.D. thesis. Technische Universität Darmstadt, 2016 .
[24] M. Shantharam , S. Srinivasmurthy , P. Raghavan , Fault tolerant preconditioned

conjugate gradient for sparse linear system solution, ICS, ACM, 2012 .
[25] Simulation Software, Computing the yield, 2018, (https://zenodo.org/record/

2159761#.XA51mhCnfCJ).

26] R. Sudarsan , C.J. Ribbens , Design and performance of a scheduling framework
for resizable parallel applications, Parallel Comput. 36 (1) (2010) 48–64 .

[27] R. Sudarsan , C.J. Ribbens , D. Farkas , Dynamic resizing of parallel scientific sim-
ulations: A case study using LAMMPS, in: Int. Conf. Computational Science

ICCS, Procedia, 2009, pp. 175–184 .
28] C. Wang , F. Mueller , C. Engelmann , S.L. Scott , Proactive process-level live mi-

gration in hpc environments, in: SC ’08: Proc.ACM/IEEE Conference on Super-

computing, ACM Press, 2008 .
29] K. Yamamoto , A. Uno , H. Murai , T. Tsukamoto , F. Shoji , S. Matsui , R. Sek-

izawa , F. Sueyasu , H. Uchiyama , M. Okamoto , N. Ohgushi , K. Takashina , D. Wak-
abayashi , Y. Taguchi , M. Yokokawa , The k computer operations: experiences

and statistics, Procedia Comput. Sci. (ICCS) 29 (2014) 576–585 .
[30] E. Yao , J. Zhang , M. Chen , G. Tan , N. Sun , Detection of soft errors in LU de-

composition with partial pivoting using algorithm-based fault tolerance, Int. J.

High Perform. Comput. Appl. 29 (4) (2015) 422–436 .
[31] J.W. Young , A first order approximation to the optimum checkpoint interval,

Comm. ACM 17 (9) (1974) 530–531 .

https://doi.org/10.13039/100000001
https://doi.org/10.1016/j.parco.2019.02.002
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0001
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0001
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0002
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0002
http://arXiv:1801.04523
https://doi.org/10.1177/1094342013488238
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0007
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0007
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0007
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0008
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0008
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0009
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0009
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0012
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0012
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0012
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0012
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0013
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0013
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0013
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0013
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0014
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0014
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0014
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0014
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0014
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0015
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0015
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0015
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0015
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0015
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0016
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0016
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0016
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0016
https://doi.org/10.1145/2802658.2802670
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0019
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0019
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0019
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0021
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0021
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0021
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0021
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0022
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0022
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0023
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0023
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0023
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0023
https://zenodo.org/record/2159761#.XA51mhCnfCJ
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0024
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0024
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0024
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0025
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0025
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0025
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0025
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0026
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0026
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0026
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0026
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0026
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0028
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0028
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0028
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0028
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0028
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0028
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0029
http://refhub.elsevier.com/S0167-8191(18)30223-0/sbref0029

	Comparing the performance of rigid, moldable and grid-shaped applications on failure-prone HPC platforms
	1 Introduction
	2 Related work
	2.1 Checkpoint-restart
	2.2 and applications
	2.3 ABFT

	3 Performance model
	3.1 Application/platform framework
	3.2 Mean time between failures (MTBF)
	3.3 Checkpoints
	3.4 Wait time
	3.5 Objective.

	4 Expected yield
	4.1 application
	4.2 application
	4.3 application
	4.4 ABFT for

	5 Applicative scenarios
	5.1 Main scenario
	5.2 Varying key parameters
	5.3 Comparison between C/R and ABFT

	6 Conclusion
	Acknowledgments
	Supplementary material
	References

