Optimizing Memory-Bound SYMYV Kernel
on GPU Hardware Accelerators

Ahmad Abdelfattah', Jack Dongarra?, David Keyes!, and Hatem Ltaief?

! KAUST Division of Mathematical and Computer Sciences and Engineering,
Thuwal, Saudi Arabia
2 Innovative Computing Laboratory, University of Tennessee, Knoxville TN USA
3 KAUST Supercomputing Laboratory, Thuwal, Saudi Arabia

Abstract. Hardware accelerators are becoming ubiquitous high perfor-
mance scientific computing. They are capable of delivering an unprece-
dented level of concurrent execution contexts. High-level programming
language extensions (e.g., CUDA), profiling tools (e.g., PAPI-CUDA,
CUDA Profiler) are paramount to improve productivity, while effectively
exploiting the underlying hardware. We present an optimized numerical
kernel for computing the symmetric matrix-vector product on nVidia
Fermi GPUs. Due to its inherent memory-bound nature, this kernel is
very critical in the tridiagonalization of a symmetric dense matrix, which
is a preprocessing step to calculate the eigenpairs. Using a novel design
to address the irregular memory accesses by hiding latency and increas-
ing bandwidth, our preliminary asymptotic results show 3.5x and 2.5x
fold speedups over the similar CUBLAS 4.0 kernel, and 7-8% and 30%
fold improvement over the Matrix Algebra on GPU and Multicore Archi-
tectures (MAGMA) library in single and double precision arithmetics,
respectively.

1 Introduction

GPUs have been, for a long time, dedicated for graphics processing. However,
their increasing level of parallelism and computing capability have drawn atten-
tion in the HPC community, as low cost, low power, and high Gflop/s processing
units. The latest architecture released by nVidia, codenamed Fermi, has a the-
oretical peak of 1 Tflop/s for single precision (SP), and about 500 Gflop/s for
double precision (DP). Fermi has been highlighted as the first complete GPU
computing architecture [5], with a complete memory hierarchy, ECC support,
IEEE 754-2008 compliant floating point performance, and many novel features.
Due to the drastic change from the previous GPU architecture, further tuning
of existing numerical kernels is required to efficiently exploit new features in the
Fermi architecture, in order to boost the performance.

One of the critical numerical kernels in dense linear algebra is the symmet-
ric matrix-vector multiplication (SYMYV). The kernel is, by nature, memory-
bandwidth (BW) bound. It is a core step in computing the eigenpairs of a dense
symmetric matrix. Having irregular memory access pattern due to the symmetric

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 72-[(9] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Optimizing Memory-Bound SYMV Kernel on GPU Hardware Accelerators 73

property of the matrix, the kernel design on GPUs is challenging. We present a
novel design of the SYMV kernel. We try to exploit the new features introduced
in Fermi. Most of the techniques used in this design target hiding memory la-
tency and increasing memory bandwidth. When it comes to GPU programming
for high performance, there are a lot of knobs to tune a kernel design. However,
investigating all these knobs is daunting and time consuming. Therefore, we rely
on performance counters to profile existing SYMYV kernels in order to detect and
identify weak points, where possible improvements can be made. PAPI CUDA
Component [3] and the nVidia Compute Profiler [2] were the main performance
counter tools used during the design process. The new kernel design is tested
against two open-source SYMV kernels: the nVidia’s CUBLAS 4.0 implementa-
tion and the Matrix Algebra on GPU and Multicore Architectures (MAGMA)
1.0.0-rc5 [I] implementation. MAGMA SYMV kernel [9] was tuned for Fermi.
Our preliminary design is 3.5x better than CUBLAS 4.0 and 7-8% better than
MAGMA in SP, while the speedup is about 2.5x over CUBLAS 4.0 and 1.3x
over MAGMA in DP.

The rest of the paper is organized as follows. Section 2 discusses some previous
work. Section [B] describes our proposed design in the SYMV kernel. Sections [
and [l present experimental and profiler results, respectively. Section [0 shows
the impact of the new design on the overall symmetric eigenvalue problem. We
summarize and propose some future work in Section [7}

2 Related Work

Accelerator-based hardware are employed in many HPC software libraries and
applications, where they often outperform homogeneous x86 architecture in per-
formance, power consumption, and cost-effectiveness. The STI Cell processor
and GPUs have already been used in accelerating dense linear algebra ([7], [11]
and [10]) as well as stencil computations [4].

An up-to-date highly tuned SYMV kernel was recently presented in [9]. The
basic idea is to divide the matrix A into square blocks. Each Streaming

7

N\

/

2

7

\

\
7

DN

Step1 Step2 Step0 Step 1

\ siep2 k By
\ AN

(a) MAGMA strategy (b) Proposed strategy

Fig. 1. Proposed computation strategy against MAGMA strategy. The vertical move-
ment of thread blocks in @ is more suitable for column major formats.

74 A. Abdelfattah et al.

Multiprocessor (SM) is responsible for one or more blocks. The kernel launches
as many thread blocks as the number of diagonal matrix blocks. Each thread
block is responsible for exactly one block-row. Figure shows an example
thread block movement. Each non-diagonal block is computed in two fashions:
transposed and non-transposed. Partial results from transposed computations
are written to global memory so that the correct thread blocks can consume
them. The MAGMA implementation is, therefore, divided into two kernel calls.
The first one does the computation. The second kernel is a final reduction step
through global memory. Recursive blocking [9] was used to save shared memory
usage in GPUs. In addition, pointer redirecting was adopted to handle matrix
dimensions that are not multiples of the block dimension. The next section de-
scribes the design outlines of our proposed kernel and how it differs from the
MAGMA kernel strategy.

3 Kernel Description

GPU kernels are conceptually designed following two main strategies. The first
one (the block-level strategy) is how thread blocks travel throughout the matrix
blocks. The second one (the thread-level strategy) is how a single matrix block
is processed by one thread block. The first strategy has to optimize memory
accesses through global memory and L2 cache, while the second strategy goes
deeper into the memory hierarchy i.e., registers and L1 cache/shared memory, to
optimize processing block elements through efficient use of single SM’s limited
resources.

The new design has similar block-level strategy to the MAGMA kernel, with
the exception it organizes memory accesses more efficiently. Moreover, as op-
posed to MAGMA, there are three successive kernel calls in the proposed design.
The first kernel is a computation kernel for diagonal blocks only. The second one
is a computation kernel for the non-diagonal blocks. The third kernel is a fi-
nal reduction step done through global memory, which is very similar to the
MAGMA kernel. The reason for separating the computation into three kernels
will be shortly apparent. The proposed design divides the matrix into 64x64
blocks. This is an auto-tuning result obtained from MAGMA’s internal param-
eters. In the first kernel, we launch as many thread blocks as the number of the
diagonal blocks. When a thread block finishes computation, the partial result
(64 element-vector representing the block row) is written into global memory.

The second kernel has the same number of threads as the first kernel. Each
thread block travels vertically through the matrix (Figure . This is a more
memory-friendly scheme compared to MAGMA, since blocks are fetched in com-
pliance with the data layout (column-major format). This scheme achieves thus
better profiling in terms of number of load instructions from global memory and
L2 cache than MAGMA (see Section [Hl).

Going at a lower level in the kernel design (the thread-level strategy), each
diagonal block computation produces a partial result, a 64-element vector. A
non-diagonal block computation produces two 64-element vectors. We enumerate
the new contributions in this strategy.

Optimizing Memory-Bound SYMV Kernel on GPU Hardware Accelerators 75

Separating Different Computation Patterns. Diagonal blocks have differ-
ent processing strategy than non-diagonal blocks. Therefore, they require differ-
ent resources in terms of registers and shared memory. Since one SM can host
multiple thread blocks, separating different computation strategies can allow
multiple thread blocks/SM for kernels that are not resource-consuming. This is
the main reason why the diagonal block computation has been separated from
non-diagonal block computation.

Data Prefetching. Data prefetching [0] arises almost everywhere in our design.
Each block is divided into smaller pieces, which we refer to as chunks. A software
pipeline is implemented to hide the memory latency by prefetching the next
chunk of data, while a current chunk is being processed. This is a burden on the
GPU memory resources, so organizing the work between threads has to be within
the physical resource limit allowed per thread as well as per SM. Figures
and describe how data prefetching is applied to diagonal and non-diagonal
blocks, respectively. In the non-diagonal case, prefetching spans blocks; while
processing the second chunk of a given block, the first chunk of the next matrix
block is being prefetched.

Using More Registers. A very important feature of our kernel is that it
completely avoids computing partial products in shared memory. Shared memory
is used only in a final reduction step before a partial result of an entire block
is written into global memory. This feature avoids paying a penalty in terms
of potential shared memory bank conflicts. It also reduces the occurrences of
synchronization points. Using registers pays off very well, especially when register
spilling to local memory is avoided. This is guaranteed on Fermi as long as each
thread uses 63 registers or less.

4 Experimental Results

All experiments were executed on a single Fermi C2070 GPU, with 448 cores
and 6 GB of DRAM, connected to a machine with dual socket quad core Intel
Xeon processor, running at 2.67GHz, and with 24 MB of main memory. The
kernel is implemented using CUDA C v4.0 and originally designed for matrices
of dimensions that are multiples of 64. For other irregular dimensions, the matrix
is padded with zeros inside the SM shared memory and registers. No padding is
done in global memory.

Figures and show the performance results (in Gflop/s) for SP and
DP, respectively. The proposed design is far better than the CUBLAS 4.0 kernel.
There are some dips in the SP performance, which we are trying to resolve.
Overall, there is a 7-8% improvement over MAGMA in SP. The performance
gap widens in DP and reaches more than 30%. Although our kernel is mainly
tuned for DP, the smaller improvement seen for SP against MAGMA is explained
below along with the memory performance analysis.

76 A. Abdelfattah et al.

unyg 184

\000000oogg

EEEEE
0'0000000000

1000000000000:0000000000000000
o
[l
5]

WO puooas

o
]
o
1000000000000000'0000000000000000
0o

000000000000000
000000000000

000o000ac

Doooo
Doooo

[

8 BEE
o og
o

o

l

o

8

[

0oooo

5]
8000800 OB000800080 o

(a) Diagonal computation. (b) Non-diagonal computation.

Fig. 2. Computation strategy inside a block. In diagonal blocks are processed as
two chunks. Hashed elements are loaded from DRAM then overwritten in a mirroring
step. Black elements are not loaded at all from memory. Their values are loaded from
shared memory during the mirroring step. In non-diagonal blocks are also divided
into two chunks. Threads are originated at the black elements. As threads move from
left to right in the upper chunk, they prefetch hashed elements from the lower chunk
in their registers.

Since the kernel is memory bound, the reported performance numbers are far
below the theoretical floating point peak performance. However, we can get in-
tuition about the quality of the kernel design by translating Gflop/s into GB/s
to see how close we are from the Fermi peak memory bandwidth. Fermi C2070
GPUs have theoretical peak memory bandwidth of 144 GB/s (with ECC turned
on). However, the actual (sustainable) peak memory bandwidth is about 103
GB/s (when ECC is on). This information is obtained by running a CUDA
implementation of the STREAM benchmark [8]. The memory bandwidth is cal-
culated by dividing the amount of useful data loaded/stored from/into global
memory by the total runtime of the kernel. For the SYMV kernel, and a matrix
of dimension NV, the total amount of useful data is from A, X, and Y, that is,
éN (N +1) 4+ 2N elements, where each element consumes 4 bytes in SP and 8
bytes in DP.

Figures and show the memory bandwidths of the SP and DP kernel
versions. Our kernel scores about 70% (SP) and 80% (DP) of the actual peak
memory bandwidth. This is 7-8% (SP) and 30% (DP) better than MAGMA,
and 250% (SP) and 140% (DP) better than CUBLAS 4.0. It is interesting to
see how the improvements in memory bandwidth matches those of performance.
As previously mentioned, memory bandwidth improvement in SP is less than
in DP. Running the same DP kernel for SP means saving more registers per
thread, and loading less data each time. We thought that doubling the block
size as well as the number of threads would result in memory bandwidth similar
to the DP case. However, we were not able to double the number of threads in
an SM because we are already using the maximum possible number on Fermi.

Optimizing Memory-Bound SYMV Kernel on GPU Hardware Accelerators 7

30
@ 50 2
& a0 g2
2 2 20
G 30 G F S
-
20 10 | &
10 5
o S o I
-500 1500 3500 5500 7500 9500 11500 13500 15500 0 2000 4000 6000 8000 10000 12000 14000
Matrix Dimension Matrix Dimension
we CUBLAS 4.0 ——MAGMA 1.0.0-7c5 ——Proposed we CUBLAS 4.0 ——MAGMA 1.0.0-7c5 ——Proposed
(a) Performance of SYMV in SP (b) Performance of SYMV in DP
s ® -
2 70 AN 3
2 Yoo 3
s e et 2
8 o 5
L E
5 'a 40 g‘
AN £
7 @
T§u 20 s
10 w©
g .g
C ‘ 2
0 2000 4000 6000 8000 10000 12000 14000 @ 0 2000 4000 6000 8000 10000 12000 14000
Matrix Dimension Matrix Dimension
s CUBLAS 4.0 =% =MAGMA 1.0.0-1c5 ——Proposed s CUBLAS4.0 =X=*MAGMA 1.0.0-r¢5 ~====Proposed
(c) Memory BW of SYMV in SP (d) Memory BW of SYMV in DP

Fig. 3. Performance of the SYMV kernel in SP and DP on Fermi C2070

5 Performance Analysis

In this section, we analyze the performance of the new kernel, by studying the
performance counters obtained from the nVidia and PAPI-CUDA [3] profilers.
All three kernels were tested for matrix dimensions up to 10000. We selected the
most relevant performance counters to the proposed kernel study. All results in
this section are for the DP kernel. The first performance counter is the num-
ber of 64-bit load instructions made to the global memory. In general, going to
global memory is a penalty, so the less we refer to global memory the better.
Our experiments shows that the proposed design achieves 17% less load instruc-
tions than CUBLAS, and 13% less load instructions than MAGMA. Although
the improvement is not significant, it could potentially have strong impact on
performance, due to the huge penalty of going to global memory.

In addition, shared memory has higher latency than registers. Since we mini-
mize the usage on shared memory, Figures and show that we refer less
to shared memory and thus, pay much less penalty in terms of bank conflicts.
The burden is rather put on registers, which are faster to read and compute,
and do not have restrictions of the load pattern. It is noteworthy to mention
that CUBLAS does not encounter any bank conflicts, though being the slowest
kernel.

Two final performance counters are SM activity and registers-per-thread us-
age. Surprisingly, CUBLAS 4.0 took the lead for occupancy at 98.36%, followed
by our design at 94.54%, and MAGMA at 80.90%. This result again shows it
is indeed critical to consider all performance counters, when judging the kernel

78 A. Abdelfattah et al.

340000 M

500000 H
290000 Fomeoner.
400000 240000 » H
- = i
“g’ 300000 £ 150000 i
S Qo]
o 5 ;
O 200000 -— © 440000 o
s 3 . 90000 p—
Py P
______ —— e 40000 —
o R
9 T -10000 = =
2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Matrix Dimension Matrix Dimension
we CUBLAS4.0 s MAGMA 1.0.0-r¢5 ——Proposed s CUBLAS4.0 s MAGMA 1.0.0-1¢5 =——Proposed

(a) Shared memory loads

(b) L1 shared bank conflicts

Fig. 4. Performance counters for shared memory on Fermi C2070

quality. A single performance metric cannot reflect a comprehensive performance
view. Regarding the registers-per-thread usage, CUBLAS 4.0 uses the least num-
ber of registers/thread i.e., 29, while MAGMA uses 51 and our kernel uses 63.

6 Case Study: The Symmetric Eigenvalue Solver

The proposed DSYMV (in DP) was integrated into MAGMA, and a test was
made for the tridiagonalization routine (DSYTRD) and the overall symmetric
eigensolver (DSYEVD). We repeated the tests for MAGMA, and for CUBLAS.
Results are shown in Figures and The new DSYTRD improves asymp-
totically by 88% with CUBLAS SYMV and by 20% with MAGMA SYMV. Look-
ing at the overall symmetric eigensolver, the new DSYEVD is about 66% better
with CUBLAS SYMV and about 17% better with MAGMA SYMV.

Time (sec)
c

50

0 5000 10000 15000 0 5000 10000 15000

Matrix Dimension

~4-CUBLAS 4.0 =i MAGMA 1.0.0-re5 =¥ Proposed

(a) DSYTRD Performance

Matrix Dimension

--4-CUBLAS 4.0 —a— MAGMA 1.0.0-rc5 =~ Proposed

(b) DSYEVD Runtime

Fig. 5. Impact of tuned SYMV kernels on DSYTRD and DSYEVD

7 Summary and Future Work

This paper introduces an optimized kernel for computing the symmetric matrix-
vector product on Fermi GPUs. The kernel achieves 3.5x (SP) and 2.5x (DP) fold

Optimizing Memory-Bound SYMV Kernel on GPU Hardware Accelerators 79

speedups over CUBLAS 4.0, and 7-8% (SP) and 30% (DP) improvement over
MAGMA, similarly to the memory bandwidth. One possible extension to the
work presented in this paper is to consider the load imbalance in the block-level
strategy. The vertical movement encounters different loads for thread blocks.
We intend to apply a 1D block cyclic distribution of non-diagonal blocks. Non-
diagonal blocks are to be mapped in a periodic manner over the available number
of SMs (14 on Fermi C2070), as done in [7]. Although this scheme might not be
friendly with respect to the column-major data layout, we expect that the load
balance can compensate for this penalty, especially if a tile data layout within
each block is considered.

Acknowledgements. We would like to thank Timothy Lanfear (nVidia), for
providing the STREAM benchmark for CUDA, and Rajib Nath (UCSD) for his
help in understanding MAGMA design outlines of the SYMV kernel.

References

1. Matrix Algebra on GPU and Multicore Architectures. Innovative Computing Lab-
oratory, University of Tennessee, http://icl.cs.utk.edu/magna/

2. Nvidia visual profiler, http://developer.nvidia.com/nvidia-visual-profiler

3. Performance Application Programming Interface (PAPI). Innovative Computing
Laboratory, University of Tennessee, http://icl.cs.utk.edu/papi/

4. Datta, K., Williams, S., Volkov, V., Carter, J., Oliker, L., Shalf, J., Yelick, K.:
Auto-tuning the 27-Point Stencil for Multicore. In: Proc. iWAPT 2009: The Fourth
International Workshop on Automatic Performance Tuning (2009)

5. Glaskowsky, P.N.: nVidia’s Fermi: The first complete gpu computing architecture.
Technical report (2009)

6. Kirk, D., Mei Hwu, W.: Programming Massively Parallel Processors, A Hands-on
Approach. Morgan Kaufmann (2010)

7. Kurzak, J., Buttari, A., Dongarra, J.J.: Solving systems of linear equations on the
CELL processor using Cholesky factorization. IEEE Transactions on Parallel and
Distributed Systems 19(9), 1-11 (2008)

8. McCalpin, J.: Stream: Sustainable memory bandwidth in high performance com-
puters, http://www.cs.virginia.edu/stream/

9. Nath, R., Tomov, S., Dong, T., Dongarra, J.: Optimizing symmetric dense matrix-
vector multiplication on gpus. In: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2011,
pp. 6:1-6:10. ACM, New York (2011)

10. Nath, R., Tomov, S., Dongarra, J.: Accelerating GPU Kernels for Dense Linear Al-
gebra. In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR
2010. LNCS, vol. 6449, pp. 83-92. Springer, Heidelberg (2011)

11. Volkov, V., Demmel, J.W.: Benchmarking GPUs to Tune Dense Linear Algebra.
In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC 2008,
pp. 31:1-31:11. IEEE Press, Piscataway (2008)

http://icl.cs.utk.edu/magma/
http://developer.nvidia.com/nvidia-visual-profiler
http://icl.cs.utk.edu/papi/
http://www.cs.virginia.edu/stream/

	Optimizing Memory-Bound SYMV Kernel
on GPU Hardware Accelerators
	1 Introduction
	2 Related Work
	3 Kernel Description
	4 Experimental Results
	5 Performance Analysis
	6 Case Study: The Symmetric Eigenvalue Solver
	7 Summary and Future Work
	References

