
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Not So Simple Matter of Software; The Evolution of
Mathematical Software: Software and Algorithms Follow the
Hardware
JACK DONGARRA, University of Tennessee, USA, Oak Ridge National Laboratory, USA, and University
of Manchester, UK

Each generation of computer architecture has brought new challenges to achieving high performance math-
ematical solvers, necessitating development and analysis of new algorithms, which are then embodied in
software libraries. These libraries hide architectural details from applications, allowing them to achieve a level
of portability across platforms from desktops to world-class high performance computing (HPC) systems. On
the eve of exascale computing, traditional wisdom may no longer apply. A range of algorithmic techniques
are emerging in the context of exascale computing, many of which defy the common wisdom of HPC and are
considered unorthodox but could turn out to be a necessity in the near future.

CCS Concepts: • Hardware accelerators; • communication avoiding algorithms; • dataflow scheduling
runtimes;

Additional Key Words and Phrases: high performance computing, cloud computing, data centers, semiconduc-
tors

ACM Reference Format:
Jack Dongarra. 2022. A Not So Simple Matter of Software; The Evolution of Mathematical Software: Software
and Algorithms Follow the Hardware. 1, 1 (June 2022), 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Over four decades have passed since the concept of computational modeling and simulation as a
new branch of scientific methodology–to be used alongside theory and experimentation–was first
introduced. In that time, computational modeling and simulation has embodied the enthusiasm and
sense of importance that people in our community feel for the work they are doing. Yet, when we
try to assess how much progress we have made and where things stand along the developmental
path for this new “third pillar of science,” recalling some history about the development of the
other pillars can help keep things in perspective. For example, we can trace the systematic use of
experiment back to Galileo in the early seventeenth century. Yet for all the incredible successes
it enjoyed over its first three centuries, the experimental method arguably did not fully mature
until the elements of good experimental design and practice were finally analyzed and described in
detail in the first half of the twentieth century. In that light, it seems clear that while Computational
Science has had many remarkable successes, it is still at a very early stage in its growth.

Many of those whowant to hasten that growth believe the most progressive steps in that direction
require much more community focus on the vital core of Computational Science: software and the
mathematical models and algorithms it encodes. Of course the general and widespread obsession

Author’s address: Jack Dongarra, University of Tennessee, Knoxville, Tennessee, USA, 37996 and Oak Ridge National
Laboratory, Oak Ridge, Tennessee, USA, 37830 and University of Manchester, Manchester, UK, dongarra@icl.utk.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
XXXX-XXXX/2022/6-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: June 2022.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Jack Dongarra

with hardware is understandable, especially given exponential increases in processor performance,
the constant evolution of processor architectures and supercomputer designs, and the natural
fascination that people have for big, fast machines. I am not exactly immune to it. When it comes
to championing computational modeling and simulation as a new part of the scientific method, the
complex software “ecosystem” that coincides must be forefront.

At the application level the science has to be captured in mathematical models, which in turn are
expressed algorithmically and ultimately encoded as software. Accordingly, on typical projects the
majority of the funding goes to support this translation process that starts with scientific ideas and
ends with executable software, and which over its course requires intimate collaboration among
domain scientists, computer scientists and applied mathematicians. This process also relies on a
large infrastructure of mathematical libraries, protocols and system software that has taken years
to build up and that must be maintained, ported, and enhanced for many years to come if the value
of the application codes that depend on it are to be preserved and extended. The software that
encapsulates all this time, energy and thought, routinely outlasts (usually by years, sometimes by
decades) the hardware it was originally designed to run on.
Thus the life of Computational Science revolves around a multifaceted software ecosystem.

Domain scientists now want to create much larger, multi-dimensional applications in which a
variety of previously independent models are coupled together, or even fully integrated. They hope
to be able to run these applications on exascale systems with tens of thousands of processors, to
extract all performance that these platforms can deliver and to do all this without sacrificing good
numerical behavior or programmability.

High-performance computers continue to increase in speed and capacity, with exascale machines
here in 2022 [1]. Alongside these developments, architectures are becoming progressively more
complex, with multi-socket, multi-core central processing units (CPUs), multiple graphics process-
ing unit (GPU) accelerators, and multiple network interfaces per node. This new complexity leaves
existing software unable to make efficient use of the increased processing power.
For decades, processor performance has been improving in each generation consistent with

Moore’s Law doubling transistor counts every two years and Dennard Scaling [2] enabling increases
in clock frequency. Combined, these doubled peak performance every 18 months. Since Dennard
Scaling ceased around 2006 due to physical limits, the push has been toward multi-core architectures.
Instead of getting improved performance for "free" through hardware improvements, software had
to be adapted to parallel, multi-threaded architectures.
In addition to multi-threaded CPU architectures, hybrid computing has also become a popular

approach to increasing parallelism, with the introduction of CUDA in 2007 and OpenCL in 2009.
Hybrid computing couples heavyweight CPU cores (using out-of-order execution, branch prediction,
hardware prefetching, etc.) with comparatively lighter weight (using in-order execution) but heavily
vectorized GPU accelerator cores. There is also heterogeneity in memory: large, relatively slow CPU
DDR memory coupled with smaller but faster GPU memory such as 3-D stacked high-bandwidth
memory (HBM). To take advantage of these capabilities, modern software has to explicitly program
for multi-core CPUs and GPU accelerators while also managing data movement between CPU and
GPU memories and across the network to multiple nodes.

The compute speed, memory and network bandwidth, and memory and network latency increase
at different exponential rates, leading to an increasing gap between data movement speeds and
computation speeds. For decades, the machine balance of compute speed to memory bandwidth
has increased 15–30% per year (See figure 1). Hiding communication costs is thus becoming
increasingly more difficult. Instead of just relying on hardware caches, new algorithms must be
designed to minimize and hide communication, sometimes at the expense of duplicating memory
and computation.

, Vol. 1, No. 1, Article . Publication date: June 2022.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

A Not So Simple Matter of Software; The Evolution of Mathematical Software: Software and Algorithms Follow the
Hardware 3

Fig. 1. Processor and machine balance increasing, making communication relatively more expensive. Plot for
64-bit floating point data movement & operations; bandwidth from CPU or GPU memory to registers. Data
from vendor specs and STREAM benchmark [3].

Very high levels of parallelism also mean that synchronization becomes increasingly expensive.
With processors at around 1–3 GHz, exascale machines, with 1018 64-bit floating point operations per
second, must have billion-way parallelism. This is currently anticipated to be achieved by roughly
2 GHz × 10,000 nodes × 100,000 thread-level and vector-level parallelism. Thus the computational
and communication parallelism must become asynchronous and dynamically scheduled.

Mathematical libraries are, historically, among the first software adapted to the hardware changes
occurring over time, both because these low-level workhorses are critical to the accuracy and
performance of many different types of applications, and because they have proved to be outstanding
vehicles for finding and implementing solutions to the problems that novel architectures pose. We
have seen architectures change from scalar to vector to symmetric multiprocessing to distributed
parallel to heterogeneous hybrid designs over the last 40 years. Each of these changes has forced
the underlying implementations of the mathematical libraries to change. Vector computers used
Level 1 and Level 2 basic linear algebra subprograms (BLAS) [4]; with the change to cache-based
memory hierarchies, algorithms were reformulated with block operations using Level 3 BLAS
matrix multiply. Task-based scheduling has addressed multicore CPUs, while more recently—as
the compute-speed-to-bandwidth ratio increases—algorithms have again been reformulated as
communication avoiding. In all of these cases, ideas that were first expressed in research papers were

, Vol. 1, No. 1, Article . Publication date: June 2022.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Jack Dongarra

subsequently implemented in open-source software, to be integrated into scientific and engineering
applications, both open-source and commercial.

Developing numerical libraries that enable a broad spectrum of applications to exploit the power
of next-generation hardware platforms is a mission-critical challenge for scientific computing
generally, and for HPC specifically. This challenge raises a variety of difficult issues. For instance,
programming models and hardware architectures are still in a state of flux, and this uncertainty
is bound to inhibit the development of libraries as new configurations and abstractions are tried.
It is additionally prudent to expand on existing libraries instead of developing entirely new ones,
when possible, as this will disperse some of the software maintenance costs, provide backward
compatibility, and make transition for applications easier. Introducing radically different algorithms
and methods at low levels, without radically altering usage characteristics of familiar packages
at high levels, remains a software engineering conundrum. Moreover, many HPC applications
will need to run on platforms ranging from leadership-class machines to smaller-scale clusters,
workstations, and even laptops. These architectural changes have come every decade or so, thereby
creating a need to rewrite or refactor the software for the emerging architectures. Scientific libraries
have long provided a large and growing resource for high-quality, reusable software components
upon which applications can be rapidly constructed—with improved robustness, portability, and
sustainability.

2 BACKGROUND
Today’s scientists often tackle problems that are too abstruse to parse theoretically, or too hazardous
to tackle experimentally. How can a researcher peer inside a star to see exactly how it explodes?
Or how can one predict impacts of climate change with so many variables?

Simulations using high-performance computers have thus become a critical resource for research
in all scientific domains. But scientists first need to express their problem in amathematical language
that the computer can understand.

2.1 Standards
Standards are critical for software development. Research has always benefited from the open
exchange of ideas and the opportunity to build on the achievements of others. Standards such as
MPI, the BLAS, IEEE floating point standards, and numerical libraries are built on the experience of
a wider community and based on best practices.

2.1.1 BLAS. Since the early days of HPC, the Level 1, Level 2, and Level 3 BLAS standards [5–9]
abstracted away the low-level hardware details from scientific library developers by encoding
high-level mathematical concepts like vector, matrix-vector, and matrix-matrix products.

Critical to effective high-performance computing, avoiding unnecessary memory movement has
provided considerable motivation for devising algorithms that minimize data movement. Along
these lines, much activity in the past 30 years has involved the redesign of basic routines in linear
algebra, using block algorithms based onmatrix-matrix techniques [10]. These have proved effective
on a variety of modern computer architectures with vector processing or parallel-processing
capabilities, on which high performance can potentially be degraded by excessive transfer of data
between different levels of memory (e.g., registers, cache, main memory, and solid-state disks).

By organizing the computation into blocks, we provide for full reuse of data while each block is
held in cache or local memory, avoiding excessive movement of data and giving a surface-to-volume
effect for the ratio of data movement to arithmetic operations, i.e., 𝑂 (𝑛2) data movement to 𝑂 (𝑛3)
arithmetic operations. In addition, parallelism can be exploited in two ways:

(1) operations on distinct blocks may be performed in parallel; and

, Vol. 1, No. 1, Article . Publication date: June 2022.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

A Not So Simple Matter of Software; The Evolution of Mathematical Software: Software and Algorithms Follow the
Hardware 5

(2) within the operations on each block, scalar or vector operations may be performed in
parallel.

2.2 More Ops ≠ More Time
Complexity theory clearly dictates that fewer operations, especially at a lower asymptotic bound,
are preferable for optimal execution time. In high performance and scientific computing, a similar
guideline was applied when every cycle and every instruction was at a premium. But this was
the case in the single-core world, and it has already changed in the multicore era. Worse yet, it’s
further exacerbated in the case of hardware accelerators with total compute power exceeding 1,000
GFLOPs in double precision and bandwidth topping at 200 Gbytes/s. An order of magnitude more
operations have to be performed for every byte that arrives from the main memory. Computation
is fast only when it happens in processor registers—even the fastest cache needs a handful of clock
cycles to deliver data items.

Compared to the main memory that holds the majority of data structures, operations on registers
are virtually free, with data movement and synchronization being the essential factors contributing
to algorithm speed. Projections for future machines only exacerbate the current data movement
crisis. Even with the newly introduced stacked memory that promises a mind-boggling 1 Tbytes/s
of bandwidth, computing devices will eventually achieve performance levels in excess of 10 TFLOPs,
and the bandwidth/compute imbalance will become evenmore pronounced. In such an environment,
we must abandon the notion that knowing the number of operations for an algorithm is a good
indicator of its ultimate performance. Rather, we have to look critically at the kind of operations
that are required. And above all, we have to focus on data movement, synchronization points, and
understanding of the nature of the interaction between threads and processes in the system to make
sure that they can proceed on their own for as long as possible without costly communication. In
addition, we have to examine the amount of data that the algorithm accesses and choose one that
can minimize accesses— we call this approach communication avoiding.

2.3 Software PACKs
Delivering specialized scientific software in the form of packages, such as EISPACK [11], LIN-
PACK [12], LAPACK [10], ScaLAPACK [13], and others, continues to be essential for delivering
robust solvers that enable portable performance across ever more specialized hardware systems.
The portability of software library code has always been an important consideration, made

much more difficult by diverse modern hardware designs and the corresponding flourishing of a
diverse programming language landscape. Understandably, scientific teams do not wish to invest
significant effort to port large-scale application codes to each new machine, when the teams are
focused on science results rather than software engineering. Our answer to this glaring problem
has always been the development of performance-portable software libraries that hide the majority
of machine-specific details yet allow automated adaptation to the user’s platform of choice.
LAPACK [10] is an example of a mathematical software package wherein the highest-level

components are portable, while machine dependencies are hidden in lower-level modules. Such a
hierarchical approach is probably the closest one can come to software performance-portability
across diverse parallel architectures. The BLAS that LAPACK heavily relies on provide a portable,
efficient, and flexible standard for application programmers.

2.4 Portable Performance Layers
The layered approach to performance portability is indispensable for building ever more intricate
libraries on top of a less complex portability layer with desirable performance characteristics. The
first mathematical subroutine library for a computer was written by Maurice V. Wilkes, David J.

, Vol. 1, No. 1, Article . Publication date: June 2022.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Jack Dongarra

Wheeler, and Stanley Gill for the EDSAC at the University of Cambridge in England in 1951 [14].
The programs were written in machine language, and certainly no thought was given to portability;
to have a library at all was remarkable. That was followed by the foundational book edited by
Wilkinson and Reinsch which described the algorithms in Algol [15]. Intuitively, our notion of
portable numerical software is quite clear: portable applications successfully run on a variety of
computer architectures and configurations.
Examples of different computer architectures include: single processor with uniform random-

access memory, pipeline or vector computers, parallel computers, and heterogeneous or hybrid
computers, to name a few. Different versions of a library routine may be written for different
architectures, where each version has the same calling sequence interface. Or, the library routine
may have the ability to determine which architecture to run on and to choose which path to
take to execute on the underlying architecture successfully and efficiently. Applications use these
numerical libraries, and it is these libraries we expect to be portable across different architectures.

2.5 Specific Techniques and Approaches
The following sections are covered in more detail in our paper on the transitional process for
mathematical software.[16]

2.5.1 Dataflow Scheduling. In the late 1970s, dataflow scheduling was realized for mapping pro-
grams represented as a direct acyclic graph (DAG) of tasks to a specialized hardware configuration
of systolic arrays [17]. In the ensuing decades, a large number of task-based runtime systems have
been proposed and remain active [18–24] with an overarching purpose to address programmabil-
ity and management of parallelism in the context of HPC. The next step is to turn the dataflow
scheduling approach into a standard akin to MPI.

2.5.2 Communication Avoiding Algorithms. The new normal in HPCmay be summarized as follows:
compute time depends on memory accesses and not on total operation count. In other words, the
number of arithmetic instructions executed no longer directly reflects the time spent in running
the program; the type of operation is the essential aspect to consider. Opting for higher complexity
algorithms may be preferable if the operations better fit the hardware and transfer less data across
the modern memory hierarchy and on-node interconnects [25, 26]. To better represent the execution
time of software, the performance model must be a function of both computation and communica-
tion costs. To address the computation-communication imbalance, several communication-avoiding
(CA) algorithms have been developed by redesigning existing methods to obtain the minimum
theoretical communication cost for a particular solver [27, 28], including CALU and CAQR factor-
ization algorithms [29]. After basic research established their advantages, communication avoiding
algorithms are now being integrated into various libraries such as LAPACK, ScaLAPACK, MAGMA,
SLATE, and vendor libraries.

2.5.3 Mixed Precision. The emergence of deep learning as a leading computational workload
on large-scale cloud infrastructure installations has led to a plethora of heavily specialized hard-
ware accelerators that can tackle these types of problems. These new platforms offer new 16-bit
floating-point formats with reduced mantissa precision and exponent range at significantly higher
throughput rates, which makes them attractive in terms of improved performance and energy con-
sumption. Mixed-precision algorithms are being developed to leverage these significant advances
in computational power, while still maintaining accuracy and stability on par with the classic single
or double precision formats through careful consideration of the numerical effects of half precision.
Even though research on mixed-precision algorithms has been presented in papers and conferences
over the last few decades, these techniques mostly remained in a prototype state and rarely made it

, Vol. 1, No. 1, Article . Publication date: June 2022.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

A Not So Simple Matter of Software; The Evolution of Mathematical Software: Software and Algorithms Follow the
Hardware 7

into production code. Recently, the US Department of Energy (DOE) Exascale Computing Project
(ECP) has allocated resources to bring these techniques into production.[30]

2.5.4 Approximate, Randomized, and Probabilistic Approaches. In the past, the main goals for
robust high-performance numerical libraries were accuracy first and efficiency second. The current
outlook, informed by application needs, has been transforming rapidly: accuracy itself is often
a tunable parameter. It is now one of the major contributors to excessive computation, and is
therefore directly at odds with speed. In a wide range of applications, from high performance data
analytics (HPDA) to machine/deep learning, and from edge sensors producing extreme amounts
of data (including redundant or faulty data) to large data stores, the modern requirement for
various optimizations is to establish a “best” solution in a limited time period. This realignment
of priority motivates the development of algorithms that call for approximations, randomization,
probabilistic accuracy, and convergence bounds. The preferred algorithms compute quickly while
still being sufficiently accurate through non-traditional, innovative approaches. Here we see a
distinct feedback from application needs back to the development of new algorithms.

2.5.5 Machine Learning/Autotuning. Although Moore’s law is still in effect, the multicore and
accelerator revolution has initiated a processor design trend of moving away from architectural
features that do not directly contribute to processing throughput. This means a preference toward
shallow pipelines with in-order execution and cutting down on branch prediction and speculative
execution. On top of that, virtually all modern architectures require some form of vectorization
to achieve top performance, whether it be short-vector, single instruction, multiple data (SIMD)
extensions of CPU cores or single instruction, multiple threads (SIMT) pipelines of GPU accelerators.
With the landscape of future HPC populated with complex, hybrid vector architectures, automated
software tuning could provide a path toward portable performance without heroic programming
efforts.[31]

3 IMPACT AND LESSONS LEARNED
3.1 Measuring Impact
Even if expertly developed and superbly polished, software is worthless unless it has an impact
in the hands of the end user. It is not enough to make users aware of a software’s existence, they
must be convinced that the software they are currently using is inferior enough to endanger their
work, and that the new software will remove that danger. Though, that is a difficult task in itself,
as users must overcome their reluctance to modify their existing software stack.
The ultimate measure of impact stems from indications of usage. Ideally, it is best if impact

measurements are easy to factor and objective. Some possible metrics include: growth of the
contributor base, number of users, number of software releases, number of downloads and citations,
level of user satisfaction, level of vendor adoption, number of research groups using the resources,
percentage of reasonably resolved tickets, time-to-resolve tickets, number of publications citing or
using the resource, and subjective user experience reports.

Calculating metrics for LAPACK, for example, we see there have been around 6.4 million down-
loads of LAPACK and 1.5 million downloads from ScaLAPACK per year, averaged over the last 29
years for LAPACK and over the last 25 years for ScaLAPACK [32]. This is for the packages as well
as various components from the packages. These packages are also included in software products
like Matlab, Julia, R, Mathematica, and Intel’s MKL, which we cannot easily count. Indeed, many
scientists are not even aware that they are using LAPACK, let alone the BLAS.

As much of the scientific software stack is open source, one can also look into different package
managers (e.g., Spack [33]) tomeasure dependencies and usage, or use sites that do this automatically

, Vol. 1, No. 1, Article . Publication date: June 2022.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Jack Dongarra

(e.g., libraries.io monitors close to 5 million open-source packages across 37 different package
managers). However, usage typically needs to be compared to other developments, quality and
quantity is also important, and measurements become more difficult and subjective. Although there
are a number of measures of impact that can be used for software, they are not well established nor
supported, which stands in contrast to the number of citations or h-index calculated for publications.

3.2 Licensing for Users and Manufacturers
An important lesson learned for scientific software is the significance of its licensing. Much of the
scientific software is open source, frequently using a Berkeley Software Distribution (BSD)-derived
license, which originated in the BSD Unix OS [34].
The BSD license is a permissive, free software, license imposing minimal restrictions on the

use and redistribution of covered software. A BSD style license is a good choice for long duration
research or other projects that require a development environment that has near zero cost for
end users, will evolve over a long period of time, and permits anyone to retain the option of
commercializing final results with minimal legal issues.
The success of the scientific software stack can, in part, be attributed to the choice of software

licensing. Not only is the software, in general, of high quality, well tested, portable, and actively
maintained, it is also capable of being incorporated into other software applications with minimal
restrictions on the use and redistribution of the application software; in other words, the license is
not a hindrance and allows users to employ the software how they see fit.

3.3 Funding for Research and Development
With the development of mathematical software the process begins with a sound foundation in
mathematics that expresses the correctness and stability of the computation. A numerical algorithm
is then developed that expresses the mathematics as an algorithm that encompasses the various
cases the mathematics takes into account. A more complete picture would be:

• the development and analysis of algorithms for standard mathematical problems which
occur in a wide variety of applications;

• the practical implementation of mathematical algorithms on computing devices, including
study of interactions with particular hardware and software systems;

• the environment for the construction of mathematical software, such as computer arithmetic
systems, languages, and related software development tools;

• software design for mathematical computation systems, including user interfaces;
• testing and evaluation of mathematical software, including methodologies, tools, testbeds,
and studies of particular systems;

• issues related to the dissemination and maintenance of software.
Each of these items requires an investment of time and funding to successfully accomplish its task.
The National Science Foundation and the Department of Energy have contributed to the promotion
of various aspects of this overall research and development process.

3.4 Personnel for Long Running Projects
Training and retention of a cadre of young people to engage in long term projects are critical. A
strong research program cannot be established without a complementary education component,
which is as important as adequate infrastructure support. A continuing supply of high-quality
computational scientists available for work in our field is critical. This starts with graduate students,
who contribute to the software development, and continues with post-docs who care about the
development and help with the research directions, as well as research professors and colleagues,

, Vol. 1, No. 1, Article . Publication date: June 2022.

https://libraries.io/

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

A Not So Simple Matter of Software; The Evolution of Mathematical Software: Software and Algorithms Follow the
Hardware 9

who contribute to the overall effort. Without a continuous effort full of qualified people at these
levels, such long-term projects cannot be carried out at our universities. Students and post-docs
are with the project for only a short time. It is critical that the design is well documented and the
documentation is faithful to the software that is developed. For the student, it can lead to a thesis or
dissertation. For post-docs, it can solidify their interest in the field and lead to new research areas.
Traditionally, individual researchers working alone or in pairs have characterized the style

of much of the work in the sciences. This situation is different in computational science where
increasingly a multidisciplinary team approach is required. There are several compelling reasons
for this. First and foremost, problems in modern scientific computing transcend the boundaries of a
single discipline. In general, the computational approach has made science more interdisciplinary
than ever before. There is a unity among the various steps of the overall modeling process from the
formulation of a scientific or engineering problem to the construction of appropriate mathematical
models, the design of suitable numerical methods, their computational implementation, and, last
but not least, the validation and interpretation of the computed results. For most of today’s complex
scientific or technological computing problems a team approach is required involving scientists,
engineers, applied and numerical mathematicians, statisticians, and computer scientists.

Clearly, the investment costs, as well as the longer duration of typical computational projects—
especially when extensive software development is involved—necessitate a certain continuity and
stability of the entire research infrastructure.

4 CONCLUSIONS
Advancing to the next stage of growth for computational simulation and modeling will require
us to solve basic research problems in computer science and applied mathematics, at the same
time as we create and promote a new paradigm for the development of scientific software. To
make progress on both fronts simultaneously will require a level of sustained, interdisciplinary
collaboration among the core research communities.
Existing numerical libraries will need to be rewritten and extended in light of emerging archi-

tectural changes. The technology drivers will necessitate the redesign of existing libraries and
will force re-engineering and implementation of new algorithms. Because of the enhanced levels
of concurrency on future systems, algorithms will need to embrace asynchrony to generate the
number of required independent operations.
As we enter an era of great change, strategic clarity and vision will be essential. Technology

disruptions will also require innovative new ideas in mathematics and computer science. We need
sustained investments in creative individuals and high-risk concepts.
The community has long struggled to settle on a good model for sustained support for key

elements of the software ecosystem. This issue will become more acute as we move to exascale and
beyond. The community needs to recognize that software is really a scientific facility that requires
long-term investments in maintenance and support.

ACKNOWLEDGMENTS
The author is grateful to Terry Moore, Mark Gates, Piotr Luszczek, Stanimire Tomov, Sven Ham-
marling, Natalie Beams, and Rob Anderson for their help with this article.

, Vol. 1, No. 1, Article . Publication date: June 2022.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Jack Dongarra

REFERENCES
[1] E. Strohmaier, H. W. Meuer, J. Dongarra, H. D. Simon, The TOP500 list and progress in high-performance computing,

Computer 48 (11) (2015) 42–49. doi:10.1109/MC.2015.338.
[2] M. Bohr, A 30 year retrospective on Dennard’s MOSFET scaling paper, IEEE Solid-State Circuits Society Newsletter

12 (1) (2007) 11–13. doi:10.1109/N-SSC.2007.4785534.
[3] J. D. McCalpin, et al., Memory bandwidth and machine balance in current high performance computers, IEEE computer

society technical committee on computer architecture (TCCA) newsletter 2 (19–25) (1995).
URL https://www.cs.virginia.edu/stream/

[4] J. J. Dongarra, R. A. van de Geijn, Two-dimensional basic linear algebra communication subprograms, Tech. Rep.
LAPACK Working Note 37, Computer Science Department, University of Tennessee, Knoxville, TN (October 1991).

[5] C. L. Lawson, R. J. Hanson, D. Kincaid, F. T. Krogh, Basic linear algebra subprograms for FORTRAN usage, ACM Trans.
Math. Soft. 5 (1979) 308–323.

[6] J. J. Dongarra, J. D. Croz, S. Hammarling, R. Hanson, An extended set of FORTRAN Basic Linear Algebra Subprograms,
ACM Transactions on Mathematical Software 14 (1988) 1–17.

[7] J. J. Dongarra, J. D. Croz, S. Hammarling, R. Hanson, Algorithm 656: An extended set of FORTRAN Basic Linear
Algebra Subprograms, ACM Transactions on Mathematical Software 14 (1988) 18–32.

[8] J. J. Dongarra, J. D. Croz, I. S. Duff, S. Hammarling, Algorithm 679: A set of Level 3 Basic Linear Algebra Subprograms,
ACM Transactions on Mathematical Software 16 (1990) 1–17.

[9] J. J. Dongarra, J. D. Croz, I. S. Duff, S. Hammarling, A set of Level 3 Basic Linear Algebra Subprograms, ACM
Transactions on Mathematical Software 16 (1990) 18–28.

[10] E. Anderson, Z. Bai, C. Bischof, S. L. Blackford, J. W. Demmel, J. J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, D. C. Sorensen, LAPACK User’s Guide, Third Edition, Society for Industrial and Applied Mathematics,
Philadelphia, 1999.

[11] B. S. Garbow, J. M. Boyle, C. B. Moler, J. Dongarra, Matrix eigensystem routines – EISPACK guide extension, Vol. 51 of
Lecture Notes in Computer Science, Springer, Berlin, 1977. doi:10.1007/3-540-08254-9.

[12] J. Dongarra, J. R. Bunch, C. B. Moler, G. W. Stewart, LINPACK users’ guide, SIAM, Philadelphia, 1979. doi:10.1137/1.
9781611971811.

[13] Y. Choi, J. J. Dongarra, R. Pozo, D. W. Walker, ScaLAPACK: a scalable linear algebra library for distributed memory
concurrent computers, in: Proceedings of the fourth symposium on the frontiers of massively parallel computation
(Frontiers ’92), McLean, Virginia, Oct 19–21, 1992, 1992, pp. 120–127.

[14] M. V. Wilkes, D. J. Wheeler, S. Gill, The Preparation of Programs for an Electronic Digital Computer (Charles Babbage
Institute Reprint), The MIT Press, 1984.

[15] J. H. Wilkinson, C. Reinsch (Eds.), Linear Algebra, Vol. II of Handbook for Automatic Computation, Editors: F. L. Bauer,
A. S. Householder, F. W. J. Olver, H. Rutishauser, K. Samelson and E. Stiefel, 1971.

[16] J. Dongarra, M. Gates, P. Luszczek, S. Tomov, Translational process: Mathematical software perspective, Journal of
Computational Science 52 (2021) 101216, case Studies in Translational Computer Science. doi:https://doi.org/10.
1016/j.jocs.2020.101216.
URL https://www.sciencedirect.com/science/article/pii/S1877750320305160

[17] H. T. Kung, C. E. Leiserson, Systolic arrays (for VLSI), in: Sparse Matrix Proceedings, Society for Industrial and Applied
Mathematics, 1978, pp. 256–282, ISBN: 0898711606.

[18] M. Bauer, S. Treichler, E. Slaughter, A. Aiken, Legion: Expressing locality and independence with logical regions,
in: International Conference for High Performance Computing, Networking, Storage and Analysis, SC, 2012. doi:
10.1109/SC.2012.71.

[19] E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost, M. Sergent, S. Thibault, Harnessing Supercomputers with
a Sequential Task-based Runtime System 13 (9) (2014) 1–14.

[20] T. Heller, H. Kaiser, K. Iglberger, Application of the ParalleX execution model to stencil-based problems, Computer
Science - Research and Development 28 (2-3) (2013) 253–261. doi:10.1007/s00450-012-0217-1.

[21] J. Dokulil, M. Sandrieser, S. Benkner, Implementing the Open Community Runtime for Shared-Memory and Distributed-
Memory Systems, Proceedings - 24th Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing, PDP 2016 (2016) 364–368doi:10.1109/PDP.2016.81.

[22] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguadé, J. Labarta, Productive programming of GPU
clusters with OmpSs, Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium,
IPDPS 2012 (2012) 557–568doi:10.1109/IPDPS.2012.58.

[23] OpenMP 5.0 Complete Specifications, https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-
5.0.pdf (Nov 2018).

[24] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, J. Dongarra, PaRSEC: A programming paradigm exploiting
heterogeneity for enhancing scalability, Computing in Science and Engineering 99 (2013) 1. doi:10.1109/MCSE.2013.

, Vol. 1, No. 1, Article . Publication date: June 2022.

https://doi.org/10.1109/MC.2015.338
https://doi.org/10.1109/N-SSC.2007.4785534
https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/
https://doi.org/10.1007/3-540-08254-9
https://doi.org/10.1137/1.9781611971811
https://doi.org/10.1137/1.9781611971811
https://www.sciencedirect.com/science/article/pii/S1877750320305160
https://doi.org/https://doi.org/10.1016/j.jocs.2020.101216
https://doi.org/https://doi.org/10.1016/j.jocs.2020.101216
https://www.sciencedirect.com/science/article/pii/S1877750320305160
http://books.google.com/books?id=lYRNdo2m7ssC&pg=PA256
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1007/s00450-012-0217-1
https://doi.org/10.1109/PDP.2016.81
https://doi.org/10.1109/IPDPS.2012.58
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
http://hal.inria.fr/hal-00930217
http://hal.inria.fr/hal-00930217
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1109/MCSE.2013.98

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

A Not So Simple Matter of Software; The Evolution of Mathematical Software: Software and Algorithms Follow the
Hardware 11

98.
URL http://hal.inria.fr/hal-00930217

[25] A. Haidar, P. Luszczek, J. Dongarra, New algorithm for computing eigenvectors of the symmetric eigenvalue problem,
in: Workshop on Parallel and Distributed Scientific and Engineering Computing, IPDPS 2014 (Best Paper), IEEE, IEEE,
Phoenix, AZ, 2014. doi:10.1109/IPDPSW.2014.130.

[26] A. Haidar, J. Kurzak, P. Luszczek, An improved parallel singular value algorithm and its implementation for multicore
hardware, in: Proceedings of the International Conference on High Performance Computing, Networking, Storage
and Analysis, ACM, 2013, p. 90.

[27] G. Ballard, J. Demmel, O. Holtz, O. Schwartz, Minimizing communication in numerical linear algebra, SIAM Journal
on Matrix Analysis and Applications 32 (3) (2011) 866–901.

[28] M. Mohiyuddin, M. Hoemmen, J. Demmel, K. Yelick, Minimizing communication in sparse matrix solvers, in: Proceed-
ings of the Conference on High Performance Computing Networking, Storage and Analysis, ACM, 2009, p. 36.

[29] J. Demmel, L. Grigori, M. Hoemmen, J. Langou, Communication-optimal parallel and sequential QR and LU factoriza-
tions, SIAM Journal of Scientific Computing 34 (1) (2012) A206–A239. doi:10.1137/080731992.

[30] A. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Dongarra, A. Fox, M. Gates, N. J. Higham, X. S. Li, J. Loe,
P. Luszczek, S. Pranesh, S. Rajamanickam, T. Ribizel, B. F. Smith, K. Swirydowicz, S. Thomas, S. Tomov, Y. M. Tsai,
U. M. Yang, A survey of numerical linear algebra methods utilizing mixed-precision arithmetic, The International
Journal of High Performance Computing Applications 35 (4) (2021) 344–369. arXiv:https://doi.org/10.1177/
10943420211003313, doi:10.1177/10943420211003313.
URL https://doi.org/10.1177/10943420211003313

[31] R. Whaley, A. Petitet, J. Dongarra, Automated empirical optimization of software and the atlas project, Parallel
Computing 27 (11 2000).

[32] University of Tennessee, Oak Ridge National Laboratory, Netlib Libraries Access Counts.
URL http://www.netlib.org/master_counts2.html

[33] T. Gamblin, M. P. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R. de Supinski, S. Futral, The Spack package
manager: bringing order to HPC software chaos., in: J. Kern, J. S. Vetter (Eds.), SC, ACM, 2015, pp. 40:1–40:12.
URL http://dblp.uni-trier.de/db/conf/sc/sc2015.html#GamblinLCLMSF15

[34] Open Source Initiative, The 3-clause bsd license, https://opensource.org/licenses/BSD-3-Clause, accessed = 2022-4-19
(1998).

, Vol. 1, No. 1, Article . Publication date: June 2022.

https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1109/MCSE.2013.98
http://hal.inria.fr/hal-00930217
https://doi.org/10.1109/IPDPSW.2014.130
https://doi.org/10.1137/080731992
https://doi.org/10.1177/10943420211003313
http://arxiv.org/abs/https://doi.org/10.1177/10943420211003313
http://arxiv.org/abs/https://doi.org/10.1177/10943420211003313
https://doi.org/10.1177/10943420211003313
https://doi.org/10.1177/10943420211003313
http://www.netlib.org/master_counts2.html
http://www.netlib.org/master_counts2.html
http://dblp.uni-trier.de/db/conf/sc/sc2015.html#GamblinLCLMSF15
http://dblp.uni-trier.de/db/conf/sc/sc2015.html#GamblinLCLMSF15
http://dblp.uni-trier.de/db/conf/sc/sc2015.html#GamblinLCLMSF15
https://opensource.org/licenses/BSD-3-Clause

	Abstract
	1 Introduction
	2 Background
	2.1 Standards
	2.2 More Ops More Time
	2.3 Software PACKs
	2.4 Portable Performance Layers
	2.5 Specific Techniques and Approaches

	3 Impact and Lessons Learned
	3.1 Measuring Impact
	3.2 Licensing for Users and Manufacturers
	3.3 Funding for Research and Development
	3.4 Personnel for Long Running Projects

	4 Conclusions
	References

