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Abstract

This paper presents the design and implementation of sev-
eral fundamental dense linear algebra (DLA) algorithms for
multicore with Intel Xeon Phi Coprocessors. In particular,
we consider algorithms for solving linear systems. Further,
we give an overview of the MAGMA MIC library, an open
source, high performance library that incorporates the de-
velopments presented here, and, more broadly, provides
the DLA functionality equivalent to that of the popular LA-
PACK library while targeting heterogeneous architectures
that feature a mix of multicore CPUs and coprocessors. The
LAPACK-compliance simplifies the use of the MAGMA
MIC library in applications, while providing them with
portably performant DLA. High performance is obtained
through the use of the high-performance BLAS, hardware-
specific tuning, and a hybridization methodology whereby
we split the algorithm into computational tasks of various
granularities. Execution of those tasks is properly sched-
uled over the heterogeneous hardware by minimizing data
movements and mapping algorithmic requirements to the
architectural strengths of the various heterogeneous hard-
ware components. Our methodology and programming
techniques are incorporated into the MAGMA MIC API,
which abstracts the application developer from the specifics
of the Xeon Phi architecture and is therefore applicable to
algorithms beyond the scope of DLA.

Keywords: numerical linear algebra e Intel Xeon Phi pro-
cessor ¢ Many Integrated Cores o hardware accelerators and
coprocessors ® dynamic runtime scheduling using dataflow
dependences e communication and computation overlap

1 Introduction and Background

Solving linear systems of equations and eigenvalue prob-
lems is fundamental to scientific computing. The popu-
lar LAPACK library [3], and in particular its vendor opti-
mized implementations such as Intel’s MKL [11] or AMD’s

ACML [2], have been the software of choice to provide
solver routines for dense matrices on shared memory sys-
tems. This paper considers a redesign of the LAPACK al-
gorithms and their implementation to add efficient support
for heterogeneous systems of multicore processors with In-
tel Xeon Phi coprocessors. This is not the first time that
DLA libraries have needed a redesign to be efficient on new
architectures. Notable examples being the transition from
LINPACK [9] to LAPACK [3] in the 1980’s to make algo-
rithms cache-friendly. Also, ScaLAPACK [7] in the 1990’s
added support for distributed memory systems. And at
present time, the PLASMA and MAGMA libraries [1] tar-
get efficiency on, respectively, multicore and heterogeneous
architectures.

The Intel Xeon Phi coprocessor is a hardware accelerator
that made its debut in the late 2012 as a platform for high-
throughput technical computing. It is sometimes known
under an alternative name of Many Integrated Cores (MIC).
For the purposes of this paper, the common mode of oper-
ation for the device is called off-load. However, the stand-
alone and reverse off-load modes are also valid possibilities.
When in off-load mode, the device receives work from the
host processor and reports back as soon as the computa-
tional task completes. Any such assignment of work pro-
ceeds and completes without the host device being involved.
In a typical scenario, the host is an Intel x86 CPU such as
Sandy Bridge, Ivy Bridge or even more recent Haswell and
Ivy Town. The CPU may monitor the activity of communi-
cation and/or computation through an event-based inter-
face and can also pursue its own computational activities
between events. This is very similar to the operation of
hardware accelerators based on throughput-oriented GPUs
and compute-capable FPGAs that are specialized for certain
types of workloads beyond what could be achieved on stan-
dard multicore CPUs. In fact, Xeon Phi is often considered
to be an alternative to the hardware accelerators from AMD
and NVDIA despite the fact that there exist many technical
differences between the three.

The development of new high-performance numerical



libraries is a complex endeavor, which requires meticulous
accounting for the extreme levels of parallelism, heterogene-
ity, and wide variety of accelerators and coprocessors avail-
able in the current architectures. Challenges vary from new
algorithmic designs to choices of programming models, lan-
guages, and frameworks that ease the development, future
maintenance, and portability. This paper addresses these is-
sues while presenting our approach and algorithmic designs
in the development of the MAGMA MIC [14] library.

To provide a uniform portability across a variety of co-
processors/accelerators, we developed an API that abstract
the application developer from the low level specifics of the
architecture. In particular, we use low level vendor libraries,
like SCIF for Intel Xeon Phi (see Section 3), to define API
for memory management and off-loading computations to
coprocessors and /or accelerators.

To deal with the extreme level of parallelism and hetero-
geneity in the current architectures, MAGMA MIC uses a
hybridization methodology, described in Section 4, where
we split the algorithms of interest into computational tasks
of various granularities, and properly schedule those tasks’
execution over the heterogeneous hardware. Thus, we use
a Directed Acyclic Graph (DAG) approach to parallelism
and scheduling that has been developed and successfully
used for dense linear algebra libraries such as PLASMA and
MAGMA [1], as well as in general task-based approaches
to parallelism, such as runtime systems like StarPU [4] and
SMPSs [6].

Obtaining high performance depends on a combination
of algorithmic and hardware-specific optimizations, dis-
cussed in Section 4.3. This is in addition to the use of high-
performance low-level libraries, which we address in Sec-
tion 3. This has implications on the resulting software: in
order to maintain the performance portability across hard-
ware, it is necessary to provide in the library a number of
algorithmic variations that are tunable, e.g., at installation
time. This is the basic premise of autotuning — a promi-
nent example of these kinds of advanced optimization tech-
niques.

A performance study is presented in Section 5. Besides
verifying our approach and confirming the appeal of the
Intel Xeon Phi coprocessors for high-performance DLA, the
results open up a number of future work opportunities dis-
cussed in Section 6 that concludes the paper.

2 Compiler Support for Offload

In this paper, we consider the off-load mode as the primary
mode of operation for the Xeon Phi coprocessor. The de-
vice receives work from the host processor and reports back
upon completion of the assignment without the host being
involved in between these two events. This is very similar
to the operation of network off-load engines, specifically,
the TCP Off-load Engines (TOEs) that feature an optimized
implementation of the TCP stack that handles the major-
ity of the network traffic to lessen the burden of the main
processor, which handles other operating system and user
application tasks.

The off-load mode for the Xeon Phi devices has direct
support from the compiler in that it is possible to issue re-
quests to the device and ascertain the completion of tasks
directly from the user’s C/C++ code. The support for this
mode of operation is offered by the Intel compiler through
Phi-specific pragma directives: offload, offload_attribute, of-
fload_transfer, and offload_wait [10]. This is very closely re-
lated to the off-load directives now included in the OpenMP
4 standard. In fact, the two are syntactically and semanti-
cally equivalent, barring the difference in the “omp” prefix
for the OpenMP syntax. A similar standard for GPUs is
called OpenAcc. A summary of various programming meth-
ods on Xeon Phi is provided in Table 1.

3 Programming Model: Host-Device
with a Server based on LLAPI

For many scientific applications, the offload model offered
by the Intel compiler, described in §2, is sufficient. This is not
the case for a fully equivalent port of MAGMA to the Xeon
Phi because of the very rich functionality that MAGMA in-
herits from both its CUDA and OpenCL ports. We had to use
the LLAPI (Low-Level API) based on Symmetric Commu-
nication InterFace (SCIF) that offers, as the name suggests,
a very low level interface to the host and device hardware.
The use of this APl is discouraged for most workloads as it
tends to be error-prone and offers very little abstraction on
top of the hardware interfaces. What motivated us to use it
for the port of our library was: 1) the asynchronous events
capability that allows low-latency messaging between the
host and the device to notify about completion of kernels
on Xeon Phi; 2) the possibility of hidding the cost of data
transfer between the host and the device which requires
the transfer of submatrices to overlap with the computation.
The direct access to the DMA (Direct Memory Access) en-
gine allowed us to maximize the bandwidth of data transfers
over the PCI Express bus. The only requirement was that the
memory regions for transfer be page-aligned and pinned
to guarantee their fixed location in the physical memory.
Figure 1a shows the interaction between the host and the
server running on the Xeon Phi and responding to requests
that are remote invocations of numerical kernels on data
that have already been transferred to the device.

4 Hybridaziation Methodology and
Optimization strategies

The hybridization methodology used in MAGMA [17] is an
extension of the task-based approach for parallelism and
developing DLA on homogeneous multicore systems [1]. In
particular,

e The computation is split into BLAS-based tasks of var-
ious granularities, with their data dependencies, as
shown in Figure 1b.

e Small, non-parallelizable tasks with significant control-
flow are scheduled on the CPUs.



Programming model/API Status Portability Overhead Language Support
SCIF Mature No None No
COI Mature Yes Minimal Yes
OpenMP 4.0 Early Yes Varies Yes
OpenCL Experimental Yes Minimal No

Table 1: Programming models for the Intel Xeon Phi coprocessors and their current status and properties.
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Figure 1: (a) MAGMA MIC programming model with a
LLAPI server mediating requests between the host CPU and
the Xeon Phi device. (b)DLA algorithm as a collection of
BLAS-based tasks and their dependencies. The algorithm’s
critical path is, in general, scheduled on the CPUs, and large
data-parallel tasks on the Xeon Phi.

o Large, parallelizable tasks are scheduled on Xeon Phi.

The difference with multicore algorithms is the task split-
ting, which here is of various granularities to make different
tasks suitable for particular architectures, and the schedul-
ing itself. Specific algorithms using this methodology, and
covering the main classes of DLA, are described in the sub-
sections below.

4.1 Design and functionality

The MAGMA interface is similar to LAPACK. For ex-
ample, compare LAPACK’s LU factorization interface vs.
MAGMA’s:

lapackf77_dgetrf (&M,&N, hA, &lda, ipiv, &info)

magma_dgetrf mic( M, N, dA,0, ldda, ipiv, &info,

queue)

Here hA is the typical CPU pointer (double *) to the matrix
of interest in the CPU memory and dA is a pointer in the
Xeon Phi memory (magmaDouble_ptr). The last argument in
every MAGMA call is an Xeon Phi queue, through which
the computation will be streamed on the Xeon Phi device
(magma_queue_t).

To abstract the user from knowing low level directives,
main functions, such as BLAS, CPU-Phi data transfers, and
memory allocations and deallocations, are redefined in
terms of MAGMA data types and functions. This design
allows us to more easily port the MAGMA library to other
device such as the GPU accelerator using either CUDA or

OpenCL and eventually to merge them while maintaining
a single source. Also, the MAGMA wrappers provide a
complete set of functions for programming hybrid high-
performance numerical libraries. Thus, not only users but
application developers as well can opt to use the MAGMA
wrappers. MAGMA provides the standard four floating
point arithmetic precisions — single real, double real, single
complex, and double complex. There are routines for the
so called one-sided factorizations (LU, QR, and Cholesky),
and recently we are developing the two-sided factorizations
(Hessenberg, bi-, and tridiagonal reductions), linear system
and least squares solvers, matrix inversions, symmetric and
nonsymmetric standard eigenvalue problems, SVD, and
orthogonal transformation routines.

4.2 LU, QR, and Cholesky factorizations

The one-sided factorization routines implemented and cur-
rently available through MAGMA are:

magma_zgetrf mic computes an LU factorization of a gen-
eral M-by-N matrix A using partial pivoting with row
interchanges;

magma_zgeqrf_mic computes a QR factorization of a general
M-by-N matrix A;

magma_zpotrf_mic computes the Cholesky factorization of
a complex Hermitian positive definite matrix A.

Routines in all standard four floating point precision arith-
metics are available, following LAPACK’s naming conven-
tion. Namely, the first letter of the routine name (after the
prefix magma_) indicates the precision -z, ¢, d, or s for corre-
spondingly double complex, single complex, double real, or
single real. The suffix mic indicates that the input matrix
and the output are on the Xeon Phi memory.

The typical hybrid computation and communication pat-
tern for the one-sided factorizations (LU, QR and Cholesky)
is shown in Figure 2. At a given iteration, panel dP is copied
to the CPU and factored using LAPACK, and the result is
copied back to GPU. The trailing matrix, consisting of the
next panel T; and submatrix Ty, is updated on the GPU.
After receiving dP back from the CPU, T; is updated first
using dP and the result is sent to the CPU (as being the next
panel to be factored there). While the CPU starts the factor-
ization of T, the rest of trailing matrix, T, is updated on
the GPU in parallel with the CPU factorization of panel T;.
In this pattern, only data to the right of the current panel is
accessed and modified, and the factorizations that use it are
known as right-looking. The computation can be organized
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Figure 2: Typical computational pattern for the hybrid one-
sided factorizations in MAGMA.

1 | for (j=0; j<n;j+=nb) {
2 jb = min(nb, n-j);
3 magma_zherk( MagmaUpper, MagmaConjTrans,
jb, j, m_one, dA(0, j), Idda, one, dA(j, j), Idda, queue );
4 magma_zgetmatrix_async( jb, jb, dA(j,j), Idda, work, 0, jb, queue, &event );
5 if (j+b<n)
6 magma_zgemm( MagmaConjTrans, MagmaNoTrans, jb, n-j-jb, j, mz_one,
dA(0, j ), Idda, dA(0, j+jb), Idda, z_one, dA(j, j+b), Idda, queue );
7 magma_event_sync( event );
8 lapackf77_zpotrf( MagmaUpperStr, &jb, work, &jb, info );
9 if (*info1=0)
10 *info +=j;
1 magma_zsetmatrix_async( jb, jb, work, 0, jb, dA(j,j), Idda, queue, &event );
12 if (j+jb<n){
13 magma_event_sync( event );
14 magma_ztrsm( M Left, M: Upper, M onjTrans, M NonUnit,
jb, n-j-jb, z_one, dA(, j), Idda, dA(j, j+jb), Idda, queue );
}
}

Figure 3: Cholesky factorization in MAGMA.

differently — to access and modify data only to the left of
the panel — in which case the factorizations are known as
left-looking.

An example of a left-looking factorization, demonstrating
a hybrid algorithm implementation, is given in Figure 3 for
the Cholesky factorization. Copying the panel to the CPU, in
this case just a square block on the diagonal, is done on line 4.
The data transfer is asynchronous, so before we factor it on
the CPU (line 8), we synchronize on line 7 to enforce that
the data has arrived. Note that the CPU work from line 8 is
overlapped with the GPU work on line 6. This is indeed the
case because line 6 is an asynchronous call/request from the
CPU to the GPU to start a ZGEMM operation. Thus control
is passed to lines 7 and 8 while the GPU is performing the
ZGEMM. The resulting factored panel from the CPU work is
sent to the GPU on line 11 and used on line 14, after making
sure that it has arrived (the sync on line 13).

4.3 Hybrid implementation and Optimization
techniques

In order to explain our hybrid methodology and the opti-
mization that we developed, let us give a detailed analysis
for the QR decomposition algorithm. While the description
below only addresses the QR factorization, it is straightfor-
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Figure 4: Effect of the blocking factor.

ward to derive with the same ideas the analysis for both the
Cholesky and LU factorizations. For that we start briefly by
recalling the description of the QR algorithm.

The QR factorization is a transformation that factorizes
an m X n matrix A into its factors Q and R where Q is a uni-
tary matrix of size n x n and R is a triangular matrix of size
m x m. The QR algorithm can be described as a sequence
of steps where, at each step, a QR of a panel is performed
based on accumulating a number of Householder transfor-
mations in what is called a “panel factorization” which are,
then, applied all at once by means of high performance Level
3 BLAS operations in what is called the “trailing matrix up-
date”. Despite that this approach can exploit the parallelism
of the Level 3 BLAS during the trailing matrix update, it has
a number of limitations when implemented on massively
multithreaded system such as the Intel Xeon Phi coproces-
sor due to the nature of its operations. On the one hand,
the panel factorization relies on Level 2 BLAS operations
that cannot be efficiently parallelized on either Xeon Phi or
any accelerator such as GPU-based architectures, and thus
it can be considered to be close to sequential operations that



limit the scalability of the algorithm. On the other hand, this
algorithm is referred as the fork-join approach since the exe-
cution flow will show a sequence of sequential operations
(panel factorizations) interleaved with parallel ones (trailing
matrix updates). In order to take advantage of the high
execution rate of the massively multithreaded system, in
particular, the Phi coprocessor we redesigned the standard
algorithm in a way to perform the Level 3 BLAS operations
(Trailing matrix update) on the Xeon Phi while performing
the Level 2 BLAS operations (panel factorization) on the
CPU. We also proposed an algorithmic change to remove
the fork join bottleneck and to minimize the overhead of the
panel factorization by hiding its costs behind the parallel
trailing matrix update. This approach can be described as
the “scalable lookahead techniques”. Our idea is to split of the
trailing matrix update into two phases, the update of the
lookahead panel (panel of step i + 1, i.e., dark blue portion
of Figure 4a) and the update of the remaining trailing sub-
matrix (clear blue portion of Figure 4a). Thus, during the
submatrix update the CPU can receive asynchronously the
panel i 4 1 and performs its factorization. As a result, our
MAGMA implementation of the QR factorization can be
described by a sequence of the three phases described below.
Consider a matrix A that can be represented as:

An A A
A= | An Axn Ax |, 1)
Az Az Az

e Phase 1, the panel factorization: at a step i, this phase
consists of a QR transformation of the panel A;.,,; as
in Equation 2. This operation consists of calling two
routines. The DGEQR?2 that factorizes the panel and
produces nb Householder reflectors (V,;) and an upper
triangular matrix R;; of size nb x nb, which is a portion
of the final R factor, and the DLARFT that generates the
triangular matrix Tj; of size nb x nb used for the trailing
matrix update. This phase is performed on the CPU.

An Vi
Ay | = | Vo |,[Ri1),[Tia]. )
Az Va1

e Phase 2, the look ahead panel update: the transforma-
tion that was computed in the panel factorization needs
to be applied to the rest of the matrix (trailing matrix,
i.e., the blue portion of Figure 4a). This phase consists
into updating only the next panel (dark blue portion of
Figure 4a) in order to let the CPU start its factorization
as soon as possible while the update of the remaining
portion of the matrix is performed in phase 3. The idea
is to hide the cost of the panel factorization. This opera-
tion presented in Equation 3, is performed on the Phi
coprocessor and involves the DLARFB routine which
has been redesigned as a sequence of DGEMM’s to
better take advantage of the Level 3 BLAS operations.

Rip - A
Ap | = {1 — V.iT; V*l} Ax @)
Az Az

e Phase 3, the trailing matrix update: Similarly to
phase 2, this phase consists into applying the House-
holder reflectors generated during the panel factoriza-
tion of step i according to Equation 3, but to the remain-
ing portion of the matrix (the trailing submatrix i.e., the
clear blue portion of Figure 4a). This operations is also
performed on the Phi coprocessor, while in parallel to
it, the CPU performs the factorization of the panel i 4 1
that has been computed in Phase 2.

This hybrid technique of distribution of tasks between
CPU-Phi allows us to hide the memory bound operations
occurred during the panel factorization (Phase 1) by per-
forming such operation on the CPU in parallel with the
trailing submatrix update (Phase 3) on the Phi coprocessor.
However, one of the key parameters to performance tuning
is the blocking size as the performance and the overlap be-
tween the CPU-Phi will be solely guided by it. Figure 4b
illustrates the effect of the blocking factor on the perfor-
mance. It is obvious that, a small nb will reduce the cost of
the panel factorization phase 1, but it decreases the efficiency
of the Level 3 BLAS kernel of phase 2 and phase 3 and thus
resulting a bad performance. As opposed, a large nb will
dramatically affect the panel factorization phase 1 which
becomes slow and thus the CPU/Phi computation cannot
be overlapped, providing a deterioration in the performance
as shown in Figure 4b. As a consequence, the challenging
problem is the following: on the one hand, the blocking size
nb needs to be large enough to extract high performance
from the Level 3 BLAS phase 3 and on the other hand, it
has to be small enough to extract efficiency (thanks to the
cache speed up) from the Level 2 BLAS phase 1 and overlap
CPU/Phi computation. Figure 4b show the performance ob-
tained for different blocking sizes and we can see a trade-off
between small and large nb’s. Either nb = 480 or nb = 960
can be considered as a good choice because MKL Phi BLAS
is optimized for multiples of 240. Moreover, to extract the
maximum performance and allow the maximum overlap
between both of the CPU and the Xeon Phi coprocessor, we
developed a new variant that can use a variable nb during
the steps of the algorithm. The flexibility of our implementa-
tion allows an efficient task execution overlap between the
CPU host and the Phi coprocessor which enables the algo-
rithm to scale almost perfectly in the Phi coprocessor and
provides very good performance close to the practical peak
obtained on such system. Our tuned variable implementa-
tion is represented by the red curve of Figure 4b where we
can easily observe its advantage over the other variants.

4.4 Hardware Capability Task Distribution

Programming models that raise the level of abstraction are of
great importance for reducing software development efforts.
A traditional approach has been to organize algorithms in
terms of BLAS calls, where hardware specific optimizations
would be hidden in BLAS implementations such as Intel’s
MKL or AMD’s ACML. This is still valid and used but has
shown some drawbacks on new architectures. In particular,
parallelization is achieved using a fork-join approach since



Algorithm 1: Two-phase factorization of A = [P}, P, .. ]
with lookahead of depth 1. Matrix A and the result are
assumed to be on the MIC memory.

PanelStartReceiving ,, cpu(P1) ;

forP; =P, P,...do
PanelFactorize ,, cpu(P;) ;
PanelSend to MIC(Pi);
TrailingMatrixUpdate 4, prc(Pis1) 5
PanelStartReceiving 4, cpy(Pit1) ;
TrailingMatrixUpdate ,,p11c(Pis2, - - ) ;

each BLAS call, e.g., a matrix-matrix multiplication, can be
performed in parallel (fork) but a synchronization is needed
before performing the next call (join). The number of syn-
chronizations thus can become a prohibitive bottlenecks for
performance on highly parallel devices such as the MICs.
This type of programming has been popularized under the
Bulk Synchronous Processing name [19, 18].

Instead, the algorithms (like matrix factorizations) are
broken into computational tasks (e.g., panel factorizations
followed by trailing submatrix updates) and pipelined for
execution on the available hardware components (see be-
low). Moreover, particular tasks are scheduled for execution
on the hardware components that are best suited for them.
Thus, this task distribution based on hardware capability al-
lows the user for the efficient use of each hardware com-
ponent. In the case of DLA factorizations, the less parallel
panel tasks are scheduled for execution on multicore CPUs,
and the parallel updates mainly on the MICs. We illustrate
this in Algorithm 1.

4.5 Task Based Runtime Model

The scheduling of tasks for execution can be static or dy-
namic. In either case, the small and not easy to parallelize
tasks from the critical path (e.g., panel factorizations) are
executed on CPUs, and the large and highly parallel task
(like the matrix updates) mostly on the MICs.

The use of multiple coprocessors complicates the devel-
opment using static scheduling. Instead, the use of a light-
weight runtime system is preferred as it can keep scheduling
overhead low, while enabling the expression of parallelism
through sequential-like code. The runtime system relieves
the developer from keeping track of the computational activ-
ities that, in the case of heterogeneous systems, are further
exacerbated by the separation between the address spaces
of the main memory of the CPU and the MICs. Our runtime
model is build on the QUARK [20] superscalar execution en-
vironment that has been originally used with great success
for linear algebra software on just multicore platforms [13].
The conceptual work though could be replicated within
other models such as StarPU [5], OmpSS [15], Cilk [8], and
Jade [16], to just mention a few.

4.6 Improving offload mode communication

It is well known that the off-load transfer mode copies only
continuous chunks of data from and to the coprocessors.
However most of the scientific application algorithms re-
quire to exchange data with 2D or 3D storage and thus this
may create an issue when using the off-load transfer mode.
In particular, the one-sided factorizations (Cholesky, LU,
and QR) require to send the panel to the CPU and then re-
ceive it later after being factorized by the CPU. A simple
implementation loop over one direction and call the off-load
section to send /receive a contiguous vector. Such implemen-
tation behaves poorly and as a result the communication will
become expensive and slow down the algorithm. Indeed,
another alternative is to copy the 2D panel to a contiguous
temporary space on the MIC, and then to send it and vice
versa. Hence, there are two points that need to be taken into
consideration. Firstly, the copy needs to be implemented
as a multi-threaded operation in order to hide its cost. For
that, we implemented a parallel copy that uses all of the
240 hardware threads of the MIC to perform the copy. This
might be against the common wisdom that multi-threading
is of little help for bandwidth-limited operations such as a
memory copy. This is not the experience on the MIC, where
the clock frequency of the compute cores is twice as low
as that of the memory - the exact opposite of what is the
case in Intel x86 multicore processors. In addition to the low
frequency, the current MIC hardware is to a large degree
an in-order architecture with dual-pipeline execution and
single-issue fetch/decode units [12] which poses constraints
on the amount bandwidth that can be utilized from a single
core. These can be overcome in multiple ways, including
the use of streaming loads and have the multiple threads
requesting data. Secondly, when the MIC copies data to or
from the temporary space, it should be the only kernel run-
ning, otherwise, it will run on top of other kernel running
and this may slow down both of the kernels. For that, we
represented the copy kernel as a task with high priority and
the scheduler is responsible for executing it as soon as possi-
ble and to handle the dependencies such as no other kernel
will be running at the same time. Experiments showed that
when using these optimizations the performance of the off-
load communication mode is comparable to both the SCIF
and the COI mode with a variance of less than 5%.

4.7 Trading Extra Computation for Higher Ex-
ecution Rate

The optimization discussed here is MIC-specific but is of-
ten valid for any hardware architecture with multilayered
memory hierarchy. The dlarfb routine used by the QR decom-
position consists of two dgemms and one dtrmm. Since co-
processors are better at handling compute-bound tasks, for
computational efficiency, we replace the dtrmm by dgemm,
yielding 5-10% performance improvement. For the Cholesky
factorization, the trailing matrix update requires a dsyrk.
Due to uneven storage, the multi-device dsyrk cannot be
assembled purely from regular dsyrk calls on each device.
Instead, each block column must be processed individually.



The diagonal blocks require special attention. One can use a
dsyrk to update each diagonal block, and a dgemm to update
the remainder of each block column below the diagonal
block. The small dsyrk operations have little parallelism and
therefore their execution is inefficient on MICs. This can
be improved to some degree by using pragma to run sev-
eral dsyrk’s simultaneously. Nevertheless, because we have
copied the data to the device, we can consider the space
above the diagonal to be a scratch workspace. Thus, we up-
date the entire block column, including the diagonal block,
writing extra data into the upper triangle of the diagonal
block, which is subsequently ignored. We do extra compu-
tation for the diagonal block, but gain efficiency overall by
launching fewer BLAS kernels on the device and using the
more efficient dgemm kernels, instead of small dsyrk kernels,
resulting in overall 5-10% improvement in performance.

5 Performance Results

This section presents the performance results obtained by
our hybrid CPU-Xeon Phi implementation in the context
of the development of the state-of-the-art numerical linear
algebra libraries.

5.1 Experimental Environment

Our experiments were performed on a system equipped
with Intel Xeon-Phi. It is representative of a vast class of
servers and workstations commonly used for computation-
ally intensive workloads. We benchmarked all implementa-
tions on an Intel multicore system with dual-socket, 8 core
Intel Xeon E5-2670 (Sandy Bridge) processors, each running
at 2.6 GHz. Each socket has a 24 MB shared L3 cache, and
each core has a private 256 KB L2 and 64 KB L1. The system
is equipped with 52 Gbytes of memory. The theoretical peak
for this architecture in double precision is 20.8 Gflop/s per
core, giving 332 Gflops in total. The system is also equipped
with an Intel Xeon Phi cards with 7.7 Gbytes per card run-
ning at 1.09 GHz, and giving a double precision theoretical
peak of 1046 Gflops.

There are a number of software packages available. On
the CPU side we used the MKL (Math Kernel Library) [11]
which is a commercial software package from Intel that is a
highly optimized numerical library. On the Intel Xeon side,
we used the MPSS 2.1.5889-16 as the software stack, icc 13.1.1
20130313 which comes with the composer_xe_2013.3.163
suite as the compiler and the BLAS-3 routine GEMM from
MKL 11.00.03.

5.2 Experimental results

Figure 5 reports the performance of the three amigos linear
algebra kernels, the Cholesky, QR and LU factorizations
with our hybrid implementation and compare it to the per-
formance of the CPU implementation of the MKL libraries.
For our implementation, the blocking factor has been cho-
sen to be flexible in order to achieve the best performance,
as a reference it is in the range of 480-960 as described in
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Figure 5: Comparison of the performance versus the opti-
mized CPU version of the MKL libraries for the three ami-
gos.



section 4.3. The graphs show the performance measured
using all the cores available on the system (i.e., 60 for the
Intel Phi and 16 for the CPU) with respect to the problem
size. In order to reflect the time completion, for each al-
gorithm the operation count is assumed to be the same as
that of the LAPACK algorithm (i.e., %NB’, %N3, and %N3 for
the Cholesky factorization, the LU factorization and the QR
decomposition respectively)

Figure 5a, 5b and 5c provide roughly the same informa-
tion: our MAGMA algorithm with hybrid techniques deliv-
ers higher execution rates than the CPU optimized counter-
part. Such comparison is not fair, our goal is not to compare,
but it is rather to show the boost that the hybrid CPU+Phi
coprocessor implementation provides, versus a CPU im-
plementation. The figures show that the MAGMA hybrid
algorithms are capable of completing any of the three ami-
gos algorithms as twice faster as the CPU optimized version
for a matrix of size larger than 10000; and more than three
times faster when the matrix size is large enough (larger
than 20000). The actual curves of Figure 5 illustrates the
efficiency of our hybrid techniques where we note that the
performance obtained by our implementation, achieves a
very close level to the practical peak of the Intel Xeon Phi co-
processor computed by running the GEMM routine (which
is around 850 Gflops). This gain is mostly obtained by two
improvements. First the nature of the operations involved
in the Phi side which are mostly BLAS Level 3 operations
redesigned and redeveloped as a combination of DGEMM'’s.
For more details we denote below the routines executed on
the Xeon Phi coprocessor:

e The DSYRK operations for the Cholesky factorization
where the DSYRK has been redesigned as a combina-
tion of DGEMM'’s routines,

e The DGEMM for the LU factorization,

e The DLARFB for the QR decomposition where also its
has been redesigned as a combination of DGEMM'’s.

Second, all of the Level 2 BLAS routines that are memory
bound and that represent a limit for the performance (i.e.,
DPOTEF2, DGETE2, and DGEQR2 for Cholesky, LU, and QR
factorization respectively) are executed on the CPU side
while being overlapped with the Phi coprocessor execution
as described in section 4.3.

An important remark has to be made here for the
Cholesky factorization: the left-looking algorithm as imple-
mented in LAPACK is considered as well optimized for
memory reuse but at the price of less parallelism and thus
is not suitable for massively multicore machines. This vari-
ant delivers poor performance when compared to the right
looking variant that allows more parallelism and thus run at
higher speed.

6 Conclusions and Future Work

In this article, we have shown how to extend our hybridiza-
tion methodology from existing systems to a new hardware

platform. The challenge of the porting effort stemmed from
the fact that the new coprocessor from Intel, the Xeon Phi,
featured programming models and relative execution over-
heads, that were markedly different from what we have
been targeting on GPU-based accelerators. Nevertheless,
we believe that the techniques used in this paper adequately
adapt our hybrid algorithm to best take advantage of the
new heterogeneous hardware. We have derived an imple-
mentation schema of the dense linear algebra kernels that
also can be applied to either the two-sided factorization used
for solving the eigenproblem and the SVD or to the sparse
linear algebra algorithms. We plan to further study the im-
plementation of multi-Xeon Phi algorithms in a distributed
computing environment. We think that the techniques pre-
sented will become more popular and will be integrated into
dynamic runtime system technologies. The ultimate goal
is that this integration will help to tremendously decrease
development time while retaining high-performance.
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