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Abstract—The Highly Efficient Fast Fourier Transform for
Exascale (heFFTe) numerical library is a C++ implementation
of distributed multidimensional FFTs targeting heterogeneous
and scalable systems. To date, the library has relied on users to
provide at least one installation from a selection of well-known
libraries for the single node/MPI-rank one-dimensional FFT
calculations that heFFTe is built on. In this paper, we describe the
development of a CPU-based backend to heFFTe as a reference,
or “stock”, implementation. This allows the user to install and
run heFFTe without any external dependencies that may include
restrictive licensing or mandate specific hardware. Furthermore,
this stock backend was implemented to take advantage of SIMD
capabilities on the modern CPU, and includes both a custom
vectorized complex data-type and a run-time generated call-
graph for selecting which specific FFT algorithm to call. The
performance of this backend greatly increases when vectorized
instructions are available and, when vectorized, it provides rea-
sonable scalability in both performance and accuracy compared
to an alternative CPU-based FFT backend. In particular, we
illustrate a highly-performant O(N logN) code that is about
10× faster compared to non-vectorized code for the complex
arithmetic, and a scalability that matches heFFTe’s scalability
when used with vendor or other highly-optimized 1D FFT
backends. The same technology can be used to derive other
Fourier-related transformations that may be even not available
in vendor libraries, e.g., the discrete sine (DST) or cosine (DCT)
transforms, as well as their extension to multiple dimensions and
O(N logN) timing.

I. INTRODUCTION

The Fourier transform is renowned for its utility in innu-

merable problems in physics, partial differential equations,

signal processing, systems modeling, and artificial intelligence

among many other fields [1], [2]. The transform can be

represented as an infinite dimensional linear operator on the

Hilbert space of “sufficiently smooth” functions, but becomes

a finite dimensional linear operator when applied on the space

of functions with compact support in the frequency domain [2].

Since any finite-dimensional linear operator can be represented

as a matrix, this transformation is equivalent to a “discrete”

Fourier transform (DFT) requiring O(N2) operations on a sig-

nal with N samples, bounding the performance of a DFT from

above. However, it is commonly taught that the transform can

be accelerated and computed in O(N logN) operations using

the “Fast Fourier Transform” (FFT), a class of algorithms

pioneered in the late 20th century [3]–[5].

Currently, the landscape for computing the one-dimensional

FFT of a signal on one node includes many respectable

implementations, including those of Intel’s OneMKL initiative,

NVIDIA’s cuFFT, AMD’s rocFFT, and FFTW [6]–[9]. This

list includes implementations for both CPU and GPU devices,

largely giving flexibility to a user needing to compute the FFT

of a few small signals on a local machine, a few intermediate-

sized signals on a robust compute device, or perhaps many

independent small- and intermediate-sized signals on a larger,

heterogeneous machine. However, these libraries are seldom

designed for the problem of scale— as scientists desire the fre-

quency representation of increasingly large multidimensional

signals, they will at some point need to shift towards using

distributed and heterogeneous machines. Creating scalable

FFTs for large peta- or exascale distributed machines is an

open problem, and the heFFTe [10] library has the ambition

to be the most performant on this frontier.

Up to this point, the heFFTe [11] library has been fully

dependent on the aforementioned one-dimensional FFT pack-

ages, requiring the user to install and link to external depen-

dencies for both testing and production runs. Some of these

libraries require abiding by non-permissive licensing agree-

ments (e.g., FFTW) or proprietary restrictions (e.g., MKL),

limiting the use of heFFTe in more sensitive or proprietary

domains. Other packages require specialized hardware, e.g.,

a specific brand’s GPU device, and even if such hardware is

available on many production machines it is seldom available

on the testing environments. These were prime motivations

for having some fallback or reference implementation self-

contained in heFFTe that was under the full jurisdiction of the
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maintainers. Due to the distributed nature of the library, the

speed of the algorithm is less critical compared to traditional

one-dimensional FFT implementations, as the algorithm is

communication and not computation bound. Therefore, the

reference backend of the library stresses accuracy first with

a secondary focus on speed.

This reference implementation, or “stock FFT”, is not just

a naı̈ve implementation of the DFT. The fast O(N logN)
algorithms are employed, and the CPU Single-Instruction

Multiple-Data (SIMD) paradigm is used for complex arith-

metic. The “stock FFT” implementation also works on batches

of data, transforming multiple identically-sized signals at the

same time which is the primary use case within the heFFTe

framework.

II. VECTORIZATION OF COMPLEX NUMBERS

Many default packages providing complex multiplication,

like std::complex from the C++ standard library or

complex from Python, are developed for consistency and

compatibility and, thus, will implement complex multiplication

as the textbook definition. Given a, b, c, d ∈ R, the simplest

way of performing complex multiplication is via the direct

evaluation of (a + bi)(c + di) = (ac − bd) + (ad + bc)i.
This is generally optimal in terms of floating point operations

(flops), where one complex multiplication is four floating

point multiplications and two floating point additions, or

six flops (algorithms trading multiplications for additions –

e.g., 3 multiplications and 5 additions – can result in less

flops when multiplying complex matrices as the real matrix-

multiplications are O(N3) flops while the additions are only

O(N2) flops). However, one must note that a computer

performs instructions, not flops.

Vectorization has been supported to some degree within

high-performing CPUs since the 1970s, and the more modern

SSE and AVX instruction sets [12], [13] have exponentially

increased the possibilities for accelerating code via extended

registers [14]. In most scenarios, vectorization is implemented

at the assembly instruction level, and a programmer can

interface with the assembly using instrinsics or wrappers in

a low level language (e.g., C, C++, FORTRAN); higher-

level interfaces also exist and many scientific computing

packages use vectorization internally. Examples of vectorized

instructions in AVX include basic arithmetic operations, such

as element-wise adding, subtracting, multiplying, dividing,

and fused multiply-add. Non-arithmetic instructions can range

from simple operations, such as permuting the order items in

a vector, to complicated ideas, such as performing one step of

AES encryption [13]. Many software libraries take advantage

of vectorization and as well as other SIMD capabilities of

computers for numerical computation, and even FFT calcula-

tion [15], [16].

The CPU executes code in terms of instructions, thus it

is more natural to represent an algorithm as a set of vector

operations as opposed to working with individual numbers.

Let x = a + bi and y = c + di and consider the product of

the two complex numbers:

x× y =

[

a

b

]

×

[

c

d

]

=

[

ac− bd

ad+ bc

]

=

[

ac

bc

]

+

[

−1 0
0 1

] [

bd

ad

]

=

[

a

b

]

⊙

[

c

c

]

+

[

−1 0
0 1

]([

b

a

]

⊙

[

d

d

])

= x⊙

([

1 0
1 0

]

y

)

+

[

−1 0
0 1

](([

0 1
1 0

]

x

)

⊙

([

0 1
0 1

]

y

))

where ⊙ represents the Hadamard product (i.e. elementwise

multiplication). Each operation on individual vectors can be

done in one vectorized instruction and, accounting for the

capabilities of Fused-Multiply Add, complex multiplication

can then be done in five vector instructions, with three of those

being shuffle operations that are much cheaper than flops [13].

The advantage of the vectorization is further magnified

when multiplying many complex numbers. For example, if

x =

[

a1 a2
b1 b2

]

, y =

[

c1 c2
d1 d2

]

,

and we want to do the column-wise multiplication of x and y

(i.e. find (a1, b1)×(c1, d1) and (a2, b2)×(c2, d2)), then we can

use the same set of 5 operations but with wider registers, e.g.,

256-bit AVX as opposed to 128-bit SSE. Using AVX registers

and single precision, we can multiply four pairs of complex

numbers in five instructions instead of doing 24 individual

flops. Further, CPUs equipped with AVX-512 instructions can

execute this complex multiplication on eight pairs of single-

precision complex numbers and maintain five instructions.

High level programming languages, such as C and C++, rely

on the compiler to convert simple floating point operations into

vector instructions, which works well in the simpler instances.

However, the shuffle operations used in complex arithmetic

are presenting too much of challenge for the commonly used

compilers, e.g., see Figure 4. This is despite nearly every gen-

eral purpose CPU since 2010 supporting some degree of vector

instructions and nearly all compute clusters (high-performance

or otherwise) supporting these instructions extensively.

The heFFTe library currently allows the user to enable

AVX abilities at compile-time and employs them in its stock

backend to do all complex arithmetic. The user can also

enable AVX512-based complex arithmetic to further increase

the library’s abilities. These options tremendously increase

arithmetic throughput in practice, as seen in Figure 1.

Figure 1 shows that performing arithmetic operations in

batches can accelerate a complex algorithm by a significant

margin. Of course, this necessitates an algorithm that can take

advantage of SIMD, where the instructions are independent of

the data.
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Fig. 1. Creating two sets of eight length-N complex vectors and timing
the elementwise multiplication between the sets while scaling N to compare
std::complex and heFFTe::stock::Complex, using gcc-7.3.0

with optimization flag O3 in single-precision.

III. FAST FOURIER TRANSFORMS

It is worth remarking that, once a matrix is known, all opera-

tions of a matrix-vector multiplication are known. The process

of evaluating a linear operator is described independent of

the data used as an input. Similarly, since a DFT is a finite-

dimensional linear operator, all the arithmetic operations are

fully determined independent of input content. As such, we can

use the idea of vectorized complex numbers to perform one-

dimensional FFTs in batches. Since an FFT is fully determined

by the size N , two vectors of identical size will have the

same sequence of operations regardless of data they contain.

As such, if we want the DFT of one single-precision signal,

we can get the DFT of up to three more signals in the same

number of instructions and similar time when using AVX

instructions. The heFFTe library’s stock backend enables and

encourages this style of batching.

The Cooley-Tukey algorithm [3] forms the foundation for

computing FFTs of generic composite-length signals, batched

and packed for generic vectorized computing of the FFT of

many signals, visualized in Figure 2. Assuming that the user

needs to compute P FFTs of length M = mR, heFFTe splits

this up into batches of size B (depending on the vectorization

supported by the machine), then calls the FFTs as illustrated

on each batch until all P signals have been transformed.

However, the backend also includes specialized FFTs im-

plemented to calculate signals for length M = pℓ where p is

2, 3 as well as an implementation of Rader’s algorithm [4]

to calculate the FFT for prime-length signals. Further, the

dimensions of X⊤ in step 1 of Figure 2 affects the speed of

execution. To attempt the fastest FFT, the backend establishes

a call-graph of which class of FFT to call recursively and

what factors to use a priori. The fact that these call-graphs

are created ahead-of-time allows the backend to cache fac-

torization results and other information that might be costly

to calculate several times over, thus alleviating some of the

computational burden. Additionally, there are optimized FFT

implementations for when N = pℓ for p = 2, 3 and when

1.Transpose

Batched Stride

2. Compute

4.Combine

output
3.Scale by

twiddle factors

0.Pack each

row into

vectorized

types

Performing where contains vectors,

Fig. 2. Example of Cooley-Tukey in heFFTe.

N = 3672, Composite

N = 8, 23 FFT N = 459, Composite

N = 27, 33 FFT N = 17, DFT

Fig. 3. An Example Call-Graph in the heFFTe Stock Backend.

N is prime [3], [4]. An example call-graph is illustrated in

Figure 3.

A. heFFTe Integration

The heFFTe library takes as input a distributed signal

spread across multiple computer nodes, then uses a series of

reshape operations (implemented using MPI) and converts the

distributed problem into a series of batch 1D FFT transforms.

The user then selects a backend library from a collection to

handle the 1D transforms, and the native stock option is part

of that collection. However, unlike any of the other libraries,

this comes prepackaged with heFFTe so the library will be

usable without external dependencies. The stock backend is

implemented in C++-11 and the use of AVX vectorization

is optionally enabled at compile time, since not all devices

can support the extended register. If AVX is not enabled,

the C++ standard std::complex implementation will be

used. Additionally, an option is provided so the user can force

enable vectorization, e.g., when cross-compiling on a machine

without AVX.

B. Implementation and Performance

The heFFTe library distributes the work associated with FFT

via the MPI standard, similar to prior work on distributed

and heterogeneous FFT libraries [17]–[20]. Each MPI rank

of heFFTe is tasked with performing a set of one-dimensional
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Fig. 4. Performance of the heFFTe library using the stock backend
with std::complex and heffte::stock::Complex numbers, single-
precision.

Fourier transforms. The new integration is built to take a set

of one-dimensional signals, package them in the vectorized

complex type, perform an FFT (in batches), then unload the

vectorized outputs into std::complex for communication

across the ranks. The backend additionally uses the precision

and architecture as information to batch in the largest imple-

mented size the CPU can handle (e.g., batches of two for

double precision, and four for single precision using 256-bit

AVX).

Figure 4 shows a near tenfold increase in performance in

heFFTe when using the vectorized complex numbers and a

realistic benchmark1. This shows that, all else being equal,

the vectorized arithmetic’s acceleration propagates through an

entire call stack instead of being exclusive to some patholog-

ical benchmark.

We compare performance results against FFTW [6], which

is the most comparable to our implementation. Both FFTW

and the stock backend allow for the user to employ AVX512

for performing the FFTs with SIMD. Figure 5 shows that both

the stock and FFTW backends for heFFTe are competitive in

many cases, especially regarding single-precision, where the

stock backend often outperforms FFTW. The FFTW library

is mature and extensively optimized with better support for

the given CPU’s architecture. Additionally, the stock backend

scales at the same rate as FFTW, so any future optimizations

will most likely be minimizing overhead of the current library,

as opposed to making substantial changes to structure of the

backend.

The error of this fallback implementation is shown in

Figure 6, which demonstrates that the error is as dependent

on the problem size as the performance. The single-precision

transform seems to generally be between one and three orders

of magnitude of error, where the double-precision is generally

around one to two orders of magnitude of error. This error

1All weak scaling performance was examined on cubes with side lengths
of 128, 159, 198, 246, 306, and 381 on a Intel(R) Xeon(R) Gold 6140 CPU
equipped with AVX-512

Fig. 5. Benchmarking the stock backend versus FFTW for Complex-to-
complex transforms on single- and double-precision signals

Fig. 6. Error of the Complex-to-Complex transform using the Stock and
FFTW backends on single- and double-precision signals

is likely attributable to a reasonable amount of floating-point

rounding error accumulated while calculating twiddle factors

in the transform.

When examining the behavior while strong scaling on a box

with a power of four axis size in Figure 7, the stock backend

shows a consistent match, if not improvement, in performance

compared to FFTW. On lower rank counts, the single-precision

implementation consistently seems to outperform FFTW. As

one would expect, the two backends seem to converge to the

same elapsed time as the ranks increase and the communica-

tion overhead becomes larger than the time to perform each

transform.

These data were collected on a cluster equipped with the

Intel Xeon Gold 6140 CPU using commit 1d20faa of the

heFFTe project. Additionally, all benchmarks were performed

compiling with GCC 7.3.0 and FFTW 3.3.9.

IV. CONCLUSIONS AND FUTURE WORK

Creating a fallback set of FFT implementations has shown

reasonable performance within heFFTe, and incorporating vec-

torized types accelerates the arithmetic and implementations
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Fig. 7. Performance of the FFTW and stock backends for a fixed- sized signal
over multiple MPI ranks, single-precision

immensely. Adding a native backend to the heFFTe software

package with sufficient performance for most problems allows

users the flexibility, e.g., for testing, continuous integration and

even small scale production runs. Further, the unrestrictive li-

censing that heFFTe provides makes it viable to incorporate the

library with the stock backend into most projects, regardless

of propriety or topic sensitivity. This fallback implementation

is included and documented within the development version

of heFFTe and will be included in the forthcoming full release

version. There are many definitive avenues for the growth

and acceleration of this backend; extending support to ARM

vectorized instructions would prepare the backend for the

heterogeneity of high-performance computing. Other avenues

for growth include testing other vectorizations for complex

arithmetic and using more specialized algorithms for common,

but specific, problem sizes. For example, accelerating the

transform on prime-lengthed signals. Further, the error should

be reduced, which requires adjusting how twiddle factors are

created in the stock implementation. Overall, this is an initial

step towards allowing users of the heFFTe library further

flexibility in how they use the library and what projects they

can use it in.

Other future work includes further optimizations and exten-

sions to more architectures, e.g., GPUs from Nvidia, AMD,

and Intel, as well as other algorithms. Of particular interest is

to show that the same technology can be used to derive other

Fourier-related transformations that are highly needed but not

always available in vendor libraries, e.g., the discrete sine
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[20] J. L. Träff and A. Rougier, “MPI collectives and datatypes for hierar-
chical all-to-all communication,” in Proceedings of the 21st European

MPI Users’ Group Meeting, 2014, pp. 27–32.

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: University of Manchester. Downloaded on August 05,2022 at 11:07:21 UTC from IEEE Xplore.  Restrictions apply. 


