

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2015 Society for Industrial and Applied Mathematics
Vol. 37, No. 3, pp. C307–C330

MIXED-PRECISION CHOLESKY QR FACTORIZATION AND ITS
CASE STUDIES ON MULTICORE CPU WITH MULTIPLE GPUS∗

ICHITARO YAMAZAKI† , STANIMIRE TOMOV†, AND JACK DONGARRA†

Abstract. To orthonormalize the columns of a dense matrix, the Cholesky QR (CholQR)
requires only one global reduction between the parallel processing units and performs most of its
computation using BLAS-3 kernels. As a result, compared to other orthogonalization algorithms,
CholQR obtains superior performance on many of the current computer architectures, where the
communication is becoming increasingly expensive compared to the arithmetic operations. This
is especially true when the input matrix is tall-skinny. Unfortunately, the orthogonality error of
CholQR depends quadratically on the condition number of the input matrix, and it is numerically
unstable when the matrix is ill-conditioned. To enhance the stability of CholQR, we recently used
mixed-precision arithmetic; the input and output matrices are in the working precision, but some
of its intermediate results are accumulated in the doubled precision. In this paper, we analyze the
numerical properties of this mixed-precision CholQR. Our analysis shows that by selectively using the
doubled precision, the orthogonality error of the mixed-precision CholQR only depends linearly on
the condition number of the input matrix. We provide numerical results to demonstrate the improved
numerical stability of the mixed-precision CholQR in practice. We then study its performance. When
the target hardware does not support the desired higher precision, software emulation is needed. For
example, using software-emulated double-double precision for the working 64-bit double precision,
the mixed-precision CholQR requires about 8.5× more floating-point instructions than that required
by the standard CholQR. On the other hand, the increase in the communication cost using the
double-double precision is less significant, and our performance results on multicore CPU with a
different graphics processing unit (GPU) demonstrate that the overhead of using the double-double
arithmetic is decreasing on a newer architecture, where the computation is becoming less expensive
compared to the communication. As a result, with a latest NVIDIA GPU, the mixed-precision
CholQR was only 1.4× slower than the standard CholQR. Finally, we present case studies of using
the mixed-precision CholQR within communication-avoiding variants of Krylov subspace projection
methods for solving a nonsymmetric linear system of equations and for solving a symmetric eigenvalue
problem, on a multicore CPU with multiple GPUs. These case studies demonstrate that by using
the higher precision for this small but critical segment of the Krylov methods, we can improve not
only the overall numerical stability of the solvers but also, in some cases, their performance.

Key words. mixed-precision, orthogonalization, GPU computation

AMS subject classification. 65F25

DOI. 10.1137/14M0973773

1. Introduction. Orthogonalizing a set of dense column vectors plays a salient
part in many scientific and engineering applications, having great effects on both
their numerical stability and performance. For example, it is an important kernel in
a software package that solves a large-scale linear system of equations or eigenvalue

∗Submitted to the journal’s Software and High-Performance Computing section June 24, 2014;
accepted for publication (in revised form) February 27, 2015; published electronically May 12, 2015.
This research was supported in part by NSF SDCI - National Science Foundation Award OCI-
1032815, “Collaborative Research: SDCI HPC Improvement: Improvement and Support of Commu-
nity Based Dense Linear Algebra Software for Extreme Scale Computational Science,” DOE grant
DE-SC0010042: “Extreme-scale Algorithms & Solver Resilience (EASIR),” NSF Keeneland - Georgia
Institute of Technology Subcontract RA241-G1 on NSF Prime Grant OCI-0910735, and “Matrix Al-
gebra for GPU and Multicore Architectures (MAGMA) for Large Petascale Systems.” This research
used resources of the Keeneland Computing Facility at the Georgia Institute of Technology, which is
supported by the National Science Foundation under contract OCI-0910735.

http://www.siam.org/journals/sisc/37-3/M97377.html
†Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville,

TN 37996 (iyamazak@eecs.utk.edu, tomov@eecs.utk.edu, dongarra@eecs.utk.edu).

C307

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/sisc/37-3/M97377.html
mailto:iyamazak@eecs.utk.edu
mailto:tomov@eecs.utk.edu
mailto:dongarra@eecs.utk.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C308 I. YAMAZAKI, S. TOMOV, AND J. DONGARRA

problem. In many of the solvers, the input matrix to be orthogonalized is tall-skinny,
having more rows than columns. This is true, for instance, in a subspace projec-
tion method that computes the orthonormal basis vectors of the generated projection
subspace [17, 18]. Other applications of the tall-skinny orthogonalization include the
solution of an overdetermined least-squares problem [9] and data analysis based on
random projection methods [11]. Hence, an efficient and stable tall-skinny orthog-
onalization scheme can have great impacts in many applications, especially if it is
suited for current and emerging computer architectures.

On the current computer architectures, communication is becoming increasingly
expensive compared to arithmetic operations, where communication includes data
movement or synchronization between parallel processing units, as well as data move-
ment between the levels of the local memory hierarchy [8, 10]. This holds in terms of
both time and energy consumptions. It is critical to take this hardware trend into con-
sideration when designing high-performance software for new and emerging comput-
ers. To orthogonalize a tall-skinny matrix, the Cholesky QR (CholQR) [21] requires
only one global reduction between the parallel processing units, while performing most
of its computation using BLAS-3 kernels. Hence, compared to other orthogonalization
schemes, it obtains exceptional performance on many of the modern computers. How-
ever, the orthogonality error of CholQR is bounded by the squared condition number
of the input matrix, and it is numerically unstable for an ill-conditioned input matrix.

To address the numerical deficiency of CholQR, we proposed a mixed-precision
variant that reads and writes the input and output matrices, respectively, in the
working precision but accumulates some of its intermediate results in the doubled
precision [27]. When the doubled precision is not supported by the hardware, our
mixed-precision scheme uses software-emulated arithmetic and may perform signif-
icantly more floating-point operations (flops) than the standard CholQR. However,
the increase in its communication cost is often less significant. Namely, compared to
the standard CholQR, our mixed-precision CholQR moves about the same amount
of data between the levels of the local memory hierarchy. The communication cost
between the parallel processing units is doubled in its volume. However, the amount
of data communicated between the processing units is typically much less than that
required on each processing unit, and the communication requires the same latency
as the standard CholQR. To study the performance of the mixed-precision CholQR,
in [27], we used the double-double arithmetic [12] to emulate the higher precision for
the working 64-bit double precision on a multicore CPU with a different graphics pro-
cessing unit (GPU). Using the double-double arithmetic, our mixed-precision CholQR
performs about 8.5× more floating-point instructions than the standard CholQR, but
our performance results demonstrated that the overhead of using the double-double
arithmetic is decreasing on the newer architectures, where the computation is be-
coming less expensive compared to the communication. As a result, with the latest
NVIDIA GPU, the mixed-precision CholQR was only 1.4× slower than the standard
CholQR. We also provided case studies of using the mixed-precision CholQR within
a communication-avoiding variant [13] of the generalized minimum residual (GM-
RES) method [19], called CA-GMRES, for solving a nonsymmetric linear system of
equations on a multicore CPU with a GPU. The case studies demonstrated that this
mixed-precision scheme can improve the overall numerical stability of the iterative
solvers without a significant increase in the orthogonalization time. As a result, by
using the higher precision for this small but critical segment of the Krylov methods,
we were able to improve not only the stability of the iterative solver but also, in some

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MIXED-PRECISION CHOLESKY QR FACTORIZATION C309

Step 1: Form Gram matrix B
for d = 1, 2, . . . , ng do

B(d) := V (d)TV (d) on dth GPU
end for
B :=

∑ng

d=1B
(d) (GPUs to CPU reduction)

Step 2: Compute Cholesky factorization of B
R := chol(B) on CPU

Step 3: Orthonormalize V
copy R to all the GPUs (CPU to GPUs broadcast)
for d = 1, 2, . . . , ng do

Q(d) := V (d)R−1 on dth GPU
end for

Fig. 1. CholQR implementation on multicore CPU with multiple GPUs, where chol(B) com-
putes the Cholesky factorization of matrix B.

cases, its performance.
The main contributions of this paper, over our initial reports on the mixed-

precision CholQR [27], are (1) theoretical analysis of the mixed-precision CholQR,
deriving upper bounds on the orthogonality error and the condition number of the
computed orthogonal matrix; and (2) numerical results to study the stability of the
mixed-precision CholQR in practice. In addition, we compliment our initial report
with the following studies: (1) performance studies of the mixed-precision CholQR in
the working 32-bit single precision with a GPU, where the higher precision is the 64-bit
double precision and is supported by the hardware; (2) case studies with CA-GMRES
on multiple GPUs (i.e., our initial study [27] used only one GPU); and (3) case stud-
ies with a communication-avoiding variant [13] of the Lanczos method [16], called
CA-Lanczos, for solving a symmetric eigenvalue problem. The rest of the paper is
organized as follows: First, in section 2, we discuss our implementations of several
existing tall-skinny orthogonalization procedures, including CholQR, on a multicore
CPU with multiple GPUs. Then, in section 3, we describe the implementation of our
mixed-precision CholQR with the GPUs and analyze its numerical properties and per-
formance. Finally, in section 4, we study the effects of the mixed-precision scheme on
the performance of CA-GMRES and CA-Lanczos on a multicore CPU with multiple
GPUs. We provide final remarks in section 5.

2. Cholesky QR factorization. We consider computing the QR factorization
of an m-by-n tall-skinny dense matrix V (i.e., m � n),

V = QR,

where Q is an m-by-n matrix with orthonormal columns and R is an n-by-n upper-
triangular matrix. To utilize multiple GPUs to compute the QR factorization using
CholQR, we distribute the matrices V and Q in a one-dimensional (1D) block row
format, where we let ng be the number of available GPUs and V (d) be the block
row of the matrix V distributed to the dth GPU. Then, we first form the Gram
matrix B := V TV through the matrix-matrix product B(d) := V (d)TV (d) on the dth
GPU, followed by the reduction B :=

∑ng

d=1B
(d) on the CPU. We then compute the

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C310 I. YAMAZAKI, S. TOMOV, AND J. DONGARRA

Modified Gram–Schmidt (MGS)
for j = 1, 2, . . . , n do
for i = 1, 2, . . . , j − 1 do
for d = 1, 2, . . . , ng do

r
(d)
i,j := v

(d)T
i v

(d)
j

end for

ri,j :=
∑ng

d=1 r
(d)
i,j from GPUs to CPU

broadcast ri,j from CPU to all GPUs
for d = 1, 2, . . . , ng do

v
(d)
j := v

(d)
j − v

(d)
i ri,j

end for
end for
for d = 1, 2, . . . , ng do

r
(d)
j,j := v

(d)T
j v

(d)
j

end for

rj,j :=
√∑ng

d=1 r
(d)
j,j from GPUs to CPU

broadcast rj,j from CPU to all GPUs
for d = 1, 2, . . . , ng do

q
(d)
j := v

(d)
j /rj,j

end for
end for

Classical Gram–Schmidt (CGS)
for j = 1, 2, . . . , n do
for d = 1, 2, . . . , ng do

r
(d)
1:j−1,j := Q

(d)T
1:j−1v

(d)
j

end for

r1:j−1,j :=
∑ng

d=1 r
(d)
1:j−1,j from GPUs to CPU

broadcast r1:j−1,j from CPU to all GPUs
for d = 1, 2, . . . , ng do

v
(d)
j := v

(d)
j −Q

(d)
1:j−1r1:j−1,j

r
(d)
j,j := v

(d)T
j v

(d)
j

end for

rj,j :=
√∑ng

d=1 r
(d)
j,j from GPUs to CPU

broadcast rj,j from CPU to all GPUs
for d = 1, 2, . . . , ng do

q
(d)
j := v

(d)
j /rj,j

end for
end for

Singular Value QR (SVQR)
for d = 1, 2, . . . , ng do

B(d) := V (d)TV (d)

end for

B :=
∑ng

d=1 B
(d) from GPUs to CPU

[U,Σ, U] := svd(B) on CPU

[V,R] := qr(
√
ΣUT) on CPU

broadcast R from CPU to all GPUs
for d = 1, 2, . . . , ng do

Q(d) := V (d)R−1

end for

Communication-Avoiding QR (CAQR)
for d = 1, 2, . . . , ng do

[X(d), R(d)] := qr(V (d))
end for

C := [R(1);R(2); . . . ;R(ng)] from GPUs to CPU

[[Y (1); Y (2); . . . , Y (ng)], R] = qr(C) on CPU

broadcast Q(d) from CPU to GPUs
for d = 1, 2, . . . , ng do

Q(d) := X(d)Y (d)

end for

Fig. 2. TSQR implementations on multicore CPU with multiple GPUs, where svd(B) and
qr(

√
ΣUT) compute the SVD and QR factorizations of the matrices B and

√
ΣUT , respectively.

‖I −QTQ‖2 upper bound # flops dominant kernel # messages

MGS [5] O(εκ(V)) 2n2m BLAS-1 xDOT O(n2)
CGS [15] O(εκ(V)n−1) 2n2m BLAS-2 xGEMV O(n)
CholQR [21] O(εκ(V)2) 2n2m BLAS-3 xGEMM O(1)
SVQR [21] O(εκ(V)2) 2n2m BLAS-3 xGEMM O(1)
CAQR [7] O(ε) 4n2m BLAS-1,2 xGEQF2 O(1)

Fig. 3. Properties of standard TSQR implementations to orthonormalize an m-by-n matrix V ,
where κ(V) is the condition number of V .

Cholesky factorR ofB on the CPU (i.e., RTR := B). Finally, the GPU orthogonalizes
V by the triangular solves Q(d) := V (d)R−1. Hence, all the required inter-GPU
communication is aggregated into one global reduce among the GPUs and a data copy
from the CPU to its local GPU, while most of the computation is performed using
BLAS-3 kernels on the GPUs. As a result, both intra- and inter-GPU communication
can be optimized. Figure 1 shows these three steps of CholQR. Unfortunately, the
condition number of the Gram matrix B is the square of the input matrix V , and
CholQR causes numerical instability, when V is ill-conditioned.

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MIXED-PRECISION CHOLESKY QR FACTORIZATION C311

100K 500K 1000K
0

50

100

150

200

250

300

Number of Rows (m)

E
ffe

ct
iv

e
G

flo
p/

s

3GPUs
2GPUs
1GPU
CholQR
SVQR
CGS
CAQR
MGS
LAPACK

Fig. 4. Performance of standard TSQR implementations in double precision with up to three
NVIDIA Tesla M2090 GPUs. “LAPACK” uses DGEQRF and DORGQR of threaded MKL on
16-core Intel SandyBridge CPU, and “effective Gflop/s” is computed as the ratio of the total flops
required by DGEQRF and DORGQR for the same input matrix over the orthogonalization time, in
seconds. The number of columns is fixed at 30 (i.e., n = 30).

Besides CholQR, we considered several orthogonalization strategies on a multicore
CPU with multiple GPUs. For instance, the Classical Gram–Schmidt (CGS) proce-
dure [9] orthogonalizes the jth column vj of V against the previously orthonormalized
columns Q1:j−1 based on BLAS-2, all at once for j = 1, 2, . . . , n (see Figure 2). Unfor-
tunately, compared to CholQR, CGS has the greater upper-bound on its orthogonality
error (see Figure 3), and BLAS-2 based CGS often obtains a much lower performance
than BLAS-3 based CholQR does. The Modified Gram-Schmidt (MGS) procedure [9]
significantly improves the numerical stability of CGS. However, the procedure is im-
plemented using BLAS-1 when vj is orthogonalized against q1,q2, . . . ,qj−1, one at a
time in our implementation, or using BLAS-2 when all the remaining columns Vj:n are
orthogonalized against qj−1 at once (i.e., Vj:n := Vj:n − qj−1(q

T
j−1Vj:n)). Hence, it

still obtains only a fraction of the CholQR performance. Communication-avoiding QR
(CAQR) [7] orthogonalizes the set of n vectors V against each other through a tree re-
duction of the local QR factorizations. Just like CholQR, to orthogonalize V , CAQR
requires only one global reduce among the GPUs. However, in our implementation,
the local factorization is the BLAS-1 and BLAS-2 based Householder QR factoriza-
tion on each GPU, and its performance is close to that of MGS on a single compute
node, where the performance depends more on the intra-GPU communication than
on the inter-GPU communication.1 Finally, the Singular Value QR (SVQR) factor-
ization [21] computes the upper-triangular matrix R by first computing the singular
value decomposition (SVD) of the Gram matrix, UΣUT := B, followed by the QR

factorization of Σ
1
2UT . Then, the column vectors are orthonormalized through the tri-

angular solve Q(d) := V (d)R−1. Compared to the Cholesky factorization, computing

1We are looking to implement CAQR on each GPU using a batched QR kernel.

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C312 I. YAMAZAKI, S. TOMOV, AND J. DONGARRA

the SVD and QR factorization of the Gram matrix is computationally more expensive.
However, the dimension of the Gram matrix is much smaller than that of the input
matrix V (i.e., n � m). Hence, SVQR performs about the same number of flops as
CholQR, using the same BLAS-3 kernels, and requires only a pair of the CPU-GPU
communications. On the other hand, when the matrix V is ill-conditioned, or one
of the column vectors vj is a linear combination of the other columns, the Cholesky
factorization of the Gram matrix may fail, while SVQR overcomes this numerical
challenge. However, SVQR still requires computing the Gram matrix, leading to the
same normwise upper-bound on the orthogonality error as CholQR. In this paper,
we focus on CholQR since its implementation is simpler than that of SVQR, and in
our previous studies, we did not identify a test case where CA-GMRES converges
with SVQR but not with CholQR [25]. Nevertheless, most of the numerical analysis
for CholQR can be trivially extended to SVQR [21]. As a summary, Figure 2 shows
our implementations of various algorithms to compute tall-skinny QR (TSQR), and
Figure 3 lists some of their properties. In addition, Figure 4 shows their performance
on up to three NVIDIA Tesla M2090 GPUs. A more detailed description of our im-
plementations and the performance of these standard orthogonalization schemes can
be found in [25].2

3. Mixed-precision Cholesky QR factorization. In this section, we first
analyze the numerical properties of the mixed-precision CholQR and present experi-
mental results to study its numerical stability in practice (sections 3.1 and 3.2). We
then describe our implementation on a multicore CPU with multiple GPUs and show
its performance (sections 3.3 and 3.4).

3.1. Error analysis. Let us analyze the numerical errors of a mixed-precision
CholQR in finite precision, where a different numerical precision is used at each step
of the factorization. Following the standard error analysis, we let εi be the machine
epsilon used at Step i of CholQR; Ei be the round-off errors introduced at Step i; ci be
a small constant scalar; and B̂ be the result of computing B in the finite precision.
Then, we can express the finite precision operations at each step of CholQR as follows:

Step 1. Computation of Gram matrix (i.e., B := V TV):

B̂ = B + E1, where ‖E1‖ ≤ c1ε1‖V ‖2.
Step 2. Cholesky factorization (i.e., RTR := B̂):

R̂T R̂ = RTR+ E2, where ‖E2‖ ≤ c2ε2‖B̂‖.
Step 3. Forward-substitution (i.e., Q := V R̂−1):

Q̂ = Q+ E3, where ‖E3‖ ≤ c3ε3‖V ‖‖R̂−1‖.
For the bound on the numerical error at Step 2 [22, Theorem 23.2], the Cholesky
factorization is assumed to succeed. In other words, we assume in this paper that the
condition number of B̂ is less than the reciprocal of the machine precision used at
Step 2 (i.e., κ(B̂) ≤ ε−1

2 or, equivalently, κ(V)2 ≤ ε−1
2).

The following lemma from [21] will be used to prove Theorem 3.2, which provides
an upper-bound on the orthogonality error of the mixed-precision CholQR.

2Previously, the blocked variants of TSQR have been studied [1, 2, 4]. To generate n + 1 or-
thonormal basis vectors, our CA-GMRES and CA-Lanczos [25] use block orthogonalization followed
by TSQR with a step size of s, where the step size is equivalent to the block size in the blocked
algorithm to orthogonalize n + 1 vectors (e.g., n = 60 and s = 15 in our experiments). We present
the experimental results with CA-GMERS and CA-Lanczos in section 4, but we have not studied
the blocked algorithms for TSQR.

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MIXED-PRECISION CHOLESKY QR FACTORIZATION C313

Lemma 3.1. The upper-triangular matrix R̂ computed by CholQR satisfies the
following equalities:

‖R̂‖2 = cmaxσn(V) and ‖R̂−1‖2 = cminσ1(V)−1,

where σi(V) is the ith smallest singular value of V (i.e., σ1 ≤ σ2 ≤ · · · ≤ σn), and
both cmax and cmin are small scalar constants.

Proof. For a symmetric matrix, the perturbation in its eigenvalue is bounded by a
perturbation in the matrix [9, Corollary 8.1.6]. Hence, for the symmetric semidefinite

matrix V TV with ‖B̂ − V TV ‖2 ≤ c1ε1‖V ‖22, we have ‖B̂‖2 ≤ (1 + c1ε1)‖V ‖22 and

R̂T R̂ = B + E1,2,

where E1,2 = E1 + E2 and

‖E1,2‖2 ≤ c1ε1‖V ‖22 + c2ε2‖B̂‖2,
≤ c1,2ε1,2‖V ‖22 (with c1,2 = c1 + c2 +O(min(ε1, ε2)) and ε1,2 = max(ε1, ε2)).

As a result, for the symmetric semidefinite matrices B and R̂T R̂, their corresponding
singular values satisfy the relation

|σi(R̂
T R̂)− σi(B)| ≤ ‖R̂T R̂ −B‖2 ≤ c1,2ε1,2‖B‖2,

and

σi(R̂
T R̂) = σi(B) + cσiε1,2‖B‖2, where |cσi | ≤ c1,2.

In particular, with their largest singular values, we have

‖R̂‖2 =
√
1 + cσnε1,2 σn(V),

and with the smallest singular values, we have

‖R̂−1‖2 =
1√

σ1(B) + cσ1ε1,2σn(B)

=
1√

1 + cσε1,2κ(B)
σ1(V)−1.

Theorem 3.2. The orthogonality error norm of the matrix Q̂ computed by the
mixed-precision CholQR is bounded by

‖I − Q̂T Q̂‖2 ≤ O
(
ε1,2κ(V)2 + ε3‖Q̂‖2κ(V) + (ε3κ(V))2

)
.

Proof. The orthogonality error of CholQR is given by

I − Q̂T Q̂ = I − (Q+ E3)
T (Q + E3)

= I −QTQ−QTE3 − ET
3 Q− ET

3 E3

= I − R̂−TV TV R̂−1 −QTE3 − ET
3 Q− ET

3 E3

= R̂−T (R̂T R̂−B)R̂−1 −QTE3 − ET
3 Q− ET

3 E3

= R̂−TE1,2R̂
−1 −QTE3 − ET

3 Q− ET
3 E3

= R̂−TE1,2R̂
−1 − Q̂TE3 − ET

3 Q̂+ ET
3 E3 (since Q = Q̂− E3).

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C314 I. YAMAZAKI, S. TOMOV, AND J. DONGARRA

Hence, the error norm is bounded by

‖I − Q̂T Q̂‖2 ≤ c1,2ε1,2‖V ‖22‖R̂−1‖22 + 2c3ε3‖Q‖2‖V ‖2‖R̂−1‖2 + c23ε
2
3‖V ‖22‖R̂−1‖22,

where ‖V ‖2‖R̂−1‖2 = σn(V)/σ1(R̂) = cminσn(V)/σ1(V) = cminκ(V).
For the remainder of the paper, we focus on the mixed-precision CholQR which

uses the doubled precision at the first two steps of CholQR, while using the working
precision at the last step. The following theorem specializes Theorem 3.2 for this
particular implementation of the mixed-precision CholQR.

Theorem 3.3. If the doubled precision is used for the first two steps of CholQR,
and εd is the machine epsilon in the working precision (i.e., ε1 = ε2 = ε2d and ε3 = εd),
then we have

‖I − Q̂T Q̂‖2 ≤ O
(
εdκ(V) + (εdκ(V))

2
)

and

‖Q̂‖2 = 1 +O
(
(εdκ(V))1/2 + εdκ(V)

)
.

In particular, with our assumption made at Step 2 of CholQR (i.e., κ(V) ≤ ε−1
d), we

have

‖I − Q̂T Q̂‖2 ≤ O (εdκ(V)) and ‖Q̂‖2 = O(1).

Proof. To specialize Theorem 3.2 for our implementation, we replace ε1 and ε2
with the doubled precision ε2d, and ε3 with the working precision εd. Then, we have

(3.1) ‖I − Q̂T Q̂‖2 ≤ O
(
εdκ(V)‖Q̂‖2 + (εdκ(V))2

)
.

Clearly, ‖Q̂‖2 is bounded as

‖Q̂‖2 ≤ ‖V ‖2‖R̂−1‖2 = O(κ(V)).

This leads to the same bound on the orthogonality error as that of the standard
CholQR:

(3.2) ‖I − Q̂T Q̂‖ ≤ O
(
εdκ(V)2

)
.

Now, according to [14, 21, Lemma 4.2], we have

if ‖I − Q̂T Q̂‖2 ≤ α, then ‖Q̂T Q̂‖2 = ‖Q̂‖22 ≤ 1 + α,

and ‖Q̂‖2 ≤ 1 +
√
α, where α ≥ 0.(3.3)

Therefore, for the matrix Q̂ satisfying (3.2), we at least have

‖Q̂‖2 ≤ 1 +O
(
ε

1
2

d κ(V)
)
.

This bound on ‖Q̂‖2 can be substituted back into our orthogonality error bound (3.1)
to obtain

‖I − Q̂T Q̂‖2 ≤ O
(
εdκ(V) + ε

3
2

d κ(V)2 + (εdκ(V))2
)
.

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MIXED-PRECISION CHOLESKY QR FACTORIZATION C315

By substituting this new error bound into (3.3), we obtain a tighter bound on ‖Q̂‖2,

‖Q̂‖2 ≤ 1 +O
(
(εdκ(V))

1
2 + ε

3
4

d κ(V) + εdκ(V)
)
,

which can be substituted back into our orthogonality error bound (3.1) to obtain a
tighter error bound,

‖I − Q̂T Q̂‖2 ≤ O
(
εdκ(V) + (εdκ(V))

3
2 + ε

7
4

d κ(V)2 + (εdκ(V))2
)
.

This gives us an even tighter bound on ‖Q̂‖2,

‖Q̂‖2 ≤ 1 +O
(
(εdκ(V))

1
2 + (εdκ(V))

3
4 + ε

7
8

d κ(V) + εdκ(V)
)
,

which, in return, gives us a yet tighter error bound,

‖I − Q̂T Q̂‖2 ≤ O
(
εdκ(V) + (εdκ(V))

3
2 + (εdκ(V))

7
4 + ε

15
8

d κ(V)2 + (εdκ(V))2
)
.

After recursively applying this process � times, we have

‖Q̂‖2 ≤ 1 +O

(
�∑

k=1

(εdκ(V))1−(1/2)k +
(
1 + ε

−(1/2)�+1

d

)
εdκ(V)

)

and

‖I − Q̂T Q̂‖2 ≤ O

((
1 +

�∑
k=1

(εdκ(V))1−(1/2)k

)
εdκ(V) +

(
1 + ε

−(1/2)�+1

d

)
(εdκ(V))2

)
.

Now if κ(V) < ε−1
d (i.e., εdκ(V) < 1), then for k ≥ 1, we have εdκ(V) <

(εdκ(V))(1/2)
k

, and thus, equivalently, (εdκ(V))1−(1/2)k < 1. Therefore, we obtain
the following upper-bound on the orthogonality error:

‖I − Q̂T Q̂‖2 < O
(
(1 + �)εdκ(V) +

(
1 + ε

−(1/2)�+1

d

)
(εdκ(V))2

)
.

Furthermore, for εd = c · 2−p, when � = log2(p), we have ε
−(1/2)�+1

d = O(1) (e.g., for
the IEEE standard 64-bit double precision, we have p = 53, and � = 5) and obtain

‖I − Q̂T Q̂‖2 < O
(
(1 + log2(p))εdκ(V) +

(
1 + ε

−(1/2)log2(p)+1

d

)
(εdκ(V))2

)
= O

(
εdκ(V) + (εdκ(V))2

)
.

Finally, since (εdκ(V))2 < εdκ(V) for εdκ(V) < 1, we arrive at the error bound,

‖I − Q̂T Q̂‖2 ≤ O(εdκ(V)),

and the bound

‖Q̂‖2 ≤ 1 +O
(
(εdκ(V))1/2

)
= O(1).

MGS [5] is another popular orthogonalization procedure whose normwise orthog-
onality error is bounded by O(εdκ(V)) (see Figure 3), and it was stable in our previous

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C316 I. YAMAZAKI, S. TOMOV, AND J. DONGARRA

numerical studies [25]. However, MGS is based on BLAS-1 and obtains only a fraction
of the standard CholQR performance, as shown in Figure 4.

The following theorem provides an upper-bound on the condition number of the
matrix Q̂ computed using the mixed-precision CholQR.

Theorem 3.4. When κ(V) < ε−1
d , the condition number of the matrix Q̂ com-

puted using the mixed-precision CholQR is bounded by

κ(Q̂) ≤ 1 +O(εdκ(V)).

Proof. According to the analysis in [21, Proposition 4.3], if ‖I − Q̂T Q̂‖2 ≤ α < 1,
then we have

κ(Q̂) ≤
√

1 + α

1− α
=

√
1 +

2α

1− α

≤ 1 +
α

1− α
.

We obtain the desired bound by substituting α = O(εdκ(V)) for the mixed-precision
CholQR with the assumption that εdκ(V) is bounded away from one.

Theorems 3.3 and 3.4 together imply that when κ(V) < ε−1
d , after one reorthogo-

nalization, the orthogonality error ‖I − Q̂T Q̂‖2 of the mixed-precision CholQR would
be in the order of the working precision εd.

3.2. Numerical results. In this subsection, we present experimental results to
compare the numerical behaviors of the standard and mixed-precision CholQR in the
working 64-bit double precision, where we refer to the standard and mixed-precision
CholQR as d-CholQR and dd-CholQR, respectively. The test matrices are those
from [21] and are listed in Figure 5. In Figures 6 through 13, we show the orthogonality

errors and the condition numbers of the matrix Q̂ computed by iteratively applying
d-CholQR or dd-CholQR. With the standard d-CholQR, the first and the first two
Cholesky factorizations failed orthogonalizing the 20 and 30 Krylov vectors of the
two-dimensional (2D) Laplacian, respectively (Figures 6 and 8), while for the Hilbert
and synthetic matrices, it failed four times and once, respectively (Figures 10 and
12). On the other hand, with the mixed-precision dd-CholQR, only the first and
the first two Cholesky factorizations of the 2D Laplacian and Hilbert matrix failed,
respectively. When the Cholesky factorization failed (i.e., encountered a nonpositive

pivot), we set the trailing submatrix of R̂ to be identity. Hence, we implicitly blocked
the columns of the input matrix V and orthonormalized the columns block by block
such that the corresponding leading submatrix of its Gram matrix has a condition
number less than the reciprocal of the machine epsilon used at Step 2 of CholQR, and
its Cholesky factorization can be computed.

In Figures 6 and 7, the condition number of the input matrix is less than the
reciprocal of the machine precision (i.e., κ(V) < ε−1

d), and the error norms and the

condition numbers of Q̂ computed by dd-CholQR converged similarly to those of
standard d-MGS, agreeing with our upper-bounds from section 3.1. On the other
hand, the condition numbers of the matrices in Figures 8 through 13 are greater than
the reciprocal of the machine precision, and our upper-bounds may not hold. However,
by orthonormalizing the columns of V block by block, though dd-CholQR converged

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MIXED-PRECISION CHOLESKY QR FACTORIZATION C317

Name m n V κ(V)

K20(A,1) of 2D Laplacian A 1089 20 [1m, A1m, A21m, . . . , A201m] 8.6 × 1013

K30(A,1) of 2D Laplacian A 1089 30 [1m, A1m, A21m, . . . , A301m] 3.5 × 1019

Hilbert matrix 100 100 vi,j = (i + j − 1)−1 6.6 × 1019

Synthetic matrix 101 100 [1T
n ; diag(rand(m, 1) ∗ ε3d] 7.8 × 1018

Fig. 5. Test matrices used for numerical experiments, where the Laplacian matrix A is of the
dimension 1089-by-1089, 1m is the m-length vector of all ones, vi,j is the (i, j)th element of V ,
rand(m, 1) is the m-length vector of random real numbers from a uniform distribution on the open
interval (0, 1), and the condition number κ(V) is based on the singular values of V computed using
MATLAB.

Iteration d-CGS d-MGS d-CAQR d-SVQR d-CholQR dd-CholQR

1 9 × 100 2 × 10−4 2 × 10−15 7 × 100 6 × 100 (f) 1 × 10−4

2 4 × 100 1 × 10−15 1 × 10−15 9 × 10−7 2 × 100 1 × 10−15

3 2 × 10−6 7 × 10−15 6 × 10−15

4 1 × 10−15

Fig. 6. Error norm ‖I − Q̂T Q̂‖2 for K20(A, 1) of 2D Laplacian matrix A.

Iteration d-CGS d-MGS d-CAQR d-SVQR d-CholQR dd-CholQR

1 3 × 1011 1 × 100 1 × 100 9 × 104 2 × 1010 (f) 1 × 100

2 2 × 106 1 × 100 1 × 100 1 × 100 2 × 100 1 × 100

3 1 × 100 1 × 100 1 × 100

4 1 × 100

Fig. 7. Condition number κ(Q̂) for K(A, 20) of 2D Laplacian matrix A.

Iteration d-CGS d-MGS d-CAQR d-SVQR d-CholQR dd-CholQR

1 2 × 102 9 × 10−1 2 × 10−16 3 × 100 2 × 109 (f) 1 × 100 (f)

2 1 × 101 1 × 10−15 1 × 100 2 × 102 (f) 9 × 10−12

3 9 × 100 8 × 10−13 1 × 100 1 × 10−15

4 3 × 100 7 × 10−15 2 × 10−9

5 2 × 10−9 5 × 10−15

6 1 × 10−15

Fig. 8. Error norm ‖I − Q̂T Q̂‖2 for K30(A,1) of 2D Laplacian A.

Iteration d-CGS d-MGS d-CAQR d-SVQR d-CholQR dd-CholQR

1 1 × 1016 5 × 100 1 × 100 3 × 109 1 × 1018 (f) 5 × 1010 (f)
2 7 × 1013 1 × 100 4 × 101 2 × 1013 (f) 1 × 100

3 2 × 1010 1 × 100 1 × 109 1 × 100

4 7 × 104 1 × 100 1 × 100

5 1 × 100 1 × 100

6 1 × 100

Fig. 9. Condition number κ(Q̂) for K30(A, 1) of 2D Laplacian A.

Iteration d-CGS d-MGS d-CAQR d-SVQR d-CholQR dd-CholQR

1 9 × 101 1 × 10−1 2 × 10−15 1 × 100 1 × 100 (f) 1 × 100 (f)

2 9 × 101 3 × 10−14 4 × 100 1 × 100 (f) 1 × 100 (f)
3 8 × 101 9 × 10−16 2 × 10−9 1 × 100 (f) 2 × 10−10

4 8 × 101 1 × 10−14 1 × 100 (f) 1 × 10−15

5 6 × 101 9 × 10−15 5 × 10−4

6 4 × 101 1 × 10−15

7 8 × 100

8 4 × 10−14

9 1 × 10−15

Fig. 10. Error norm ‖I − Q̂T Q̂‖2 for Hilbert matrix.

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C318 I. YAMAZAKI, S. TOMOV, AND J. DONGARRA

Iteration d-CGS d-MGS d-CAQR d-SVQR d-CholQR dd-CholQR

1 2 × 1018 2 × 102 1 × 100 2 × 1012 4 × 1018 (f) 4 × 1018 (f)
2 4 × 1016 1 × 100 6 × 104 1 × 1017 (f) 2 × 100 (f)
3 3 × 1014 1 × 100 1 × 100 1 × 1015 (f) 1 × 100

4 7 × 1012 1 × 100 1 × 100 (f) 1 × 100

5 8 × 1010 1 × 100 1 × 100

6 1 × 109 1 × 100

7 2 × 102

8 1 × 100

9 1 × 100

Fig. 11. Condition number κ(Q̂) for Hilbert matrix.

Iteration d-CGS d-MGS d-CAQR d-SVQR d-CholQR dd-CholQR

1 2 × 101 7 × 10−16 4 × 10−15 1 × 100 1 × 100 (f) 3 × 10−15

2 3 × 10−14 5 × 10−16 2 × 10−8 7 × 10−15 3 × 10−16

3 6 × 10−16 3 × 10−14 5 × 10−16 3 × 10−16

4 9 × 10−15 4 × 10−16

Fig. 12. Error norm ‖I − Q̂T Q̂‖2 for synthetic matrix.

more slowly than d-MGS, it converged faster than d-CGS, d-CholQR, or d-SVQR.3

This may be explained by the term O((εdκ(V))2) in the upper-bound on the error

norm ‖I−Q̂T Q̂‖2 in Theorem 3.2. Because of this term, the error norm of dd-CholQR
may be greater than that of d-MGS. However, it is smaller than those of the other
standard schemes d-CGS, or d-CholQR and d-SVQR, due to the term O(εdκ(V)n−1)
or O(εdκ(V)2), respectively, in their error norm upper-bounds. Finally, for all the
test matrices, d-CAQR converged in one iteration. This is because, for the results
in this subsection, we conducted all the experiments with one GPU, and d-CAQR is
equivalent to the Householder QR factorization.

3.3. GPU implementation. Since the input matrix V is tall-skinny (i.e.,
n � m), CholQR spends only a small portion of its orthogonalization time com-
puting the Cholesky factorization of the Gram matrix B at Step 2. In addition,
solving the triangular system with many right-hand sides at Step 3 exhibits a high
parallelism and can be implemented efficiently on a GPU. On the other hand, at
Step 1, computing each element of the Gram matrix requires a reduction operation
on two m-length vectors (i.e., the (i, j)th element of B is given by bi,j := vT

i vj).
These inner-products (InnerProds) exhibit only limited parallelism and are memory-
bandwidth limited since they perform only at most n flops for each floating-point
number read (e.g., n = O(10)). Hence, Step 1 often becomes the bottleneck, where
standard implementations fail to obtain high-performance on the GPU.

In our GPU implementation of a matrix-matrix (GEMM) multiply, B := XTY ,
to compute InnerProds, the matrices X and Y are divided into h-by-mb and h-by-nb

submatrices, where the (k, i)th block of X and the (k, j)th block of Y are denoted by
X(k, i) and Y (k, j), respectively. Then, the (i, j, k)th thread block computes a partial
result, B(i, j)(k) := X(k, i)TY (k, j), where each of the nt threads in the thread block
first independently computes a partial result in its local registers, as illustrated in

3Our implementation of SVQR implicitly works with the normalized input matrix V by sym-
metrically scaling the Gram matrix B such that B := D−1/2BD−1/2, where the diagonal entries of
the diagonal matrix D are those of B. In addition, we set the singular values that are in the same
order as or less than O(εdσn) to be εdσn, where εd is the machine epsilon in the working precision
and σn is the largest singular value of the Gram matrix. These two techniques from [21] significantly
improved the stability of SVQR.

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MIXED-PRECISION CHOLESKY QR FACTORIZATION C319

Iteration d-CGS d-MGS d-CAQR d-SVQR d-CholQR dd-CholQR

1 5 × 101 1 × 100 1 × 100 4 × 1010 3 × 1017 (f) 1 × 100

2 1 × 100 1 × 100 1 × 100 1 × 100 1 × 100

3 1 × 100 1 × 100 1 × 100 1 × 100

4 1 × 100 1 × 100

Fig. 13. Condition number κ(Q̂) for synthetic matrix.

mb

X T

bn

B

Y

b

bn

=

nt

nt

h

h

m

*

(a) Matrix blocking (arrows within the subblock shows
data access by a GPU thread).

double regB[mb][nb], regX[mb], regY
for � = 1, 2, . . . , h

nt
do

for j = 1, 2, . . . , nb do
regX[i] = x�·nt,j

end for
for j = 1, 2, . . . , nb do

regY = y
�·nt,j

for i = 1, 2, . . . ,mb do
regB[i][j] + = regX[i] · regY

end for
end for

end for

(b) Pseudocode executed by (i, j, k)th
thread to compute X(k, i)T Y (k, j);
x�,j is the (�, j)th element of X(k, i).

Fig. 14. Implementation of InnerProds on a GPU.

Figures 14(a) and 14(b). Then, the final partial result B(i, j)(k) is computed through
the binary reduction of the partial results among its threads, summing nr columns at
a time using the shared memory to store nt × (mb × nr) numerical values.4 The final
result B(i, j) is computed by launching another CUDA kernel to perform another
binary reduction among the thread blocks. Our implementation is designed to reduce
the number of synchronizations among the threads while relying on the CUDA runtime
and the parameter tuning to exploit the data locality. For the symmetric (SYRK)
multiply, B := V TV , the thread blocks compute only a triangular part of B and read
V (k, j) once for computing a diagonal block (i.e., k = j).

When the target hardware does not support the desired higher precision, soft-
ware emulation is needed. For instance, double-double (dd) precision emulates the
quadruple precision by representing each numerical value by an unevaluated sum of
two double precision numbers and is capable of representing the 106-bit precision,
while a standard 64-bit double precision number is of 53-bit precision. There are
two standard implementations [12] of adding two numerical values in double-double
precision, a + b = ĉ + e, where e is the round-off error; one satisfies the IEEE-style
error bound (e = δ(a+ b) with |δ| ≤ 2εdd and εdd = 2−105), and the other satisfies the
weaker Cray-style error bound (e = δ1a+ δ2b with |δ1|, |δ2| ≤ εdd). Figure 15 lists the
computational costs of the double-double arithmetic required by our mixed-precision
InnerProds that reads the input matrices in the working double precision but accu-
mulates the intermediate results and writes the output matrix in the double-double
precision. By taking advantage of the working precision inputs, we not only reduce
the amount of the intra-GPU communication (i.e., the input matrices are read into
registers in double precision) but also reduce the number of floating-point instructions
required for the double-double multiplication.

4In the current implementation, the numbers of rows and columns in X and Y are a multiple of
h, and multiples of mb and nb, respectively, where nb is a multiple of nr .

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C320 I. YAMAZAKI, S. TOMOV, AND J. DONGARRA

of double precision instructions
Double-double operation Add/Substitution Multiply FMA Total

Multiply (double-double input) 5 3 1 9
Multiply (double input) 3 1 1 5
Addition (IEEE-style) 20 0 0 20
Addition (Cray-style) 11 0 0 11

Fig. 15. Number of required double precision instructions to perform double-double operations.

CPU NVIDIA GPUs gcc MKL CUDA

2× 8 Intel Xeon E5-2670 (2.60GHz) 3×M2090 4.4.6 2011 sp1 5.0.35
2× 8 Intel Genuine (2.60GHz) 1×K20c 4.4.7 2013 sp1 5.5.22
2× 8 Intel Genuine (2.60GHz) 1×K40 4.4.7 2013 sp1 5.5.22

Fig. 16. Experiment testbeds.

The standard CholQR (d-CholQR in double precision) performs about half of
its total flops at Step 1 and the other half at Step 3. Hence, using double-double
precision with Cray-style error bound for Steps 1 and 2, our dd-CholQR performs
about 8.5×more instructions than d-CholQR. On the other hand, the communication
cost increases less significantly. Each thread moves about the same amount of data
on each GPU, writing only the n-by-n output matrix in the double-double precision
while reading the local part of the m-by-n input matrix in double precision (i.e.,
n � m). More specifically, our implementation moves O(mn · (n/min(mb, nb))) data
in double precision and O(n2 · (m/h)) data in double-double precision through the
local memory hierarchy, where both n/min(mb, nb) and m/h are small scalars (e.g.,
n/min(mb, nb) ≈ 5, m/h ≈ 100, and m/n = O(105) in our experiments). The amount
of data moved between the thread blocks is doubled, but with the same communication
latency. In addition, the amount of the data reduction between the GPUs is much
less than the total amount of the intra-GPU communication (i.e., 16 · (n2ng) bytes for
inter-GPU reduction in comparison to 8(mn/ng) bytes for intra-GPU communication,
where n ≈ 10 and m = O(106) in our experiments). As a result, in comparison to
the computational overheads of using the double-double arithmetic at the first two
steps of CholQR, the increase in the communication is typically less significant. The
performance results in the next section verify this.

3.4. Performance. We now study the performance of our mixed-precision com-
putational kernels on the testbeds shown in Figure 16. First, Figure 17 compares the
performance of our standard double-precision matrix-matrix multiply d-GEMM and
mixed-precision dd-GEMM on different NVIDIA GPUs.5 Each GPU has a different
relative cost of communication to computation, and on top of each plot in parentheses,
we show the ratio of the double-precision peak performance (Gflop/s) over the shared
memory bandwidth (GB/s) (i.e., flop/B to obtain the peak). This ratio tends to in-
crease on a newer architecture, indicating a greater relative cost of communication.
We tuned our GPU kernels for each matrix dimension in each precision on each GPU
(see the five tunable parameters h, mb, nb, nr, and nt in section 3.3), and the figure
shows the optimal performance. Based on the fixed number of columns and the shared
memory bandwidth in the figure, the respective peak performances of d-GEMM are

5Our standard implementation does everything in the working precision. On the other hand, our
mixed-precision implementation reads the input matrices in the working precision, but it accumulates
the intermediate results and writes the output matrix in the doubled precision.

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MIXED-PRECISION CHOLESKY QR FACTORIZATION C321

0 50K 100K 150K 200K 250K 300K 350K 400K 450K 500K
0

50

100

150

200

250

300

Number of rows (n)

D
G

E
M

M
 G

fl
o
p
/s

Tesla M2090 (666/177=3.8)

d−SYRK
d−GEMM
dd−SYRK (Cray)
dd−SYRK (IEEE)
dd−GEMM (Cray)
dd−GEMM (IEEE)
CUBLAS 5.5

0 50K 100K 150K 200K 250K 300K 350K 400K 450K 500K
3

4

5

6

7

Number of rows (n)

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e

Tesla M2090 (666/177=3.8)

dd−SYRK (IEEE)
dd−GEMM (IEEE)
dd−SYRK (Cray)
dd−GEMM (Cray)

0 50K 100K 150K 200K 250K 300K 350K 400K 450K 500K
0

50

100

150

200

250

300

Number of rows (n)

D
G

E
M

M
 G

fl
o
p
/s

Tesla K20c (1310/250=5.2)

d−SYRK
d−GEMM
dd−SYRK (Cray)
dd−SYRK (IEEE)
dd−GEMM (Cray)
dd−GEMM (IEEE)
CUBLAS 5.5

0 50K 100K 150K 200K 250K 300K 350K 400K 450K 500K
3

4

5

6

7

Number of rows (n)
R

e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e

Tesla K20c (1310/250=5.2)

dd−SYRK (IEEE)
dd−GEMM (IEEE)
dd−SYRK (Cray)
dd−GEMM (Cray)

0 50K 100K 150K 200K 250K 300K 350K 400K 450K 500K
0

50

100

150

200

250

300

Number of rows (n)

D
G

E
M

M
 G

fl
o
p
/s

Tesla K40 (1430/288=5.0)

d−SYRK
d−GEMM
dd−SYRK (Cray)
dd−SYRK (IEEE)
dd−GEMM (Cray)
dd−GEMM (IEEE)
CUBLAS 5.5

0 50K 100K 150K 200K 250K 300K 350K 400K 450K 500K
3

4

5

6

7

Number of rows (n)

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e

Tesla K40 (1430/288=5.0)

dd−SYRK (IEEE)
dd−GEMM (IEEE)
dd−SYRK (Cray)
dd−GEMM (Cray)

Fig. 17. Performance of standard and mixed-precision InnerProds in double precision, n = 20.
Gflop/s is computed as the ratio of the number of flops required by the standard algorithm over time
in seconds.

442, 625, and 720Gflop/s on M2090, K20c, and K40 GPUs. Our d-GEMM obtained
29, 26, and 28% of these peak performances and speedups of about 1.8, 1.7, and 1.7
over CUBLAS on M2090, K20c, and K40 GPUs, respectively.6 In addition, though it
performs 16× more instructions, the gap between dd-GEMM and d-GEMM tends to
decrease on a newer architecture with a lower computational cost, and dd-GEMM is
only about 3× slower on K20c. The figure also shows that by taking advantage of the
symmetry, both d-SYRK and dd-SYRK obtain significant speedups over d-GEMM
and dd-GEMM, respectively.

Figure 18 shows the performance of the standard matrix-matrix multiply s-GEMM
and mixed-precision ss-GEMM for the working 32-bit single precision. For ss-GEMM,
the input matrix is in single precision, but the intermediate results are computed in
double precision. Hence, the higher-precision is now supported by the hardware. As
a result, even on M2090, the performance of the mixed-precision ss-GEMM is much
closer to that of standard s-GEMM, compared to the performance of dd-GEMM to
that of d-GEMM in double precision, where the software emulation is needed. In

6Compared to a previous version, the performance of standard xGEMM has been significantly
improved for these tall-skinny matrices in CUBLAS 5.5 (see the performance of CUBLAS 4.2 in
our previous paper [25]). In comparison, the CUBLAS xSYRK still obtains significantly lower per-
formance for our purpose (the latest version of CUBLAS includes an implementation of “batched”
xGEMM but not of “batched” xSYRK).

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C322 I. YAMAZAKI, S. TOMOV, AND J. DONGARRA

0 50K 100K 150K 200K 250K 300K 350K 400K 450K 500K
0

100

200

300

400

500

600

Number of rows (n)

S
G

E
M

M
 G

fl
o
p
/s

Tesla M2090 (1332/177=7.5)

s−SYRK
ss−SYRK
s−GEMM
ss−GEMM
CUBLAS 5.0

0 50K 100K 150K 200K 250K 300K 350K 400K 450K 500K
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Number of rows (n)

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e

Tesla M2090 (1332/177=7.5)

ss−SYRK
ss−GEMM

0 50K 100K 150K 200K 250K 300K 350K 400K 450K 500K
0

100

200

300

400

500

600

Number of rows (n)

S
G

E
M

M
 G

fl
o
p
/s

Tesla K20c (3930/250=15.7)

s−SYRK
ss−SYRK
s−GEMM
ss−GEMM
CUBLAS 5.5

0 50K 100K 150K 200K 250K 300K 350K 400K 450K 500K
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Number of rows (n)
R

e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e

Tesla K20c (3930/250=15.7)

ss−SYRK
ss−GEMM

0 50K 100K 150K 200K 250K 300K 350K 400K 450K 500K
0

100

200

300

400

500

600

Number of rows (n)

S
G

E
M

M
 G

fl
o
p
/s

Tesla K40 (4290/288=14.9)

s−SYRK
ss−SYRK
s−GEMM
ss−GEMM
CUBLAS 5.5

0 50K 100K 150K 200K 250K 300K 350K 400K 450K 500K
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Number of rows (n)

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e

Tesla K40 (4290/288=14.9)

ss−SYRK
ss−GEMM

Fig. 18. Performance of standard and mixed-precision InnerProds in single precision, n = 20.

addition, by taking advantage of the single-precision input, ss-GEMM is significantly
more efficient, obtaining over 300Gflop/s, in comparison to d-GEMM which obtains
just over 150Gflop/s.

Finally, we compare the performance of the standard and mixed-precision CholQR
in the working 64-bit double precision. For mixed-precision dd-CholQR, the Cholesky
factorization in the double-double precision is computed using MPACK7 on the CPU,
while for standard d-CholQR, the factorization is computed using threaded MKL.
Figure 19(a) shows the breakdown of d-CholQR orthogonalization time. Because of
our efficient implementation of InnerProds, only about 30% of the orthogonalization
time is now spent in d-GEMM. As a result, with the Cray-style error bound, while
dd-InnerProds was about 3× slower than d-InnerProds, Figure 19(b) shows that dd-
CholQR is only about 1.7× or 1.4× slower than d-CholQR when GEMM or SYRK is
used for InnerProds, respectively.

4. Case studies with CA-GMRES and CA-Lanczos. We now study the
effects of the mixed-precision dd-CholQR on the performance of CA-GMRES and CA-
Lanczos. We first give the brief motivation and description of the solvers in section 4.1
and then present the experimental results on a multicore CPU with multiple GPUs
in section 4.2.

7http://mplapack.sourceforge.net

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://mplapack.sourceforge.net

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MIXED-PRECISION CHOLESKY QR FACTORIZATION C323

0 50K 100K 150K 200K 250K 300K 350K 400K 450K 500K
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of rows (m)

N
or

m
al

iz
ed

 ti
m

e

Number of columns=20 (n)

Triangular Solve (d−TRSM)
Cholesky Factorization (d−POTRF)
Matrix−Matrix Multiply (d−GEMM)

(a) d-CholQR time breakdown.

0 50K 100K 150K 200K 250K 300K 350K 400K 450K 500K
0

10

20

30

40

50

60

70

80

Number of rows (m)

C
ho

lQ
R

 G
flo

p/
s

Number of columns=20 (n)

d−CholQR with d−SYRK
d−CholQR with d−GEMM
dd−CholQR with dd−SYRK (Cray)
dd−CholQR with dd−GEMM (Cray)

(b) d/dd-CholQR performance.

Fig. 19. Performance comparison with K20c. Gflop/s is based on the flop count of d-CholQR.

x̂ := 0 and q1 := b/‖b‖2.
repeat (restart-loop)

1.Generate Projection Subspace O(n · nnz(|A|) + n2m) flops on GPUs:
for j = 1, 2, . . . , n do

SpMV : Generate a new vector vj+1 := Avj.
Orth: Orthonormalize vj+1 against q1,q2, . . . ,qj

to generate the next basis vector qj+1.
end for
2.Solve Projected Subsystem O(n2) flops on CPU, and

Restart Iteration O(nm) flops on GPUs:
GMRES: Lanczos:

Compute the solution x̂, Compute eigenpairs (̂λi, x̂i)
in generated subspace, which in generated subspace, which
minimizes its residual norm. minimizes their residual norms.

Set q1 := r/‖r‖2 , where r := b−Ax̂. if necessary then prepare to thick-restart.
until solution convergence.

Fig. 20. Pseudocode of GMRES(n) and Lanczos(n), where A is the m-by-m coefficient matrix
of the linear system or the eigenvalue problem.

4.1. Algorithms. When solving a large-scale linear system of equations or eigen-
value problem, an iterative method is often preferred over a direct method. This is
because though a direct method computes the solution with a fixed number of flops
in a numerically stable manner, its memory and/or computational costs of direct fac-
torization may be unfeasibly expensive. A parallel computer with a large aggregated
memory and a high computing capacity may provide a remedy to this large cost of
factorization, but the per-core memory requirement or the total solution time of a
parallel direct solver may not scale due to the extensive amount of communication
or the associated memory overhead for the message buffers. As a result, an iterative
method with a lower memory and/or computational costs may become more attractive
or could be the only feasible alternative. Krylov subspace projection methods [17, 23]
are a popular class of iterative methods for solving such large-scale problems. For our
case studies in this paper, we used two well-known Krylov methods: the generalized
minimum residual (GMRES) method [19] for solving nonsymmetric linear systems of

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C324 I. YAMAZAKI, S. TOMOV, AND J. DONGARRA

x̂ := 0 and v1 := b/‖b‖2.
repeat (restart-loop)

1.Generate Projection Subspace on GPUs:

for j = 1, s+ 1, 2s + 1, . . . , n do
MPK : Generate new vectors vk+1 := Avk

for k = j, j + 1, . . . ,min(j + s, n).
BOrth: Orthogonalize Vj+1:j+s+1 against V1:j .
TSQR: Generate Qj+1:j+s+1

by orthonormalizing Vj+1:j+s+1 within.
end for

2.Solve Projected Subsystem on CPU, and
Restart Iteration on GPUs:

Compute the solution x̂ in the generated subspace,
which minimizes its residual norm.

Set v1 := r/‖r‖2, where r := b−Ax̂.
until solution convergence do

Fig. 21. Pseudocode of CA-GMRES(s,n).

equations and the Lanczos method [16] for solving symmetric eigenvalue problems.
Starting with an initial input vector q1, the jth iteration of GMRES or Lanc-

zos generates the (j + 1)th Krylov basis vector qj+1 by multiplying the previously
generated vector qj with the sparse coefficient matrix A (SpMV), followed by its
orthonormalization (Orth) against all the previously orthonormalized basis vectors
q1,q2, . . . ,qj . As the iteration continues, the computational and memory require-
ments of Orth becomes increasingly expensive. To limit the cost of generating the
basis vectors, the iteration is restarted after computing n+ 1 basis vectors, using the
best approximate solution in the generated Krylov subspace as a new initial vector.
Typically, the computational cost of this restarted Krylov method is dominated by
the combined cost of SpMV and Orth. Hence, to accelerate the solution process,
we generate these basis vectors on the GPU, while solving the projected subsystem
on the CPU.8 To utilize multiple GPUs, we use a matrix reordering or graph par-
titioning algorithm to distribute both the coefficient matrix A and the basis vectors
q1,q2, . . . ,qn+1 among the GPUs in a 1D block row format. Figure 20 shows the pseu-
docodes of GMRES(n) and Lanczos(n), where Qj:k is the matrix consisting of the jth
through the kth column vectors qj ,qj+1, . . . ,qk. Our Lanczos implementation uses
the three-term recurrence followed by the full reorthogonalization to maintain the or-
thogonality among the basis vectors, and thick restart [24] to improve its convergence
rate. A more detailed description of our implementation can be found in [25].

Both SpMV and Orth require communication. This includes the point-to-point
messages or the neighborhood collectives between the GPUs for SpMV, the global
all-reduces for Orth, and the data movements through the local memory hierarchy of
the GPU (for reading the sparse matrix and for reading and writing vectors). The
communication-avoiding variants of GMRES and Lanczos [13] (called CA-GMRES
and CA-Lanczos, respectively) aim to reduce this communication by redesigning the

8After solving the projected subsystem, the approximate solution is projected back to the projec-
tion subspace on the GPUs. This requires the dense matrix-vector or matrix-matrix multiply between
the generated subspace and the solution of the projected subsystem to update the computed solution
for GMRES or to compute the Ritz vectors for Lanczos, respectively.

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MIXED-PRECISION CHOLESKY QR FACTORIZATION C325

Name Source m/1000 nnz/m

cant FEM cantilever 62.4 64.2
shipsec1 FEM ship section 140.8 87.3

G3 circuit Circuit simulation 1585.4 4.8

Fig. 22. Test Matrices used for test cases with CA-GMRES.

0 5 10 15 20 25
10

−16

10
−8

10
0

10
8

10
16

10
24

||I
−

Q
T
Q

|| 2

Orthogonalization step

εκ(V)2

with d−CholQR
εκ(V)
with dd−CholQR
with 2× d−CholQR

(a) (s, n) = (15, 60).

0 2 4 6 8 10 12 14
10

−16

10
−8

10
0

10
8

10
16

10
24

10
32

10
40

10
48

||I
−

Q
T
Q

|| 2

Orthogonalization step

εκ(V)2

with d−CholQR
εκ(V)
with dd−CholQR
with 2× d−CholQR

(b) (s, n) = (30, 60).

Fig. 23. Orthogonality error norm and bound at each step of CA-GMRES with cant matrix.

algorithms and replacing SpMV and Orth with three new kernels—matrix-powers
kernel (MPK), block orthogonalization (BOrth), and tall-skinny QR (TSQR)—that
generate and orthogonalize a set of s basis vectors at once. Figure 21 shows the
pseudocode of CA-GMRES(s, n). In theory, CA-GMRES and CA-Lanczos generate
the s basis vectors with the communication cost of a single standard Krylov iteration
(plus a lower-order term). Our previous performance studies of CA-GMRES on a
multicore CPU with multiple GPUs [25] demonstrated that by avoiding the commu-
nication, CA-GMRES could obtain a speedup of up to two. In that previous study, we
also found that an efficient and numerically stable orthogonalization scheme is crucial
to achieve the high performance of CA-GMRES, and CholQR obtained the superior
performance based on the optimized BLAS-3 GPU kernels. Unfortunately, CholQR
may cause numerical instability. This is because even though using the Newton basis
improves the numerical stability [3], the vector vj may still converge to the princi-
pal eigenvector of A, and V1:s+1 can be ill-conditioned. As a result, in some cases,
CA-GMRES did not converge even with reorthogonalization.

In the next section, we study the effects of using the mixed-precision CholQR
to orthogonalize the s + 1 Krylov vectors at a time to generate the total of n + 1
orthonormal basis vectors over each restart cycle.

4.2. Experimental results. We now study the effects of the mixed-precision
dd-CholQR on the performance of CA-GMRES and CA-Lanczos. Figure 22 shows
the properties of our test matrices from the University of Florida Sparse Matrix Col-

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C326 I. YAMAZAKI, S. TOMOV, AND J. DONGARRA

||I−Q^TQ|| ||A−QR||/||A|| ||(A−QR)./A||

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

d−MGS
2× d−CGS
2× d−CholQR
dd−CholQR
2× d−SVQR
d−CAQR

(a) (s, n) = (15, 60).

||I−Q^TQ|| ||A−QR||_1/||A|| ||(A−QR)./A||
10

−16

10
−12

10
−8

10
−4

10
0

10
4

10
8

10
12

10
16

10
20

10
24

MGS
2× d−CGS
2× d−CholQR
dd−CholQR
2× d−SVQR
d−CAQR

(b) (s, n) = (30, 60).

Fig. 24. Average TSQR error 1-norms in CA-GMRES with cant matrix.

lection.9 First, Figure 23 shows the orthogonality error norm and its upper-bound
after each orthogonalization step of CA-GMRES(15, 60) for the cant matrix. The
figure shows that the orthogonality errors of dd-CholQR and d-CholQR depend lin-
early and quadratically on κ(V), respectively, agreeing with their upper-bounds in
section 3.1. Next, for the same matrix, Figure 24 shows the average error norms over
the CA-GMRES iterations using different orthogonalization schemes (see Figure 3 for
the description of the orthogonalization schemes). For this particular matrix, CGS,
CholQR, and SVQR require reorthogonalization for CA-GMRES to converge, and
the white bars show the error norms after the first orthogonalization. Though the
orthogonality error of dd-CholQR is slightly greater than that of MGS, CA-GMRES
converges with the same number of iterations without the reorthogonalization.

Finally, Figure 25 shows the normalized solution time of CA-GMRES on a 16-
core Intel CPU with one NVIDIA K20c GPU. The computed solution is considered
to have converged when the �2-norm of the initial residual is reduced by at least six
orders of magnitude for the double precision and five orders of magnitude for the
single precision. Using dd-CholQR, in these particular cases, the solution time was
reduced not only because the reorthogonalization was avoided but also because CA-
GMRES converged in fewer iterations. In addition, using ss-CholQR, which does not
require the software emulation, the solution time was reduced even with the same
number of iterations. Finally, Figure 26 shows the performance of CA-GMRES using
up to three M2090 GPUs for the G3 Circuit matrix. The matrix is distributed
among the GPUs such that each GPU has a similar number of rows after the reverse
Cuthill–McKee (RCM) matrix reordering [6] from HSL10 is applied. We see similar
performance improvements using the mixed precision on the multiple GPUs.

Figure 27 shows the performance of CA-Lanczos using d-CholQR and dd-CholQR
to compute the smallest 100 eigenvalues and the corresponding eigenvectors of a diago-
nal matrix A1(m) = diag(1, 2, . . . ,m). This test matrix was previously used in [20, 26].

9http://www.cise.ufl.edu/research/sparse/matrices/. Clearly, the effects of dd-CholQR depend
on the input matrix. Here, to demonstrate the potential performance benefit, we show only the
test cases where dd-CholQR improved the performance of the solvers. However, for other test cases
(e.g., well-conditioned matrices), dd-CholQR may degrade the performance. We are investigating an
adaptive scheme to decide when to use the mixed-precision or when to perform reorthogonalization
at run time based on the result of the Cholesky factorization.

10http://www.hsl.rl.ac.uk/catalogue/mc60.xml

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.hsl.rl.ac.uk/catalogue/mc60.xml

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MIXED-PRECISION CHOLESKY QR FACTORIZATION C327

GMRES d−GEMM dd−GEMM d−SYRK dd−SYRK
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
or

m
al

iz
ed

 T
im

e

cant with CA−GMRES(30,60), double

SpMV
BOrth
TSQR

GMRES d−GEMM dd−GEMM d−SYRK dd−SYRK
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
or

m
al

iz
ed

 T
im

e

shipsec1 with CA−GMRES(30,60), double

SpMV
BOrth
TSQR

GMRES s−GEMM ss−GEMM s−SYRK ss−SYRK
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

N
or

m
al

iz
ed

 T
im

e

G3_circuit with CA−GMRES(10,10), single

SpMV
BOrth
TSQR

2.68 (148)

9.68 (150)

3.93 (151)
4.10 (148)

2.64 (148)

8.15 (83)

11.57 (166)
11.30 (166)

6.65 (90)
6.30 (90)

2.34 (48)

2.89 (82)

1.95 (50)

2.80 (82)

1.84 (50)

Fig. 25. CA-GMRES performance with K20c: The total time in seconds and the restart count
are shown at the top of each bar. CA-GMRES with nonoptimal s got speedups over GMRES using
CGS.

Time (s)
ng Type Restart TSQR Orth SpMV Total Speedup

1 d 159 3.58 4.31 13.06 17.58
1 dd 85 2.85 3.26 6.98 10.38 1.69

2 d 194 2.63 3.10 10.50 13.91
2 dd 74 1.60 1.80 4.01 5.94 2.34

3 d 185 1.93 2.27 8.63 11.28
3 dd 81 1.42 1.58 3.75 5.50 2.05

Fig. 26. Parallel performance of CA-GMRES(30, 60) using d-CholQR and dd-CholQR for
G3 Circuit matrix on up to three Tesla M2090 GPUs. In the table, “restart” is the number of
restarts, “TSQR,” “Orth,” and “SpMV” are the times spent for TSQR, Orth, and SpMV, respec-
tively, and “Total” is the total solution time in seconds.

Our implementation of the Lanczos method is based on the thick restart Lanczos [26],
and its correctness has been verified using the test matrices in [29]. In these tests,
we found that dd-CholQR enables CA-Lanczos to converge using a larger step size
than was possible using d-CholQR. The GPU kernels obtained higher performance
using the larger step size, and the solution time of CA-Lanczos was reduced using
dd-CholQR.

5. Conclusion. We analyzed the numerical properties of a recently proposed
variant of the CholQR orthogonalization scheme, which uses mixed-precision arith-
metic to improve the numerical stability. Our analysis showed that the orthogonality
error of the mixed-precision variant depends linearly on the condition number of the
input matrix, while the original scheme depends quadratically. Though the higher
precision may require software emulation and increase the computational cost, the
increase in the communication cost is less significant. As a result, our performance
results showed that the overhead of using the mixed-precision arithmetic is decreasing
on a newer architecture where the relative cost of the computation is decreasing, com-

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C328 I. YAMAZAKI, S. TOMOV, AND J. DONGARRA

Time (s)
Type s Restart SpMV init Restart TSQR Orth SpMV Total

– A1(600K) –
d 20 94 5, 985 0.1 0.9 1.2 4.4 0.2 6.1

dd 20 92 5, 924 0.1 0.9 0.7 3.8 0.2 5.6
dd 30 106 6, 794 0.1 1.0 1.0 3.7 0.2 5.6

– A1(800K) –
d 20 108 6, 912 0.1 1.1 1.6 6.4 0.2 8.7

dd 20 111 7, 095 0.1 1.1 1.0 5.9 0.2 8.3
dd 30 108 6, 905 0.1 1.1 1.2 4.7 0.2 7.0

– A1(1, 00K) –
d 20 122 7, 698 0.2 1.3 2.0 8.9 0.3 10.3

dd 20 122 7, 759 0.2 1.2 1.2 7.2 0.3 10.9
dd 30 121 7, 698 0.2 1.3 1.4 5.8 0.3 8.6

Fig. 27. Performance of CA-Lanczos(n = 200) computing the smallest eigenvalues of A1 =
diag(1, 2, . . . , m) on Tesla K20c. In this table, “SpMV” is the number of SpMV operations, and
“init” and “restart” are the times needed for the first iteration and restart, respectively. For the
description of the other measurements, see Figure 26.

pared to the communication. Our case studies of using double-double arithmetic for
the working 64-bit double precision with CA-GMRES on a multicore CPU with mul-
tiple GPUs demonstrated that, though the mixed-precision CholQR requires about
8.5× more computation, the use of higher precision for this small but critical segment
of CA-GMRES can improve not only its overall stability but also, in some cases,
its performance by avoiding the reorthogonalization, improving the convergence rate,
and/or allowing a larger step size. This is especially the case when CA-GMRES
suffers from numerical instability using the standard orthogonalization scheme, even
with a small step size and with reorthogonalization (more so if the higher precision is
supported by the target hardware). We observed similar benefits for CA-Lanczos.

In this paper, we studied the performance of CA-GMRES on multiple GPUs of
a single compute node, where the performance of CA-GMRES depends more on the
performance of the GPU kernels (i.e., the intra-GPU communication) than on the
inter-GPU communication [25]. We plan to study the performance of the mixed-
precision orthogonalization scheme on systems where the communication becomes
more expensive (e.g., distributed GPUs, or CPUs), and where the scheme, therefore,
may lead to a greater performance improvement. Another great interest of ours is the
performance comparison of the mixed-precision CholQR against the communication-
avoiding QR (CAQR) [7], and extending SVQR to use mixed precision, which may
remove our assumption on the condition number to ensure the successful completion of
the Cholesky factorization. In addition, instead of using a higher precision to improve
the stability, we are also studying a mixed-precision scheme that selectively uses a
lower precision to improve the performance [28]. Finally, to improve the numerical
stability of the Krylov methods, we are studying adaptive schemes to adjust the block
size and/or to select the orthogonalization procedure at runtime. The GPU kernels
developed for this study will be released through the MAGMA library.11

11http://icl.utk.edu/magma/

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://icl.utk.edu/magma/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MIXED-PRECISION CHOLESKY QR FACTORIZATION C329

Acknowledgments. We would like to thank the editor and anonymous reviewers
for their great suggestions and comments.

REFERENCES

[1] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer, Communication-avoiding QR
decomposition for GPUs, in Proceedings of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS), IEEE, Washington, DC, 2011, pp. 48–58.

[2] T. Auckenthaler, T. Huckle, and R. Wittmann, A blocked QR-decomposition for the
parallel symmetric eigenvalue problem, Parallel Comput., 40 (2014), pp. 186–194.

[3] Z. Bai, D. Hu, and L. Reichel, A Newton basis GMRES implementation, IMA J. Numer.
Anal., 14 (1994), pp. 563–581.

[4] J. Barlow and A. Smoktunowicz, Reorthogonalized block classical Gram-Schmidt, Numer.
Math., 123 (2013), pp. 395–423.

[5] A. Björck, Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT, 7
(1967), pp. 1–21.

[6] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices, in Proceed-
ings of the 24th National ACM Conference (ACM ’69), ACM, New York, 1969, pp. 157–172.

[7] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-optimal parallel and
sequential QR and LU factorizations, SIAM J. Sci. Comput., 34 (2012), pp. A206–A239.

[8] S. Fuller and L. Millett, Future of Computing Performance: Game Over or Next Level?,
The National Academies Press, Washington, DC, 2011.

[9] G. Golub and C. van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, MD, 1996.

[10] S. Graham, M. Snir, and C. Patterson, Getting Up to Speed: The Future of Supercomputing,
The National Academies Press, Washington, DC, 2004.

[11] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288.

[12] Y. Hida, X. Li, and D. Bailey, Quad-double arithmetic: Algorithms, implementation, and
application, Tech. report LBNL-46996, Lawrence Berkeley National Laboratory, Berkeley,
CA, 2000.

[13] M. Hoemmen, Communication-Avoiding Krylov Subspace Methods, Ph.D. thesis, University of
California-Berkeley, Berkeley, CA, 2010.

[14] W. Hoffman, Iterative algorithms for Gram-Schmidt orthogonalization, Computing, 41 (1989),
pp. 335–348.

[15] A. Kielbasiński, Analiza numeryczna algorytmu ortogonlizacji Grama-Schmidta, Seria III:
Matematyka Stosowana II, 1974 (1974), pp. 15–35.

[16] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential
and integral operators, J. Res. Natl. Bur. Standards, 45 (1950), pp. 255–281.

[17] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[18] Y. Saad, Numerical Methods for Large Eigenvalue Problems, revised ed., SIAM, Philadelphia,

2011.
[19] Y. Saad and M. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
[20] A. Stathopoulos and K. Orginos, Computing and deflating eigenvalues while solving multiple

right-hand side linear systems with an application to quantum chromodynamics, SIAM
J. Sci. Comput., 32 (2010), pp. 439–462.

[21] A. Stathopoulos and K. Wu, A block orthogonalization procedure with constant synchroniza-
tion requirements, SIAM J. Sci. Comput., 23 (2002), pp. 2165–2182.

[22] L. N. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[23] H. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge University

Press, Cambridge, UK, 2003.
[24] K. Wu and H. Simon, Thick-restart Lanczos method for large symmetric eigenvalue problems,

SIAM J. Matrix Anal. Appl., 22 (2000), pp. 602–616.
[25] I. Yamazaki, H. Anzt, S. Tomov, M. Hoemmen, and J. Dongarra, Improving the perfor-

mance of CA-GMRES on multicores with multiple GPUs, in Proceedings of the IEEE
International Parallel and Distributed Processing Symposium (IPDPS), IEEE, Washing-
ton, DC, 2014, pp. 382–391.D

ow
nl

oa
de

d
07

/0
7/

16
 to

 1
30

.8
8.

12
3.

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C330 I. YAMAZAKI, S. TOMOV, AND J. DONGARRA

[26] I. Yamazaki, Z. Bai, H. Simon, L.-W. Wang, and K. Wu, Adaptive projection subspace
dimension for the thick-restart Lanczos method, ACM Trans. Math. Software, 37 (2010),
27.

[27] I. Yamazaki, S. Tomov, T. Dong, and J. Dongarra, Mixed-precision orthogonalization
scheme and adaptive step size for CA-GMRES on GPUs, Tech. report UT-EECS-14-730,
University of Tennessee, Knoxville; in High-Performance Computing for Computational
Science (VECPAR 2014), Springer, New York, to appear.

[28] I. Yamazaki, S. Tomov, and J. Dongarra, Stability and performance of various singular
value QR implementations and their case-studies with adaptive mixed-precision on multi-
core CPU with GPUs, 2015.

[29] I. Yamazaki and K. Wu, A communication-avoiding thick-restart Lanczos method on a
distributed-memory system, in Proceedings of the Workshop on Algorithms and Program-
ming Tools for Next-Generation High-Performance Scientific and Software (HPCC), 2011.

D
ow

nl
oa

de
d

07
/0

7/
16

 to
 1

30
.8

8.
12

3.
79

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

