
Research Paper

MAGMA templates for scalable linear
algebra on emerging architectures

Mohammed Al Farhan1 , Ahmad Abdelfattah1,
Stanimire Tomov1, Mark Gates1, Dalal Sukkari1,
Azzam Haidar2, Robert Rosenberg3 and Jack Dongarra1,4,5

Abstract
With the acquisition and widespread use of more resources that rely on accelerator/wide vector–based computing, there
has been a strong demand for science and engineering applications to take advantage of these latest assets. This, however,
has been extremely challenging due to the diversity of systems to support their extreme concurrency, complex memory
hierarchies, costly data movement, and heterogeneous node architectures. To address these challenges, we design a
programming model and describe its ease of use in the development of a new MAGMA Templates library that delivers high-
performance scalable linear algebra portable on current and emerging architectures. MAGMA Templates derives its
performance and portability by (1) building on existing state-of-the-art linear algebra libraries, like MAGMA, SLATE,
Trilinos, and vendor-optimized math libraries, and (2) providing access (seamlessly to the users) to the latest algorithms
and architecture-specific optimizations through a single, easy-to-use Cþþ-based API.

Keywords
Accelerator-driven computing, HPC, linear algebra, performance portability, polymorphism, programming models

1 Introduction

The dramatic advancements in microprocessor design over

the past couple of decades have significantly improved the

performance of scientific simulations. Nevertheless, the ever-

expanding gap between the developing demands for massive

computations and the languishing transistor budgets triggered

by the “retirement” of Moore’s Law has inevitably deterio-

rated the possible performance gains out of the architectural

advancements in the hardware design. Therefore, fine-

grained parallelism (Abduljabbar et al., 2018) required at the

node-level is becoming pervasive, especially since the per-

formance of a compute node that powers the current and

future supercomputers is highly dependent upon the perfor-

mance provided by a tightly coupled specialized hardware for

accelerator-driven computing (e.g., GPUs) connected

directly to the compute node via a high-bandwidth, high-

speed interconnect (e.g., NVIDIA NVLink) (Abduljabbar

et al., 2017).

The hierarchical, synergistic level of parallelism induced

by the complicated heterogeneity of the HPC compute node

makes squeezing out the full performance potentials from

supercomputers a daunting proposition. To this end, many

development efforts have been directed toward either porting

existing scientific kernels onto various emerging HPC archi-

tectures, or developing new kernels from ground up targeting

new hardware generations. Thus, the current available scien-

tific software stack, which is mostly diversified based on

either a specific hardware implementation or various

algorithm-centric formulations, is very extensive and diver-

gent. This in turn makes application developers confused

about which kernels to invoke or choose on a particular hard-

ware, or how to switch from one kernel that already powers

production-level applications to another, based on the under-

lying hardware or software.

To overcome the aforementioned issues and chal-

lenges, we develop MAGMA Templates, which is a set

of APIs and computational kernels/patterns—in other

words, templates—combined in a single new computational

library. MAGMA Templates provides the performance-

portable computational backend that many HPC scientific

1 The University of Tennessee, Knoxville, TN, USA
2 Nvidia Corporation, Santa Clara, CA, USA
3 Naval Research Laboratory, Washington, DC, USA
4 Oak Ridge National Laboratory, Oak Ridge, TN, USA
5 University of Manchester, Manchester, England, UK

Corresponding author:

Mohammed Al Farhan, Innovative Computing Laboratory, University of

Tennessee, Knoxville, TN 37996, USA.

Email: farhan@icl.utk.edu

The International Journal of High
Performance Computing Applications
2020, Vol. 34(6) 645–658
ª The Author(s) 2020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1094342020938421
journals.sagepub.com/home/hpc

https://orcid.org/0000-0002-4988-4674
https://orcid.org/0000-0002-4988-4674
mailto:farhan@icl.utk.edu
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1094342020938421
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342020938421&domain=pdf&date_stamp=2020-07-10

simulation production codes need in order to be easily ported

to new architectures.

The name of MAGMA Templates library is derived from

Matrix Algebra on GPU and Multicore Architectures

(MAGMA) library (Agullo et al., 2009; Tomov et al., 2010).

The reason is that we initially aimed to develop a modern, high-

level Cþþ backend API for MAGMA library. However, as the

scope of coverage was extended beyond MAGMA, e.g. to

include support for distributed-memory systems, we designed

MAGMA Templates to be a high-level thin layer set on top of

multiple numerical kernels/libraries. We therefore include sup-

port for Software for Linear Algebra Targeting Exascale

(SLATE) (Gates et al., 2019), Trilinos/PETSc/HYPRE, and

vendor-optimized math libraries.

MAGMA Templates creates a layered package with

APIs that make the routines easily pluggable, extendable,

tunable, and interoperable with various linear algebra

libraries and achieves the following objectives:

1. Make the most up-to-date algorithms and highly

tuned numerical kernels available as building blocks

for production codes on emerging architectures.

2. Develop a high-level Cþþ software toolkit to provide

a single, easy-to-use interface to a wide variety of data

structures and solvers for dense and sparse linear alge-

bra on a broad spectrum of shared- and distributed-

memory, large-scale systems, which is useful for

application developers seeking scalable performance.

3. Design caliber data abstractions and APIs to ease

interoperability and integration through the familiar

Basic Linear Algebra Subprograms (BLAS), Linear

Algebra PACKage (LAPACK), and Scalable Linear

Algebra PACKage (ScaLAPACK) interfaces, wher-

ever possible.

4. Implement self-contained, novel linear algebra algo-

rithms that can replace the currently used libraries in

production codes, including, but not limited to, low-

rank compression, dense matrix factorizations and

solvers, iterative solvers, and preconditioners.

Having introduced the goals and objectives of the

MAGMA Templates library, the rest of the paper is organized

as follows. In Section: “MAGMA Templates Software

Design”, we illustrate the high-level design philosophy of

MAGMA Templates. Section: “MAGMAþþ: A high-level

Cþþ API for MAGMA” details the components and func-

tionalities of the underlying MAGMAþþ: MAGMA Tem-

plates high-level Cþþ backend API for MAGMA. Section:

“Auto-tuning” describes some experiments regarding auto-

tuning of MAGMA library done through the MAGMA Tem-

plates interface. Finally, in Section: “Conclusions and Future

Directions” we discuss our conclusions and the highlights

from our ongoing work.

2 MAGMA templates software design

The overall MAGMA Templates software design is illu-

strated in Figure 1. High performance is derived from

using vendor-optimized BLAS/LAPACK and linear

algebra libraries, when available, or via taking advan-

tage of the basis libraries upon which MAGMA Tem-

plates depends.

Higher in the software stack, MAGMA Templates relies

on the MAGMA sub-libraries to provide dense and sparse

linear algebra kernels for shared-memory heterogeneous

architectures, but provides a single library with a unified

interface that is functionally and performance portable

across various architectures through its MAGMAþþ API.

MAGMA Templates uses the SLATE library (Gates et al.,

2019) to provide dense linear algebra kernels for distributed-

memory heterogeneous architectures (Abdelfattah et al.,

2017; Kurzak et al., 2017, 2019a). Note that Figure 1 shows

that Trilinos (Heroux et al., 2005) is the backend for the

distributed-memory sparse linear algebra kernels on which

MAGMA Templates depends. However, the current imple-

mentation is only a “proof of concept” for some sparse kernels

targeting distributed-memory, and linking against Trilinos

and other libraries (e.g., PETSc and HYPRE), is still a key

consideration in our ongoing work. Having said that, integrat-

ing a specific backend library may require building a middle

layer, such as MAGMAþþ, to implicitly handle the transi-

tion, and to maximize the ability to switch between different

sparse matrix data structures and their representations based

on performance and the application-specific compatibility.

Since SLATE is a well-designed Cþþ library for

distributed-memory dense linear algebra, we base the

Vendor
Libraries

Run-time/
comm. APIs

LA
libraries

Standard
LA APIs

MMAGMA Templates

BLAS API LAPACK API Batched BLAS API

MPI OpenMP MKL ESSL cuBLAS ACML

MAGMA (dense) MAGMA Batched MAGMA Sparse
SLATE

Single Heterogeneous Node

Shared memory

ScaLAPACK API

Scalable LA on new architectures
 Data abstractions and APIs
 Heterogeneous systems portability

Tile algorithms
 LAPACK++
 BLAS++

MagmaDNN
High-performance data analytics
and machine learning for many-

core CPUs and GPU accelerators

Applications

NN
High-performance data analytics
and machine learning for many-

core CPUs and GPU accelerators

ons

MAGMA Templates
[scalable linear algebra on new architectures, data

abstraction and APIs, and heterogeneous system portability]

Distributed Memory Shared Memory
Dense Linear

Algebra
Sparse Linear

Algebra

SLATE
Tile Algorithms

BLAS++ LAPACK++

Trilinos

Dense/Sparse Linear Algebra

MAGMA
Dense

MAGMA
Batched

MAGMA
Sparse

ScaLAPACK
LAPACK Batched BLASBLAS

MPI OpenMP CUDA OpenCL OpenACC

MKL ESSL cuSPARSE cuBLAS ACML

Linear
Algebra
Libraries

Standard
Algebra
Libraries APIs

Runtime and
Communication
APIs

Vendor-
Optimized
Libraries

Batched
BLAS++

MAGMA++

Figure 1. MAGMA Templates ecosystem.

646 The International Journal of High Performance Computing Applications 34(6)

MAGMA Templates high-level design on the interface of

SLATE, which is very modular and serves our objective.

However, MAGMA—the shared-memory backend of

MAGMA Templates—is written in C and has completely

different interface than SLATE. Therefore, some of our

efforts in this project was focused upon developing the

Cþþ interface for MAGMA (MAGMAþþ), so that

MAGMA Templates can switch, seamlessly, between

MAGMA and SLATE with no overhead, while using a

unified interface. To develop a unified matrix class that is

perfectly suitable for shared-and distributed-memory set-

tings and, meanwhile, it is very simple and abstract, we first

implemented the MAGMAþþ API to provide a Cþþ set

of layers specific for MAGMA library. With that on mind,

MAGMA Templates becomes a Cþþ “thin layer” that

dwells on top of various linear algebra libraries to carry

out the matrix computations without handling any sort of

heavy lifting computations. In addition, MAGMAþþ is an

independent API, which can be configured, installed, and

invoked without MAGMA Templates. Thus, MAGMA

users, who use Cþþ to develop their application codes,

would find using MAGMAþþ more convenient to use

rather than directly invoking MAGMA routines in a Cþþ
code. However, if application developers would like to

seamlessly switch from one library into another, then

MAGMA Templates provides this smooth, straightforward,

and easy transition.

MAGMA Templates is therefore a convenient one-stop

shop for many combinations of HPC software and hard-

ware for scientific and engineering simulations. For

instance, with the extendable matrix class implemented in

MAGMA Templates, the mapping illustrated in Figure 1 to

SLATE, Trilinos, MAGMA, and other linear algebra

libraries is fairly easy. The matrix class is just a data struc-

ture wrapper that exploits the already allocated user-space

memory, and then MAGMA Templates implicitly does on-

the-fly, “zero-overhead” translation into the suitable kernel

implemented by the basis software stack. Using our novel

mapping and transition algorithm, MAGMA Templates

translates the function arguments, initializes the target

library, architecture and required workspaces, builds pre-

requisite execution policies and queues, and accurately

maps the user space without allocating extra memory. To

this end, wrapping existing user memory on given devices,

allows caller to retain ownership of data and the responsi-

bility for maintaining it over the lifetime of the matrix

object, including any shallow copies.

2.1 Functional portability

Functional portability is handled by design, through apply-

ing polymorphic approaches for a modular design. Details

on the approach are given below. The modular design

allows adding more functionality and support for different

architectures, when developed. When a kernel or algorithm

implementation for particular architecture is still missing,

the code will still run, but the runtime system will schedule

the execution on hardware for which there is

implementation.

2.2 Performance portability

Performance portability is achieved through (auto-)tuning

and specialization in the implementations. The current

design allows us to add different versions of the same algo-

rithm, but is designed and optimized for possibly different

architectures. Every implementation is additionally para-

meterized to allow for subsequent tuning. Currently we

have auto-tuning settings for particular kernels. The goal

is to extend this for the entire library.

3 MAGMAþþ: A high-level Cþþ API for
MAGMA

3.1 Data abstractions

We design two main data abstractions based on the object-

oriented programming (OOP) paradigm, and we develop

various APIs to support them. The implementation is

through Cþþ classes, namely: Matrix class and Tensor

class. The standard way to represent a matrix in BLAS and

LAPACK is through a pointer to the memory location

where a matrix starts, the matrix size (m and n for an

m� n matrix), and leading dimension (ld). Typically, a

column-major data layout is assumed. To abstract the par-

ticular data storage type (column-major, row-major, dense/

sparse,) and storage memory location (CPU, GPU,), we

design an abstract storage class, namely SharedStorage,

which the Matrix class and Tensor class use to hide their

data storage implementation details, and make the data

structures extendable to encapsulate several storage for-

mats and layouts.

The data layout is abstracted in Listing 1, which man-

ifests the SharedStorage class. [Note: For convenience

we keep two pointers to the data: data_ that is for CPU

data and ddata_ for device/GPU data, which allows us to

offload to a run-time system the management of moving

data between CPUs and GPU devices. The location of the

most up-to-date data is stored in device_.] Every matrix

has a SharedStorage object stored as a shared pointer by

all matrix classes.

The matrix data structure is presented in Listing 2. The

design decision of having all the information defining a

matrix stored in the matrix class allows us to reduce the

number of arguments in standard API routines, like in

BLAS and LAPACK, where matrices and submatrices are

explicitly described through input arguments for different

matrix sizes, transpose operations, leading dimension spec-

ifications, etc. In addition, this makes the base code extend-

able, readable, and, most importantly, bug free, by having

less error-prone code. Also, one can integrate internal

exception handlers specific to the data object.

The BaseMatrix class provides a function to read the

local matrix entries stored in the function caller’s memory

Farhan et al. 647

location, which facilitates access class members with no

race condition, see Listing 3.

Specialized classes for various types of matrices (gen-

eral, trapezoid, triangular, symmetric, etc.) are derived

from the BaseMatrix class. For example, Listing 4 is the

triangular matrix (TriangularMatrix) class.

3.1.1 Tensor. We have generalized this data structure into a

Tensor class; see Listing 5 for the Tensor class design.

In contrast to the Matrix class, where the matrix dimen-

sions are represented by m_ and n_, the tensor size is an

std:: vector, namely dim_, and the dimensions of the

tensor is the size of dim_ container. The meanings of the

offset_, storage_, and dim_ld_ members are simi-

lar to the offset_, storage_, and ld_ from the

matrix class, except that here the corresponding values

are given in the corresponding vector elements.

3.2 Naming conventions and calling specifications

The naming convention follows BLAS, LAPACK, and

ScaLAPACK, despite some negligible differences,

Listing 3. MAGMAþþ: Reference to a matrix local element.

Listing 2. MAGMAþþ: Matrixparentclass(BaseMatrix).

Listing 1. MAGMAþþ: SharedStorage class.

Listing 4. MAGMAþþ: Triangular Matrix class
(TriangularMatrix).

648 The International Journal of High Performance Computing Applications 34(6)

characterized by the language features. For example, the

first character in these standards specifies the precision: “d”

for double, “s” for single, “z” for double complex, and “c”

for single complex. MAGMA follows this convention: the

implementations are written for the “z” precision, and the

implementations for the other precisions are generated by

scripts. However, in MAGMAþþ, no precision is speci-

fied, and we use Cþþ templates to represent generic func-

tion types. Thus, the compiler generates the code for

different precisions. For example, the Cholesky factoriza-

tion, namely ZPOTRF in LAPACK for double-complex pre-

cision, is shown in Listing 6. Note that the implementation is

templated for the target architecture, which allows us to have

different implementations that rely on already developed/

available software components through vendor libraries, or

the MAGMA libraries. In particular, details on this concept

for the implementation of the Cholesky factorization from

Listing 6 are given in Listing 7. This is the basis of our poly-

morphic approach that allows us to use already developed

parts, tuned for particular architectures, and further update

the routines when new versions become available.

The BLAS and LAPACK interface uses overloaded

APIs to support both CPUs and GPUs. Each API is

templated for precision, as described before. For

instance, the API for the matrix multiplication (GEMM)

looks like Listing 8. Note the extra argumentQueue, which

is a Cþþ class that provides an execution context for man-

aging GPUs. It hides the complexity of dealing with the GPU

runtime, which is provided by the vendor. The user must

create a queue and pass it to the BLAS call in order to execute

the routine on the GPU.

As illustrated before, matrices are no longer represented by

raw pointers. Cþþ classes are implemented to represent

matrices as objects with properties. Explicit instantiation is

required to support a certain precision. The library supports the

four standard precisions (single, double, complex, and double

complex). For example, for double precision, see Listing 9.

Listing 5. MAGMAþþ: Tensor class.

Listing 6. MAGMAþþ: Cholesky factorization potrf function.

Listing 7. MAGMAþþ: Polymorphic approach for a modular
design.

Listing 8. MAGMAþþ: Matrix multiplication (gemm).

Listing 9. MAGMAþþ: Double precision instantiation.

Farhan et al. 649

LAPACK interfaces, on the other hand, are similar to

SLATE’s. They are templated for precision, but they accept

a list of options that are currently used only to specify the

targeted hardware for execution, see Listing 10.

The opts argument is an std:: map of pairs that lets

the user specify certain options during the execution time.

A LAPACK routine reads the list of options before running

the correct routine. Right now, the routine only reads the

Option:: Target option. Two modes are supported:

� If the target option is set to Target:: Hybrid,

then the routine will call the hybrid MAGMA imple-

mentation. The input matrix can be stored in the

CPU memory or in the GPU memory.

� If the target option is set to Target::Host, then

MAGMA Templates calls the equivalent routine

from the LAPACKþþ library (Gates et al., 2017).

The data are assumed to be resident in the CPU

memory only. Otherwise, the user will be notified

with an error.

Similarly, an explicit instantiation is required to support

the four standard precisions.

3.3 Domain-specific language (DSL)

MAGMAþþ provides a Python-based code generation

tool to easily develop portable implementations. It provides

a python script that generates GPU CUDA code (or parallel

OpenMP CPU code) from DSL constructs/templates. The

templates cover certain computational patterns that are not

covered by the standard linear algebra routines available in

the MAGMA library. It simplifies development and porting

of code to use the MAGMAþþ library for different

architectures.

3.4 Sparse data abstractions

The sparse data formats supported in MAGMAþþ are

inherited from MAGMA Sparse. A subdomain can be

stored on a CPU memory or on a GPU/device memory. For

CPUs, we support COOrdinate format (COO) and Com-

pressed Sparse Row (CSR). COO is a sparse matrix format

that stores only the nonzero coefficients by compressing

the entire 2D coefficient table. The nonzero elements are

stored in a 1D array row-wise. Additional row index and

column index arrays are used to identify both the row and

the column of each nonzero element. The type representing

the precision is templated. The CSR, on the other hand, is a

standard sparse matrix format that many packages support.

It stores only the nonzero coefficients by compressing each

row of the matrix (compressed sparse row format). The

nonzero elements are stored in a 1D array row-wise, and

are accompanied by a row pointer array that stores the

starting index of each row. An additional column index

array is used to identify the column of each nonzero ele-

ment. The type representing the precision, as in all other

supported formats, is templated.

For GPUs/devices, we support more formats since per-

formance for the different formats is more sensitive to the

application (the nonzeros structure of the matrix). In par-

ticular, in addition to COO and CSR, we support ELL,

SELL-P, CSR5 (Liu and Vinter, 2015), and HYB (Guo

et al., 2016) formats. Details on these formats are given

in Anzt et al. (2014, 2017). Routines for conversion

between the formats are also provided. Note that other

sparse formats, e.g. JAD (Li and Saad, 2013), are consid-

ered to be supported in our ongoing work.

In order to automate the memory management, we use

standard Cþþ smart pointer classes: std:: unique_ptr

and std:: shared_ptr. This means that the users are

never required to explicitly allocate or free the memory

when working with MAGMAþþ. Instead, the library han-

dles this automatically.

To demonstrate a simple possible use of the

MAGMAþþ sparse API, Listing 11 provides a code snip-

pet to exemplify the memory management abstractions

supported by MAGMAþþ.

3.5 Domain decomposition data abstraction

The distributed sparse matrices interface of MAGMAþþ is

derived from the basic single node matrix class (i.e.,

MatrixCsrDist inherits MatrixCsr). Thus, the local

format and storage are the same as the parent nodal matrix

class (MatrixCsr). The distributed matrices, however, are

enhanced with the connectivity information for the neigh-

boring subdomains. For example, if a global sparse matrix

A is represented as a collection of sparse matrices Ai;j,

where i; j vary from 1 to a number of subdomains S, the

local MatrixCsrDist matrix for subdomain i stores Ai;i

in the standard MatrixCsr format, as well as the Ai;j

matrices (j ¼ 1; ::; i� 1; iþ 1; ::; S). The columns that hold

nonzero entries are reordered for each of the Ai;j matrices to

have continuous span (starting from 0). This is done in

order to optimize the performance of global operations like

Sparse Matrix-Vector multiplication (SpMV). In particular,

in order to apply Ai;j to a global vector in subdomain i,

Listing 10. MAGMAþþ: Triangular solve (getrf).

Listing 11. MAGMAþþ: Read a sparse matrix from a file in CSR
format.

650 The International Journal of High Performance Computing Applications 34(6)

subdomain j must send to ith elements of the vector that

correspond to columns with nonzeroes in Ai;j. By prepro-

cessing the data that has to be sent, we group the data that j

has to send to i in one package. This minimizes costly

latencies that otherwise would have to be incurred if com-

munication was done through a number of sends. Thus, a

global matrix-vector product involves the following steps

(steps 1.3 and 4 are overlapped; steps 1.4 must finish before

step 5 is applied):

1. Pack the values, which have to be sent to other

subdomains.

2. Send (i.e., point-to-point communication) all

packages to the neighboring subdomains.

3. Receive the corresponding packages from the

neighbors.

4. Apply local SpMV, using MAGMA Sparse.

5. Add local contributions to SpMV for the data com-

ing from the neighbors.

Note that the current distributed CSR matrix implemen-

ted in MAGMAþþ aims to utilize MAGMA Sparse

library, and thereby we replicate the matrix locally across

the compute nodes. Indeed, this is not the optimal approach

in terms of memory efficiency, in contrast to the most

efficient and common technique utilized by HYPRE or

PETSc, where they store only two CSR matrices: 1) one

for the local domain, and 2) one for all the off-domain

submatrices. However, with data replication we can exploit

the performance capability of MAGMA Sparse locally at

the node-level. Nevertheless, once the middle layer inter-

face for the distributed sparse matrix computations library

is developed, we will be able to opt-out the current sparse

matrix distribution and rely upon invoking the sparse ker-

nels provided by the chosen distributed sparse library, e.g.

Trilinos. This feature presented herein is to prototype the

distributed-memory sparse matrix algebra capability of

MAGMA Templates.

In MAGMAþþ, we develop three main ways for users

to interact with the distributed-memory sparse solvers to

support the following functionalities:

1. A matrix can be read from file (e.g., in the format

used for the University of Florida sparse matrix

collection, Davis and Hu, 2011), and distributed

as specified by the user.

2. Users can generate the matrix on the fly and

initialize the MatrixCsrDist. A Cþþ
MatrixLaplaceDist class is developed as a

test example, which inherits the MatrixCsr-

Dist class and generates entries for 2D/3D

Laplacian discretizations on a regular grid to be

filled in a distributed CSR matrix format. [Note:

This example allows us also to easily generate

very large matrices and study the performance

of the solvers provided.]

3. Users can use their own data formats but alterna-

tively provide the basic building blocks for the

MAGMA Templates solvers; the main building

blocks needed are SpMV, dot product, and adding

vectors (corresponding to the Level-1 BLAS AXPY

routine), and all are developed in MAGMAþþ.

4 Auto-tuning

The MAGMA Templates library provides a unified inter-

face through which different libraries with different back-

ends can be called. In this context, and in order to maintain

performance portability, auto-tuning for performance is often

done on the backend level rather than on the high-level inter-

face (i.e., MAGMA Templates). Eventually, any perfor-

mance auto-tuning that is carried out on any backend gets

automatically leveraged to the MAGMA Templates library.

We will present some auto-tuning experiments per-

formed on MAGMAþþ to support MAGMA library back-

end, which provides several algorithms for dense and

sparse linear algebra on GPU-accelerated systems. Consid-

ering performance tuning parameters of each algorithm, we

recognize two types of auto-tuning experiments, compile-

time and run-time (Li et al., 2009). The following subsec-

tions detail these experiments.

4.1 Experimental platforms

In order to avoid having a very long discussion, we will

limit our scope here to tune the batched GEMM kernel for

two different GPUs, and for the single test case of square

matrix multiplication using the MAGMA Templates inter-

face of MAGMA. More specifically, the experimental

setup can be summarized as follows:

� Hardware: Two systems with two different GPUs:

1) the first one has a Pascal P100 GPU, and 2) the

second has a Volta V100 GPU. The host CPU in

each system connects its device GPU through a

PCI-e connection. Both systems have the same host

CPU, which is a dual-socket Intel Haswell CPU.

Each socket has 10 CPU cores, resulting in a 20-

core CPU per system. The two systems has a 64

GB of DRAM.

� Software: The latest MAGMA release to date

(v2.5.1), compiled with CUDA Toolkit 10.1. The

MAGMA library requires a BLAS/LAPACK provi-

der for the CPU side. We use Intel MKL 2018.

� Algorithms:

- Compile-Time Tuning Parameters: Batched

matrix multiplication for square sizes. We show

sample results for double-precision arithmetic

only. The experiments are replicated for the other

three standard precisions (i.e., single precision,

single-complex precision, and double-complex

precision).

Farhan et al. 651

- Run-Time Tuning Parameters: One-sided matrix

factorization (LU/QR/Cholesky). We show sample

results for double-precision arithmetic only. The

experiments are replicated for the other three stan-

dard precisions (i.e., single precision, single-

complex precision, and double-complex

precision).

4.2 Compile-time tuning parameters

As the name suggests, such parameters must have their

values defined during the compilation time. The necessity

of such a condition might be due to different reasons. For

example, compilers can easily unroll loops whose intervals

are constants, which helps eliminate the cost of branching

and potentially some of the memory address calculations

inside the loop (Al Farhan, 2019; Al Farhan and Keyes,

2018; Al Farhan et al., 2016). Another reason is static reg-

ister allocation and register indexing, which are crucial for

GPU kernels (otherwise, the compiler spills the associated

variable to the global memory, resulting in a severe perfor-

mance drop). In most cases, compile-time tuning para-

meters are popular in low-level kernels that implement

important building blocks of an algorithm. The MAGMA

library is one of the backends of the MAGMA Templates

library. It implements several important GPU kernels for

dense linear algebra algorithms. Ideally, such kernels

require tuning for different GPU architectures and across

different precisions. We will present an example for auto-

tuning the batched GEMM kernel, which implements

matrix multiplication on a batch of relatively small

matrices. Such a kernel is a very important building block

in many applications beyond linear algebra solvers, such as

tensor contractions and machine learning algorithms.

The batched GEMM kernel in the MAGMA library has

at least five compile-time tuning parameters. This means

that the search space is very large for such a kernel. In fact,

a full auto-tuning sweep for the batched GEMM routine can

be quite exhaustive. This is due to the following reasons:

� The search space has five independent tuning

parameters.

� The standard batched GEMM kernel must support

the four standard precisions (single, double, single

complex, and double complex).

� A single kernel instance with a specified set of para-

meter values must be tested against several use cases

for the batched GEMM routine. Examples are square

sizes, rank updates with tall-and-skinny matrices,

rank updates with a mix of tall-and-skinny; small

square matrices, multiplications with different

matrix transpositions, and many others. In other

words, the test space for a single kernel instance is

not trivial even for a single architecture.

There are few countermeasures that can be taken in

order to mitigate the time and effort of a brute-force sweep

of the batched GEMM kernel. The following characterizes

some aspects that can be utilized to prune the search space:

1. Applying constraints.

(a) Hard constraints: They are imposed by the

hardware. In a typical GPU-accelerated envi-

ronment, hard constraints usually represent

capacity limits for different aspects of the

GPU execution model. For example, the max-

imum shared-memory that can be allocated by

a single thread block, the maximum number of

registers per thread, the maximum number of

thread-blocks per multiprocessor, and many

others. The search space can then be pruned

for a specific GPU architecture based on its

hardware limitations.

(b) Soft constraints: They are regarded as heur-

istics defined by experienced developers who

have enough knowledge to judge a specific

kernel configuration without having to run it.

For instance, having too many threads per

thread block in a batched kernel usually limits

the ability of the GPU runtime to schedule

many thread blocks on the same multiproces-

sor, which results in a low occupancy and a

bad performance. In this regard, we can set a

soft constraint to limit the maximum number

of threads to 256. Since the hardware limit for

this aspect is 1024, the soft constraint cuts the

search space for this aspect by 75%. Other soft

constraints can be defined for other aspects as

well.

2. Considering the most important and relevant

test cases based on domain-specific knowledge.

(a) The test space can be pruned for the most

widely used test cases for batched GEMM:

The most important use cases for batched

GEMM are square multiplications on small

sizes, and rank-k updates for batched matrix

factorization.

The experiment is conducted using three types of

“automatic scripts.” Each script has its distinct

functionality in the tuning process. The reason

behind the separation of scripts (i.e., rather than

using one big tuning script), is that some steps in

the tuning process might not be repeated as fre-

quently as other steps. Therefore, we recognize the

following three steps, each being assigned to a sep-

arate automatic script.

1. Search space enumeration: In this step, we define

distinct kernel instances with unique combinations

of tuning parameter values. Each combination rep-

resents a unique kernel version, and is usually

assigned a unique ID number for future referencing

in the following step. The enumeration process

652 The International Journal of High Performance Computing Applications 34(6)

prunes the search space on the fly, using both the

hard constraints and the soft constraints discussed

earlier. Obviously, this step should be repeated only

if there is a change in the kernel design itself, or if

there is a change in the target architecture that

would restrict/relax one or more of the constraints.

2. Performance Evaluation: This step performs a

brute-force sweep over the kernel instances defined

in the previous step. For each kernel instance, this

step performs both the compilation and the perfor-

mance evaluation. While the compilation is

required once, the performance evaluation can

include multiple sizes and test cases. As mentioned

earlier, we will limit our discussion to testing on

non-transposed square matrices in double precision

only. This step should be conducted if the search

space is changed. It should also be conducted for

every new released architecture.

3. Result analysis: This step is basically a post-

processing phase of the results collected in step (2).

This step usually analyzes the collected data to pick

the best performing kernel instance for each test case

(size, precision, matrix settings, etc.). In some cases, in

particular for library developers, it is important to keep

the number of compiled binaries relatively small. This

is mainly to avoid large binaries when compiling a

library with various routines (such as MAGMA).

Figure 2 shows the best performance observed across

the 157 versions of the batched DGEMM kernel on square

sizes. The red graph shows the best performance for any

given point, while the blue graph shows the performance

when we are willing to sacrifice up to 15% of the best

observed performance. On both GPUs, we need 8 kernel

instances to get the best possible performance at every

point. Note that this number is for a particular test case

(square sizes) and for a particular precision (double). If

we choose to accept up to a 15% drop in performance,

we can reduce the number of kernels by 25% for the

P100 GPU, and by 50% for the V100 GPU.

4.3 Run-time tuning parameters

This type of parameter is not required to be defined during

compilation time as a constant. It can be defined during the

exact moment the application is to be launched. A famous

example for such parameters is the blocking size (often

referred to as nb) used in one-sided matrix factorization

(LU factorization, QR factorization, and Cholesky factor-

ization). These algorithms are the fundamental components

of solving linear systems of equations or least squares prob-

lems. The blocking size often affects the performance of

the trailing-matrix updates, which often involves a matrix

multiplication operation. Generally speaking, the larger the

value of nb, the better the performance of the matrix multi-

plication step, and in turn the entire factorization. However,

this also means that the panel factorization step will deal

with very wide panels, which is not always a good approach

since the panel factorization usually includes memory-

bound kernels.

For the MAGMA library backend, hybrid algorithms are

usually used in one-sided matrix factorization. The CPU

performs the panel factorization step, while the GPU is

performing the compute-bound update of the previous

iteration. A key performance metric here is that the total

execution time to: (1) send the panel to the CPU, (2) per-

form the factorization, and (3) send the factorized panel

back to the GPU, which should be less than or equal to the

time of the trailing-matrix update on the GPU. It is clear

that there is a performance trade-off with respect to block-

ing sizes selection. For instance, a very large blocking size

may result in the CPU, and thereby the CPU-and-GPU bus

interconnect, being the bottleneck, which causes idle times

for the GPU, and that leads to a bad performance. The best

blocking size may even change from a matrix size to

another, and from a GPU architecture to another. This is

why auto-tuning is very important.

Experiments that involve run-time tuning parameters are

often simpler to perform, since they do not require a com-

pilation of the backend for each set of tuning parameters.

One way to perform the tuning sweep is to expose the

Figure 2. Tuning batched GEMM kernel of MAGMA through MAGMA Templates interface. The results are for the Pascal P100 GPU
(left), as well as for the Volta V100 GPU (right).

Farhan et al. 653

blocking size nb through the high-level interface of each

factorization algorithm. Such exposure enables defining nb

during run time. When the tuning experiment is complete,

we roll back the interface to its standard (i.e., LAPACK-

compliant) form, and the value of nb will be defined

through a separate function, as further detailed below.

Figure 3 exhibits the tuning experiment for the LU fac-

torization (DGETRF) on the two GPUs mentioned above.

In general, we observe similar behavior for the blocking

sizes across both GPUs. Moving from the P100 GPU to the

V100 GPU, we observe around a 40% asymptotic perfor-

mance gain. We also notice that choosing a very large

blocking size (e.g., 1024) might have implications for per-

formance. In terms of the best blocking sizes, they are 128,

256, and 512. The only difference between the two GPUs is

where to switch from nb ¼ 256 to nb ¼ 512.

As for the QR factorization (DGEQRF), Figure 4, we

can see more noticeable differences between the two sys-

tems, especially for the middle range of sizes. The blocking

size nb ¼ 64 is good for sizes between 7 k and 15 k on the

P100 GPU, while it pays off between sizes 10 k and 20 k on

the V100 GPU. This is why it is best to have a tunable value

of nb that can change according to the GPU architecture.

The best asymptotic performance is achieved with

nb ¼ 128. Larger values for nb lead to performance drops.

Cholesky factorization, Figure 5, presents a different

behavior for the impact of nb on performance. In fact, the

Cholesky factorization seems to benefit from very large

values of nb. This is because the Cholesky panel factoriza-

tion is much simpler than LU and QR panel factorization.

This makes the CPU workload minimal with respect to the

GPU workload, which always benefits from large matrix

sizes.

5 Related work

There have been many efforts in the HPC research com-

munity that target building portable APIs across architec-

tures for the software stack, upon which the scientific

applications’ performance depends. This is indeed due to

the fact that the hardware ecosystem keeps changing dra-

matically in completely unpredictable directions and the

programming models may be different across architectures.

In addition, the application requirements vary differently

based upon the problems that are being addressed, which

are highly dependent upon the time and the availability of

Figure 4. Tuning batched DGEQRF kernel of MAGMA through MAGMA Templates interface.

Figure 3. Tuning batched DGETRF kernel of MAGMA through MAGMA Templates interface.

654 The International Journal of High Performance Computing Applications 34(6)

the computational resources—hardware and software. For

example, the interest in machine learning has increased

recently due to the significant performance gains brought

by the advancements in GPU-driven computing. This is in

spite of the fact that artificial intelligence, in particular—on

which machine learning algorithms and methodologies are

based one way or the other—has been around for decades.

In this section, we concisely describe three (closely related

to MAGMA Templates) performance-portable layers that

are being actively developed.

Kokkos: Portability framework for node-level parallel

programming that aims to make performance-centric appli-

cation development portable across different architectures,

irrespective of the underlying hardware (Edwards et al.,

2014). Ultimately, Kokkos provides a unified programming

model that works for different architectures, similar to

OpenMP, OpenACC and OpenCL, with a unique charac-

teristic of preserving the application performance across

different hardware.

RAJA: A performance portability layer that leverages

the fine-grained parallelism at the node-level with cross-

platform support RAJA.

OCCA: An open-source library which aims to make it

easy to program different types of devices, provides a uni-

fied API for interacting with backend device APIs, and uses

just-in-time compilation to build backend kernels (Medina

et al., 2014).

Eigen: A high-level Cþþ linear algebra library based

on OOP EIGEN (EIGEN, 2018).

ATLAS: A research effort focusing on figuring out

empirical approaches to provide portable performance

(Whaley et al., 2001).

BONSAI: A state-of-the-art auto-tuning library for gen-

eration and pruning of the parameter search space to find

the optimal parameter combinations on a specific architec-

ture (Kurzak et al., 2019b).

All of the aforementioned libraries and frameworks aim

to provide performance portable APIs that work on differ-

ent hardware; however, their performance is driven from

the kernels that are included in the libraries. Indeed, at least

in the area of dense linear algebra, if a BLAS kernel is

coded through a single source (plus code generation for

various architectures, or even multiple sources through the

use of some polymorphic approach), the resulting perfor-

mance in general will be much lower than that of vendor-

optimized code for each particular architecture (e.g., that

most probably would be written in an assembly language,

Abalenkovs et al., 2015). Thus, in these cases, while the

systems mentioned will achieve functional portability, per-

formance will not be portable unless vendor-optimized

BLAS is called, as in the approach adopted in the MAGMA

Templates library.

In addition, programming using these libraries requires

application developers to change their code significantly to

adapt to the requirements of different libraries used. On the

contrary, MAGMA Templates provides a thin layer that

enables the use of multiple existing libraries through uni-

fied function calls; no data structures or memory layouts

are required to be changed. Furthermore, the performance

is preserved because it is driven from the underlying

numerical kernels, which are actively being developed.

Finally, the MAGMA Templates interface allows us to

easily encapsulate any new kernels or link against new

libraries based on the user needs, without changing the

application codes; it is a library that is easily pluggable to

any application code that uses linear algebra and strives for

performance on modern architectures.

A more complete review of different programming

models, software technology trends and analysis for their

applicability in the area of dense linear algebra can be

found in Abdelfattah et al. (2017).

6 Conclusions and future directions

Numerical libraries that can harness the current petascale

computing systems to solve today’s real world problems

may confront severe challenges and a need to embrace

opportunities at the dawn of the exascale supercomputers

era. Therefore, revising such traditional libraries to leverage

their capabilities to extreme-scale settings becomes mission-

Figure 5. Tuning batched DPOTRF kernel of MAGMA through MAGMA Templates interface.

Farhan et al. 655

critical for pushing the edge of what is possible for science

and engineering to develop the technology of the future.

This paper presented a performance portable approach

for high-performance scalable linear algebra, the backbone

for many scientific and engineering applications on current

and emerging architectures. The approach uses polymorph-

ism to reuse existing developments and to provide access,

seamlessly to the users, to latest algorithms and

architecture-specific optimizations through a single, easy-

to-use Cþþ based API. As a proof of concept, the ideas

were implemented and illustrated in a new, MAGMA Tem-

plates library. The library provides an essential computa-

tional linear algebra backend, either for sparse or dense

computations, that many production codes need in order

to be ported to new architectures. MAGMA Templates

created a layered package with APIs that make the routines

easily pluggable, extendable, tunable, and interoperable

with other numerical libraries and applications.

The main accomplishments leveraged MAGMA’s prior

developments through a polymorphic approach with a task-

based OpenMPþMPI programming model. MAGMA

Templates is based on MAGMA versions for various archi-

tectures, but provides a single library with a unified interface

that is portable across architectures. MAGMA Templates

also relies on the SLATE library, which is currently under

development at ICL, to provide dense linear algebra routines

for distributed-memory systems. The sparse computations

component of MAGMA Templates, which is built on the

single node functionalities in the MAGMA Sparse library,

was extended to distributed-memory heterogeneous systems

using domain decomposition–based parallelization. This is

significant because it aligns with the wide acquisition of

hardware resources that rely on accelerator/wide-vector–

based computing, and provides a portable software solution

for the strong need for science applications and many pro-

duction codes to take advantage of the latest hardware assets.

Magma Templates also enhances user-productivity since it

permits a single application code to run on top of various

backend high-performance libraries.

While MAGMA Templates is a proof of concept devel-

opment, the design is flexible and easy to extend, so future

work includes extending the package by adding more func-

tionalities, access to newer algorithms, tuning for new

architectures, as well as linking and applying it to applica-

tions of interest. Future work also includes adding support

for mixed-precision factorizations and solvers, including

support for FP16 and use of mixed-precision hardware

accelerated FP16 computations, like the Tensor Cores

(TC) in Nvidia’s V100 GPUs. Some of these routines,

including mixed-precision LU factorizations and mixed-

precision iterative refinement, are already available

through the MAGMA library (Haidar et al., 2017, 2018).

Acknowledgment

We would like to thank NVIDIA for their hardware dona-

tions used for development and testing.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication of

this article: This project was funded by the DoD High

Performance Computing Modernization Program through

its User Pro- ductivity Enhancement, Technology Transfer,

and Training (PETTT) program.

ORCID iD

Mohammed Al Farhan https://orcid.org/0000-0002-

4988-4674

References

Abalenkovs M, Abdelfattah A, Dongarra J, et al. (2015) Parallel

programming models for dense linear algebra on heteroge-

neous systems. Supercomputing Frontiers and Innovations

2(4): 67–86. DOI:10.14529/jsfi1504.

Abdelfattah A, Anzt H, Bouteiller A, et al. (2017) Roadmap for

the development of a linear algebra library for exascale com-

puting: SLATE: software for linear algebra targeting Exascale.

SLATE Working Notes 1, ICL-UT-17-02.

Abduljabbar M, Al Farhan M, Al-Harthi N, et al. (2018) Extreme

scale FMM-accelerated boundary integral equation solver for

wave scattering. SIAM Journal on Scientific Computing 41(3):

C245–C268.

Abduljabbar M, Al Farhan M, Yokota R, et al. (2017) Perfor-

mance evaluation of computation and communication kernels

of the Fast Multipole Method on Intel Manycore architecture.

In: 23rd international conference on parallel and distributed

computing Euro-Par 2017: Parallel Processing, LNCS, Vol.

10417. Santiago de Compostela, Spain: Springer, pp. 553–564.

Agullo E, Demmel J, Dongarra J, et al. (2009) Numerical linear

algebra on emerging architectures: the PLASMA and MAGMA

projects. Journal of Physics: Conference Series 180: 012037.

Al Farhan MA (2019) Unstructured computations on emerging

architectures. DOI:10.25781/KAUST. Available at: http://

hdl.handle.net/10754/644902 (accessed 2 September 2019).

Al Farhan MA and Keyes DE (2018) Optimizations of unstruc-

tured aerodynamics computations for many-core architectures.

IEEE Transactions on Parallel and Distributed Systems

29(10): 2317–2332.

Al Farhan MA, Kaushik DK and Keyes DE (2016) Unstructured

computational aerodynamics on many integrated core archi-

tecture. Parallel Computing 59: 97–118. Theory and Practice

of Irregular Applications.

Anzt H, Boman E, Dongarra J, et al. (2017) Magma-Sparse Inter-

face Design Whitepaper. Technical Report ICL-UT-17-05.

Anzt H, Tomov S and Dongarra J (2014) Implementing a Sparse

Matrix Vector Product for the Sell-C/Sell-C-s Formats on

NVIDIA GPUs. Technical Report UT-EECS-14-727.

656 The International Journal of High Performance Computing Applications 34(6)

https://orcid.org/0000-0002-4988-4674
https://orcid.org/0000-0002-4988-4674
https://orcid.org/0000-0002-4988-4674
https://orcid.org/0000-0002-4988-4674
http://hdl.handle.net/10754/644902
http://hdl.handle.net/10754/644902

Davis TA and Hu Y (2011) The university of florida sparse matrix

collection. ACM Transactions on Mathematical Software

38(1): 1:1–1:25.

Edwards HC, Trott CR and Sunderland D (2014) Kokkos: enabling

manycore performance portability through polymorphic

memory access patterns. Journal of Parallel and Distributed

Computing 74(12): 3202–3216. Available at: http://www.scien

cedirect.com/science/article/pii/S0743731514001257 (accessed

2 September 2019). Domain-Specific Languages and High-

Level Frameworks for High-Performance Computing.

EIGEN (2018) Available at: https://eigen.tuxfamily.org/dox-

devel/GettingStarted.html (accessed 2 September 2019).

Gates M, Kurzak J, Charara A, et al. (2019) Slate: Design of a

modern distributed and accelerated linear algebra library. In:

Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, SC ‘19.

New York, NY, USA: Association for Computing Machinery.

ISBN 9781450362290. DOI:10.1145/3295500.3356223.

Gates M, Luszczek P, Abdelfattah A, et al. (2017) Cþþ API for

BLAS and LAPACK. Technical Report 2, ICL-UT-17-03.

Revision 02-21-2018.

Guo D, Gropp W and Olson LN (2016) A hybrid format for better

performance of sparse matrix-vector multiplication on a GPU.

The International Journal of High Performance Computing

Applications 30(1): 103–120.

Haidar A, Tomov S, Dongarra J, et al. (2018) Harnessing gpu

tensor cores for fast FP16 arithmetic to speed up mixed-

precision iterative refinement solvers. In: Proceedings of the

International Conference for High Performance Computing,

Networking, Storage, and Analysis, SC ‘18. Piscataway, NJ,

USA: IEEE Press, pp. 47:1–47:11.

Haidar A, Wu P, Tomov S, et al. (2017) Investigating half precision

arithmetic to accelerate dense linear system solvers. In: SC16

ScalA17: 8th Workshop on Latest Advances in Scalable Algo-

rithms for Large-Scale Systems. ACM, Denver, CO: ACM.

Heroux MA, Bartlett RA, Howle VE, et al. (2005) An overview of

the trilinos project. ACM Transactions on Mathematical Soft-

ware 31(3): 397–423.

Kurzak J, Gates M, Charara A, et al. (2019a) Least squares solvers

for distributed-memory machines with gpu accelerators. In:

Proceedings of the ACM International Conference on Super-

computing, ICS ‘19. New York, NY, USA: ACM. ISBN 978-1-

4503-6079 -1, pp. 117–126. DOI:10.1145/3330345.3330356.

Kurzak J, Tsai YM, Gates M, et al. (2019b) Massively parallel

automated software tuning. In: Proceedings of the 48th Inter-

national Conference on Parallel Processing, ICPP 2019. New

York, NY, USA: Association for Computing Machinery. ISBN

9781450362955. DOI:10.1145/3337821.3337908.

Kurzak J, Wu P, Gates M, et al. (2017) Designing SLATE: soft-

ware for linear algebra targeting Exascale. SLATE Working

Notes 3, ICL-UT-17-06.

Li R and Saad Y (2013) GPU-accelerated preconditioned iterative

linear solvers. The Journal of Supercomputing 63(2): 443–466.

Li Y, Dongarra J and Tomov S (2009) A note on auto-tuning

GEMM for GPUs. In: Proceedings of the 2009 International

Conference on Computational Science, ICCS’09. Baton

Roube, LA: Springer.

Liu W and Vinter B (2015) CSR5: an efficient storage format for

cross-platform sparse matrix-vector multiplication. In: Pro-

ceedings of the 29th ACM on International Conference on

Supercomputing, ICS ‘15. New York, NY, USA: ACM. ISBN

978-1-4503-3559 -1, pp. 339–350.

Medina DS, St-Cyr A and Warburton T (2014) OCCA: a unified

approach to multi-threading languages. arXiv preprint arXiv:

1403.0968.

RAJA (2016) Available at: https://raja.readthedocs.io/en/master/

getting_started.html (accessed 2 September 2019).

Tomov S, Dongarra J and Baboulin M (2010) Towards dense

linear algebra for hybrid gpu accelerated manycore systems.

Parallel Computing System Application 36(5-6): 232–240.

Whaley RC, Petitet A and Dongarra JJ (2001) Automated empiri-

cal optimizations of software and the ATLAS project. Parallel

Computing 27(1): 3–35. New Trends in High Performance

Computing.

Author biographies

Mohammed Al Farhan received PHD’19 and MS’13 in

Computer Science from King Abdullah University of Sci-

ence and Technology (KAUST), where he was a member of

the Extreme Computing Research Center (ECRC). He is

currently a Postdoctoral Researcher at the University of

Tennessee’s Innovative Computing Laboratory (ICL). His

research interests include high-performance computing,

distributed systems, and numerical linear algebra.

Mohammed received BS’12 in Computer Science from

King Faisal University.

Ahmad Abdelfattah received his PhD in computer science

from King Abdullah University of Science and Technology

(KAUST) in 2015, where he was a member of the Extreme

Computing Research Center (ECRC). He is currently a

research scientist at the Innovative Computing Laboratory, the

University of Tennessee. His research interests include numer-

ical linear algebra, HPC on many core architectures, and

mixed-precision solvers. Ahmad has B.Sc. and M.Sc. degrees

in computer engineering from Ain Shams University, Egypt.

Stanimire Tomov is Research Assistant Professor at the

Innovative Computing Laboratory at the University of Ten-

nessee, Knoxville. He specializes in parallel algorithms,

data analytics, and high-performance scientific computing.

Currently, his work is concentrated on the development of

numerical linear algebra software, and in particular the

MAGMA libraries, targeting to provide a modernized

LAPACK/ScaLAPACK on new architectures. He has lead

and contributed to numerous NSF, DOE, and DOD-funded

HPC projects and industry collaborations.

Mark Gates is a research assistant professor in the Innova-

tive Computing Laboratory at the University of Tennessee,

Farhan et al. 657

http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://www.sciencedirect.com/science/article/pii/S0743731514001257
https://eigen.tuxfamily.org/dox-devel/GettingStarted.html
https://eigen.tuxfamily.org/dox-devel/GettingStarted.html
https://raja.readthedocs.io/en/master/getting_started.html
https://raja.readthedocs.io/en/master/getting_started.html

where he develops algorithms for linear algebra on distrib-

uted, multi-core, GPU-accelerated computers. He received

his Ph.D. in Computer Science from the University of Illi-

nois at Urbana-Champaign in 2011. His research interests

are in scientific computing, including linear algebra, opti-

mization, interpolation, and approximation.

Dalal Sukkari received the MSc and PhD degrees in Applied

Mathematics and Computational Science from the King

Abdullah University of Science and Technology (KAUST),

in 2013 and 2019, respectively, where she was a member of

the Extreme Computing Research Center (ECRC) directed

by Prof. David Keyes. She is currently a post doctoral

research associate in the Innovative Computing Laboratory

(ICL), University of Tennessee led by Prof. Jack Dongarra.

Her work centers on providing more functionality and apply-

ing several optimization techniques to the SLATE (Software

for Linear Algebra Targeting Exascale) library.

Azzam Haidar is a Senior Engineer at NVIDIA developing

HPC and deep learning software. He received a Ph.D. in 2008

major Computer Science and Applied Mathematics from the

National Polytechnic Institute of Toulouse and from the CER-

FACS Lab, France. Before joining NVIDIA, he was a

Research Director at the Innovative Computing Laboratory

at the University of Tennessee, Knoxville. His research inter-

ests focuses on the development, optimization and implemen-

tation of parallel scalable HPC algorithms for distributed

multicore/GPU-based architectures, for extreme-scale scien-

tific applications. He is also interested in developing opti-

mized kernels for Deep learning algorithm and studying

techniques to speedup the learning process. He also devel-

oped novel algorithms for singular value (SVD) and eigenva-

lue problems as well as approaches that uses data flow

representations to express parallelism in scientific applica-

tions. He received and participated in several NSF, DOE, Intel

and Nvidia grant awards.

Robert Rosenberg is a computational scientist working at the

Naval Research Laboratory’s Center for Computational

Sciences (CCS) in Washington, DC. He has helped users at

the Laboratory optimize their codes for supercomputers. He

has led the CCS’s scientific visualization laboratory and

developed an MPI interface program to port serial Fortran

codes to MPI on a loop by loop basis. His current interests

lie with exploring new architectures such as the NEC’s SX-

Aurora TSUBASA vector engine as well assisting in refactor-

ing the Navy’s latest numerical weather prediction code,

NEPTUNE for GPUs.

Jack Dongarra received a Bachelor of Science in Mathe-

matics from Chicago State University in 1972 and a Master

of Science in Computer Science from the Illinois Institute of

Technology in 1973. He received his Ph.D. in Applied Mathe-

matics from the University of New Mexico in 1980. He

worked at the Argonne National Laboratory until 1989,

becoming a senior scientist. He now holds an appointment

as University Distinguished Professor of Computer Science

in the Electrical Engineering and Computer Science Depart-

ment at the University of Tennessee and holds the title of

Distinguished Research Staff in the Computer Science and

Mathematics Division at Oak Ridge National Laboratory

(ORNL); Turing Fellow at Manchester University; an

Adjunct Professor in the Computer Science Department at

Rice University. He is the director of the Innovative Comput-

ing Laboratory at the University of Tennessee. He is also the

director of the Center for Information Technology Research

at the University of Tennessee which coordinates and facil-

itates IT research efforts at the University. He specializes in

numerical algorithms in linear algebra, parallel computing,

the use of advanced-computer architectures, programming

methodology, and tools for parallel computers. His research

includes the development, testing and documentation of high

quality mathematical software. He has contributed to the

design and implementation of the following open-source soft-

ware packages and systems: EISPACK, LINPACK, the

BLAS, LAPACK, ScaLAPACK, Netlib, PVM, MPI, Net-

Solve, Top500, ATLAS, and PAPI. He has published over

400 articles, papers, reports and technical memoranda and he

is coauthor of several books. He was awarded the IEEE Sid

Fernbach Award in 2004 for his contributions in the applica-

tion of high-performance computers using innovative

approaches; in 2008 he was the recipient of the first IEEE

Medal of Excellence in Scalable Computing; in 2010 he was

the first recipient of the SIAM Special Interest Group on

Supercomputing’s award for Career Achievement; in 2011

he was the recipient of the IEEE Charles Babbage Award; in

2013 he was the recipient of the ACM/IEEE Ken Kennedy

Award for his leadership in designing and promoting stan-

dards for mathematical software used to solve numerical

problems common to high-performance computing, in 2019

he was awarded the SIAM/ACM Prize in Computational Sci-

ence and Engineering, and in 2020 he received the IEEE

Computer Pioneer Award for leadership in the area of high-

performance mathematical software. He is a Fellow of the

AAAS, ACM, IEEE, and SIAM and a Foreign Member of

the Russian Academy of Sciences, a Foreign Fellow of the

British Royal Society, and a Member of the US National

Academy of Engineering.

658 The International Journal of High Performance Computing Applications 34(6)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

