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Abstract
With the acquisition and widespread use of more resources that rely on accelerator/wide vector–based computing, there
has been a strong demand for science and engineering applications to take advantage of these latest assets. This, however,
has been extremely challenging due to the diversity of systems to support their extreme concurrency, complex memory
hierarchies, costly data movement, and heterogeneous node architectures. To address these challenges, we design a
programming model and describe its ease of use in the development of a new MAGMA Templates library that delivers high-
performance scalable linear algebra portable on current and emerging architectures. MAGMA Templates derives its
performance and portability by (1) building on existing state-of-the-art linear algebra libraries, like MAGMA, SLATE,
Trilinos, and vendor-optimized math libraries, and (2) providing access (seamlessly to the users) to the latest algorithms
and architecture-specific optimizations through a single, easy-to-use Cþþ-based API.
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1 Introduction

The dramatic advancements in microprocessor design over

the past couple of decades have significantly improved the

performance of scientific simulations. Nevertheless, the ever-

expanding gap between the developing demands for massive

computations and the languishing transistor budgets triggered

by the “retirement” of Moore’s Law has inevitably deterio-

rated the possible performance gains out of the architectural

advancements in the hardware design. Therefore, fine-

grained parallelism (Abduljabbar et al., 2018) required at the

node-level is becoming pervasive, especially since the per-

formance of a compute node that powers the current and

future supercomputers is highly dependent upon the perfor-

mance provided by a tightly coupled specialized hardware for

accelerator-driven computing (e.g., GPUs) connected

directly to the compute node via a high-bandwidth, high-

speed interconnect (e.g., NVIDIA NVLink) (Abduljabbar

et al., 2017).

The hierarchical, synergistic level of parallelism induced

by the complicated heterogeneity of the HPC compute node

makes squeezing out the full performance potentials from

supercomputers a daunting proposition. To this end, many

development efforts have been directed toward either porting

existing scientific kernels onto various emerging HPC archi-

tectures, or developing new kernels from ground up targeting

new hardware generations. Thus, the current available scien-

tific software stack, which is mostly diversified based on

either a specific hardware implementation or various

algorithm-centric formulations, is very extensive and diver-

gent. This in turn makes application developers confused

about which kernels to invoke or choose on a particular hard-

ware, or how to switch from one kernel that already powers

production-level applications to another, based on the under-

lying hardware or software.

To overcome the aforementioned issues and chal-

lenges, we develop MAGMA Templates, which is a set

of APIs and computational kernels/patterns—in other

words, templates—combined in a single new computational

library. MAGMA Templates provides the performance-

portable computational backend that many HPC scientific
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simulation production codes need in order to be easily ported

to new architectures.

The name of MAGMA Templates library is derived from

Matrix Algebra on GPU and Multicore Architectures

(MAGMA) library (Agullo et al., 2009; Tomov et al., 2010).

The reason is that we initially aimed to develop a modern, high-

level Cþþ backend API for MAGMA library. However, as the

scope of coverage was extended beyond MAGMA, e.g. to

include support for distributed-memory systems, we designed

MAGMA Templates to be a high-level thin layer set on top of

multiple numerical kernels/libraries. We therefore include sup-

port for Software for Linear Algebra Targeting Exascale

(SLATE) (Gates et al., 2019), Trilinos/PETSc/HYPRE, and

vendor-optimized math libraries.

MAGMA Templates creates a layered package with

APIs that make the routines easily pluggable, extendable,

tunable, and interoperable with various linear algebra

libraries and achieves the following objectives:

1. Make the most up-to-date algorithms and highly

tuned numerical kernels available as building blocks

for production codes on emerging architectures.

2. Develop a high-level Cþþ software toolkit to provide

a single, easy-to-use interface to a wide variety of data

structures and solvers for dense and sparse linear alge-

bra on a broad spectrum of shared- and distributed-

memory, large-scale systems, which is useful for

application developers seeking scalable performance.

3. Design caliber data abstractions and APIs to ease

interoperability and integration through the familiar

Basic Linear Algebra Subprograms (BLAS), Linear

Algebra PACKage (LAPACK), and Scalable Linear

Algebra PACKage (ScaLAPACK) interfaces, wher-

ever possible.

4. Implement self-contained, novel linear algebra algo-

rithms that can replace the currently used libraries in

production codes, including, but not limited to, low-

rank compression, dense matrix factorizations and

solvers, iterative solvers, and preconditioners.

Having introduced the goals and objectives of the

MAGMA Templates library, the rest of the paper is organized

as follows. In Section: “MAGMA Templates Software

Design”, we illustrate the high-level design philosophy of

MAGMA Templates. Section: “MAGMAþþ: A high-level

Cþþ API for MAGMA” details the components and func-

tionalities of the underlying MAGMAþþ: MAGMA Tem-

plates high-level Cþþ backend API for MAGMA. Section:

“Auto-tuning” describes some experiments regarding auto-

tuning of MAGMA library done through the MAGMA Tem-

plates interface. Finally, in Section: “Conclusions and Future

Directions” we discuss our conclusions and the highlights

from our ongoing work.

2 MAGMA templates software design

The overall MAGMA Templates software design is illu-

strated in Figure 1. High performance is derived from

using vendor-optimized BLAS/LAPACK and linear

algebra libraries, when available, or via taking advan-

tage of the basis libraries upon which MAGMA Tem-

plates depends.

Higher in the software stack, MAGMA Templates relies

on the MAGMA sub-libraries to provide dense and sparse

linear algebra kernels for shared-memory heterogeneous

architectures, but provides a single library with a unified

interface that is functionally and performance portable

across various architectures through its MAGMAþþ API.

MAGMA Templates uses the SLATE library (Gates et al.,

2019) to provide dense linear algebra kernels for distributed-

memory heterogeneous architectures (Abdelfattah et al.,

2017; Kurzak et al., 2017, 2019a). Note that Figure 1 shows

that Trilinos (Heroux et al., 2005) is the backend for the

distributed-memory sparse linear algebra kernels on which

MAGMA Templates depends. However, the current imple-

mentation is only a “proof of concept” for some sparse kernels

targeting distributed-memory, and linking against Trilinos

and other libraries (e.g., PETSc and HYPRE), is still a key

consideration in our ongoing work. Having said that, integrat-

ing a specific backend library may require building a middle

layer, such as MAGMAþþ, to implicitly handle the transi-

tion, and to maximize the ability to switch between different

sparse matrix data structures and their representations based

on performance and the application-specific compatibility.

Since SLATE is a well-designed Cþþ library for

distributed-memory dense linear algebra, we base the
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MAGMA Templates high-level design on the interface of

SLATE, which is very modular and serves our objective.

However, MAGMA—the shared-memory backend of

MAGMA Templates—is written in C and has completely

different interface than SLATE. Therefore, some of our

efforts in this project was focused upon developing the

Cþþ interface for MAGMA (MAGMAþþ), so that

MAGMA Templates can switch, seamlessly, between

MAGMA and SLATE with no overhead, while using a

unified interface. To develop a unified matrix class that is

perfectly suitable for shared-and distributed-memory set-

tings and, meanwhile, it is very simple and abstract, we first

implemented the MAGMAþþ API to provide a Cþþ set

of layers specific for MAGMA library. With that on mind,

MAGMA Templates becomes a Cþþ “thin layer” that

dwells on top of various linear algebra libraries to carry

out the matrix computations without handling any sort of

heavy lifting computations. In addition, MAGMAþþ is an

independent API, which can be configured, installed, and

invoked without MAGMA Templates. Thus, MAGMA

users, who use Cþþ to develop their application codes,

would find using MAGMAþþ more convenient to use

rather than directly invoking MAGMA routines in a Cþþ
code. However, if application developers would like to

seamlessly switch from one library into another, then

MAGMA Templates provides this smooth, straightforward,

and easy transition.

MAGMA Templates is therefore a convenient one-stop

shop for many combinations of HPC software and hard-

ware for scientific and engineering simulations. For

instance, with the extendable matrix class implemented in

MAGMA Templates, the mapping illustrated in Figure 1 to

SLATE, Trilinos, MAGMA, and other linear algebra

libraries is fairly easy. The matrix class is just a data struc-

ture wrapper that exploits the already allocated user-space

memory, and then MAGMA Templates implicitly does on-

the-fly, “zero-overhead” translation into the suitable kernel

implemented by the basis software stack. Using our novel

mapping and transition algorithm, MAGMA Templates

translates the function arguments, initializes the target

library, architecture and required workspaces, builds pre-

requisite execution policies and queues, and accurately

maps the user space without allocating extra memory. To

this end, wrapping existing user memory on given devices,

allows caller to retain ownership of data and the responsi-

bility for maintaining it over the lifetime of the matrix

object, including any shallow copies.

2.1 Functional portability

Functional portability is handled by design, through apply-

ing polymorphic approaches for a modular design. Details

on the approach are given below. The modular design

allows adding more functionality and support for different

architectures, when developed. When a kernel or algorithm

implementation for particular architecture is still missing,

the code will still run, but the runtime system will schedule

the execution on hardware for which there is

implementation.

2.2 Performance portability

Performance portability is achieved through (auto-)tuning

and specialization in the implementations. The current

design allows us to add different versions of the same algo-

rithm, but is designed and optimized for possibly different

architectures. Every implementation is additionally para-

meterized to allow for subsequent tuning. Currently we

have auto-tuning settings for particular kernels. The goal

is to extend this for the entire library.

3 MAGMAþþ: A high-level Cþþ API for
MAGMA

3.1 Data abstractions

We design two main data abstractions based on the object-

oriented programming (OOP) paradigm, and we develop

various APIs to support them. The implementation is

through Cþþ classes, namely: Matrix class and Tensor

class. The standard way to represent a matrix in BLAS and

LAPACK is through a pointer to the memory location

where a matrix starts, the matrix size (m and n for an

m� n matrix), and leading dimension (ld). Typically, a

column-major data layout is assumed. To abstract the par-

ticular data storage type (column-major, row-major, dense/

sparse,) and storage memory location (CPU, GPU,), we

design an abstract storage class, namely SharedStorage,

which the Matrix class and Tensor class use to hide their

data storage implementation details, and make the data

structures extendable to encapsulate several storage for-

mats and layouts.

The data layout is abstracted in Listing 1, which man-

ifests the SharedStorage class. [Note: For convenience

we keep two pointers to the data: data_ that is for CPU

data and ddata_ for device/GPU data, which allows us to

offload to a run-time system the management of moving

data between CPUs and GPU devices. The location of the

most up-to-date data is stored in device_.] Every matrix

has a SharedStorage object stored as a shared pointer by

all matrix classes.

The matrix data structure is presented in Listing 2. The

design decision of having all the information defining a

matrix stored in the matrix class allows us to reduce the

number of arguments in standard API routines, like in

BLAS and LAPACK, where matrices and submatrices are

explicitly described through input arguments for different

matrix sizes, transpose operations, leading dimension spec-

ifications, etc. In addition, this makes the base code extend-

able, readable, and, most importantly, bug free, by having

less error-prone code. Also, one can integrate internal

exception handlers specific to the data object.

The BaseMatrix class provides a function to read the

local matrix entries stored in the function caller’s memory

Farhan et al. 647



location, which facilitates access class members with no

race condition, see Listing 3.

Specialized classes for various types of matrices (gen-

eral, trapezoid, triangular, symmetric, etc.) are derived

from the BaseMatrix class. For example, Listing 4 is the

triangular matrix (TriangularMatrix) class.

3.1.1 Tensor. We have generalized this data structure into a

Tensor class; see Listing 5 for the Tensor class design.

In contrast to the Matrix class, where the matrix dimen-

sions are represented by m_ and n_, the tensor size is an

std:: vector, namely dim_, and the dimensions of the

tensor is the size of dim_ container. The meanings of the

offset_, storage_, and dim_ld_ members are simi-

lar to the offset_, storage_, and ld_ from the

matrix class, except that here the corresponding values

are given in the corresponding vector elements.

3.2 Naming conventions and calling specifications

The naming convention follows BLAS, LAPACK, and

ScaLAPACK, despite some negligible differences,

Listing 3. MAGMAþþ: Reference to a matrix local element.

Listing 2. MAGMAþþ: Matrixparentclass(BaseMatrix).

Listing 1. MAGMAþþ: SharedStorage class.

Listing 4. MAGMAþþ: Triangular Matrix class
(TriangularMatrix).
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characterized by the language features. For example, the

first character in these standards specifies the precision: “d”

for double, “s” for single, “z” for double complex, and “c”

for single complex. MAGMA follows this convention: the

implementations are written for the “z” precision, and the

implementations for the other precisions are generated by

scripts. However, in MAGMAþþ, no precision is speci-

fied, and we use Cþþ templates to represent generic func-

tion types. Thus, the compiler generates the code for

different precisions. For example, the Cholesky factoriza-

tion, namely ZPOTRF in LAPACK for double-complex pre-

cision, is shown in Listing 6. Note that the implementation is

templated for the target architecture, which allows us to have

different implementations that rely on already developed/

available software components through vendor libraries, or

the MAGMA libraries. In particular, details on this concept

for the implementation of the Cholesky factorization from

Listing 6 are given in Listing 7. This is the basis of our poly-

morphic approach that allows us to use already developed

parts, tuned for particular architectures, and further update

the routines when new versions become available.

The BLAS and LAPACK interface uses overloaded

APIs to support both CPUs and GPUs. Each API is

templated for precision, as described before. For

instance, the API for the matrix multiplication (GEMM)

looks like Listing 8. Note the extra argumentQueue, which

is a Cþþ class that provides an execution context for man-

aging GPUs. It hides the complexity of dealing with the GPU

runtime, which is provided by the vendor. The user must

create a queue and pass it to the BLAS call in order to execute

the routine on the GPU.

As illustrated before, matrices are no longer represented by

raw pointers. Cþþ classes are implemented to represent

matrices as objects with properties. Explicit instantiation is

required to support a certain precision. The library supports the

four standard precisions (single, double, complex, and double

complex). For example, for double precision, see Listing 9.

Listing 5. MAGMAþþ: Tensor class.

Listing 6. MAGMAþþ: Cholesky factorization potrf function.

Listing 7. MAGMAþþ: Polymorphic approach for a modular
design.

Listing 8. MAGMAþþ: Matrix multiplication (gemm).

Listing 9. MAGMAþþ: Double precision instantiation.
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LAPACK interfaces, on the other hand, are similar to

SLATE’s. They are templated for precision, but they accept

a list of options that are currently used only to specify the

targeted hardware for execution, see Listing 10.

The opts argument is an std:: map of pairs that lets

the user specify certain options during the execution time.

A LAPACK routine reads the list of options before running

the correct routine. Right now, the routine only reads the

Option:: Target option. Two modes are supported:

� If the target option is set to Target:: Hybrid,

then the routine will call the hybrid MAGMA imple-

mentation. The input matrix can be stored in the

CPU memory or in the GPU memory.

� If the target option is set to Target::Host, then

MAGMA Templates calls the equivalent routine

from the LAPACKþþ library (Gates et al., 2017).

The data are assumed to be resident in the CPU

memory only. Otherwise, the user will be notified

with an error.

Similarly, an explicit instantiation is required to support

the four standard precisions.

3.3 Domain-specific language (DSL)

MAGMAþþ provides a Python-based code generation

tool to easily develop portable implementations. It provides

a python script that generates GPU CUDA code (or parallel

OpenMP CPU code) from DSL constructs/templates. The

templates cover certain computational patterns that are not

covered by the standard linear algebra routines available in

the MAGMA library. It simplifies development and porting

of code to use the MAGMAþþ library for different

architectures.

3.4 Sparse data abstractions

The sparse data formats supported in MAGMAþþ are

inherited from MAGMA Sparse. A subdomain can be

stored on a CPU memory or on a GPU/device memory. For

CPUs, we support COOrdinate format (COO) and Com-

pressed Sparse Row (CSR). COO is a sparse matrix format

that stores only the nonzero coefficients by compressing

the entire 2D coefficient table. The nonzero elements are

stored in a 1D array row-wise. Additional row index and

column index arrays are used to identify both the row and

the column of each nonzero element. The type representing

the precision is templated. The CSR, on the other hand, is a

standard sparse matrix format that many packages support.

It stores only the nonzero coefficients by compressing each

row of the matrix (compressed sparse row format). The

nonzero elements are stored in a 1D array row-wise, and

are accompanied by a row pointer array that stores the

starting index of each row. An additional column index

array is used to identify the column of each nonzero ele-

ment. The type representing the precision, as in all other

supported formats, is templated.

For GPUs/devices, we support more formats since per-

formance for the different formats is more sensitive to the

application (the nonzeros structure of the matrix). In par-

ticular, in addition to COO and CSR, we support ELL,

SELL-P, CSR5 (Liu and Vinter, 2015), and HYB (Guo

et al., 2016) formats. Details on these formats are given

in Anzt et al. (2014, 2017). Routines for conversion

between the formats are also provided. Note that other

sparse formats, e.g. JAD (Li and Saad, 2013), are consid-

ered to be supported in our ongoing work.

In order to automate the memory management, we use

standard Cþþ smart pointer classes: std:: unique_ptr

and std:: shared_ptr. This means that the users are

never required to explicitly allocate or free the memory

when working with MAGMAþþ. Instead, the library han-

dles this automatically.

To demonstrate a simple possible use of the

MAGMAþþ sparse API, Listing 11 provides a code snip-

pet to exemplify the memory management abstractions

supported by MAGMAþþ.

3.5 Domain decomposition data abstraction

The distributed sparse matrices interface of MAGMAþþ is

derived from the basic single node matrix class (i.e.,

MatrixCsrDist inherits MatrixCsr). Thus, the local

format and storage are the same as the parent nodal matrix

class (MatrixCsr). The distributed matrices, however, are

enhanced with the connectivity information for the neigh-

boring subdomains. For example, if a global sparse matrix

A is represented as a collection of sparse matrices Ai;j,

where i; j vary from 1 to a number of subdomains S, the

local MatrixCsrDist matrix for subdomain i stores Ai;i

in the standard MatrixCsr format, as well as the Ai;j

matrices (j ¼ 1; ::; i� 1; iþ 1; ::; S). The columns that hold

nonzero entries are reordered for each of the Ai;j matrices to

have continuous span (starting from 0). This is done in

order to optimize the performance of global operations like

Sparse Matrix-Vector multiplication (SpMV). In particular,

in order to apply Ai;j to a global vector in subdomain i,

Listing 10. MAGMAþþ: Triangular solve (getrf).

Listing 11. MAGMAþþ: Read a sparse matrix from a file in CSR
format.
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subdomain j must send to ith elements of the vector that

correspond to columns with nonzeroes in Ai;j. By prepro-

cessing the data that has to be sent, we group the data that j

has to send to i in one package. This minimizes costly

latencies that otherwise would have to be incurred if com-

munication was done through a number of sends. Thus, a

global matrix-vector product involves the following steps

(steps 1.3 and 4 are overlapped; steps 1.4 must finish before

step 5 is applied):

1. Pack the values, which have to be sent to other

subdomains.

2. Send (i.e., point-to-point communication) all

packages to the neighboring subdomains.

3. Receive the corresponding packages from the

neighbors.

4. Apply local SpMV, using MAGMA Sparse.

5. Add local contributions to SpMV for the data com-

ing from the neighbors.

Note that the current distributed CSR matrix implemen-

ted in MAGMAþþ aims to utilize MAGMA Sparse

library, and thereby we replicate the matrix locally across

the compute nodes. Indeed, this is not the optimal approach

in terms of memory efficiency, in contrast to the most

efficient and common technique utilized by HYPRE or

PETSc, where they store only two CSR matrices: 1) one

for the local domain, and 2) one for all the off-domain

submatrices. However, with data replication we can exploit

the performance capability of MAGMA Sparse locally at

the node-level. Nevertheless, once the middle layer inter-

face for the distributed sparse matrix computations library

is developed, we will be able to opt-out the current sparse

matrix distribution and rely upon invoking the sparse ker-

nels provided by the chosen distributed sparse library, e.g.

Trilinos. This feature presented herein is to prototype the

distributed-memory sparse matrix algebra capability of

MAGMA Templates.

In MAGMAþþ, we develop three main ways for users

to interact with the distributed-memory sparse solvers to

support the following functionalities:

1. A matrix can be read from file (e.g., in the format

used for the University of Florida sparse matrix

collection, Davis and Hu, 2011), and distributed

as specified by the user.

2. Users can generate the matrix on the fly and

initialize the MatrixCsrDist. A Cþþ
MatrixLaplaceDist class is developed as a

test example, which inherits the MatrixCsr-

Dist class and generates entries for 2D/3D

Laplacian discretizations on a regular grid to be

filled in a distributed CSR matrix format. [Note:

This example allows us also to easily generate

very large matrices and study the performance

of the solvers provided.]

3. Users can use their own data formats but alterna-

tively provide the basic building blocks for the

MAGMA Templates solvers; the main building

blocks needed are SpMV, dot product, and adding

vectors (corresponding to the Level-1 BLAS AXPY

routine), and all are developed in MAGMAþþ.

4 Auto-tuning

The MAGMA Templates library provides a unified inter-

face through which different libraries with different back-

ends can be called. In this context, and in order to maintain

performance portability, auto-tuning for performance is often

done on the backend level rather than on the high-level inter-

face (i.e., MAGMA Templates). Eventually, any perfor-

mance auto-tuning that is carried out on any backend gets

automatically leveraged to the MAGMA Templates library.

We will present some auto-tuning experiments per-

formed on MAGMAþþ to support MAGMA library back-

end, which provides several algorithms for dense and

sparse linear algebra on GPU-accelerated systems. Consid-

ering performance tuning parameters of each algorithm, we

recognize two types of auto-tuning experiments, compile-

time and run-time (Li et al., 2009). The following subsec-

tions detail these experiments.

4.1 Experimental platforms

In order to avoid having a very long discussion, we will

limit our scope here to tune the batched GEMM kernel for

two different GPUs, and for the single test case of square

matrix multiplication using the MAGMA Templates inter-

face of MAGMA. More specifically, the experimental

setup can be summarized as follows:

� Hardware: Two systems with two different GPUs:

1) the first one has a Pascal P100 GPU, and 2) the

second has a Volta V100 GPU. The host CPU in

each system connects its device GPU through a

PCI-e connection. Both systems have the same host

CPU, which is a dual-socket Intel Haswell CPU.

Each socket has 10 CPU cores, resulting in a 20-

core CPU per system. The two systems has a 64

GB of DRAM.

� Software: The latest MAGMA release to date

(v2.5.1), compiled with CUDA Toolkit 10.1. The

MAGMA library requires a BLAS/LAPACK provi-

der for the CPU side. We use Intel MKL 2018.

� Algorithms:

- Compile-Time Tuning Parameters: Batched

matrix multiplication for square sizes. We show

sample results for double-precision arithmetic

only. The experiments are replicated for the other

three standard precisions (i.e., single precision,

single-complex precision, and double-complex

precision).
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- Run-Time Tuning Parameters: One-sided matrix

factorization (LU/QR/Cholesky). We show sample

results for double-precision arithmetic only. The

experiments are replicated for the other three stan-

dard precisions (i.e., single precision, single-

complex precision, and double-complex

precision).

4.2 Compile-time tuning parameters

As the name suggests, such parameters must have their

values defined during the compilation time. The necessity

of such a condition might be due to different reasons. For

example, compilers can easily unroll loops whose intervals

are constants, which helps eliminate the cost of branching

and potentially some of the memory address calculations

inside the loop (Al Farhan, 2019; Al Farhan and Keyes,

2018; Al Farhan et al., 2016). Another reason is static reg-

ister allocation and register indexing, which are crucial for

GPU kernels (otherwise, the compiler spills the associated

variable to the global memory, resulting in a severe perfor-

mance drop). In most cases, compile-time tuning para-

meters are popular in low-level kernels that implement

important building blocks of an algorithm. The MAGMA

library is one of the backends of the MAGMA Templates

library. It implements several important GPU kernels for

dense linear algebra algorithms. Ideally, such kernels

require tuning for different GPU architectures and across

different precisions. We will present an example for auto-

tuning the batched GEMM kernel, which implements

matrix multiplication on a batch of relatively small

matrices. Such a kernel is a very important building block

in many applications beyond linear algebra solvers, such as

tensor contractions and machine learning algorithms.

The batched GEMM kernel in the MAGMA library has

at least five compile-time tuning parameters. This means

that the search space is very large for such a kernel. In fact,

a full auto-tuning sweep for the batched GEMM routine can

be quite exhaustive. This is due to the following reasons:

� The search space has five independent tuning

parameters.

� The standard batched GEMM kernel must support

the four standard precisions (single, double, single

complex, and double complex).

� A single kernel instance with a specified set of para-

meter values must be tested against several use cases

for the batched GEMM routine. Examples are square

sizes, rank updates with tall-and-skinny matrices,

rank updates with a mix of tall-and-skinny; small

square matrices, multiplications with different

matrix transpositions, and many others. In other

words, the test space for a single kernel instance is

not trivial even for a single architecture.

There are few countermeasures that can be taken in

order to mitigate the time and effort of a brute-force sweep

of the batched GEMM kernel. The following characterizes

some aspects that can be utilized to prune the search space:

1. Applying constraints.

(a) Hard constraints: They are imposed by the

hardware. In a typical GPU-accelerated envi-

ronment, hard constraints usually represent

capacity limits for different aspects of the

GPU execution model. For example, the max-

imum shared-memory that can be allocated by

a single thread block, the maximum number of

registers per thread, the maximum number of

thread-blocks per multiprocessor, and many

others. The search space can then be pruned

for a specific GPU architecture based on its

hardware limitations.

(b) Soft constraints: They are regarded as heur-

istics defined by experienced developers who

have enough knowledge to judge a specific

kernel configuration without having to run it.

For instance, having too many threads per

thread block in a batched kernel usually limits

the ability of the GPU runtime to schedule

many thread blocks on the same multiproces-

sor, which results in a low occupancy and a

bad performance. In this regard, we can set a

soft constraint to limit the maximum number

of threads to 256. Since the hardware limit for

this aspect is 1024, the soft constraint cuts the

search space for this aspect by 75%. Other soft

constraints can be defined for other aspects as

well.

2. Considering the most important and relevant

test cases based on domain-specific knowledge.

(a) The test space can be pruned for the most

widely used test cases for batched GEMM:

The most important use cases for batched

GEMM are square multiplications on small

sizes, and rank-k updates for batched matrix

factorization.

The experiment is conducted using three types of

“automatic scripts.” Each script has its distinct

functionality in the tuning process. The reason

behind the separation of scripts (i.e., rather than

using one big tuning script), is that some steps in

the tuning process might not be repeated as fre-

quently as other steps. Therefore, we recognize the

following three steps, each being assigned to a sep-

arate automatic script.

1. Search space enumeration: In this step, we define

distinct kernel instances with unique combinations

of tuning parameter values. Each combination rep-

resents a unique kernel version, and is usually

assigned a unique ID number for future referencing

in the following step. The enumeration process
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prunes the search space on the fly, using both the

hard constraints and the soft constraints discussed

earlier. Obviously, this step should be repeated only

if there is a change in the kernel design itself, or if

there is a change in the target architecture that

would restrict/relax one or more of the constraints.

2. Performance Evaluation: This step performs a

brute-force sweep over the kernel instances defined

in the previous step. For each kernel instance, this

step performs both the compilation and the perfor-

mance evaluation. While the compilation is

required once, the performance evaluation can

include multiple sizes and test cases. As mentioned

earlier, we will limit our discussion to testing on

non-transposed square matrices in double precision

only. This step should be conducted if the search

space is changed. It should also be conducted for

every new released architecture.

3. Result analysis: This step is basically a post-

processing phase of the results collected in step (2).

This step usually analyzes the collected data to pick

the best performing kernel instance for each test case

(size, precision, matrix settings, etc.). In some cases, in

particular for library developers, it is important to keep

the number of compiled binaries relatively small. This

is mainly to avoid large binaries when compiling a

library with various routines (such as MAGMA).

Figure 2 shows the best performance observed across

the 157 versions of the batched DGEMM kernel on square

sizes. The red graph shows the best performance for any

given point, while the blue graph shows the performance

when we are willing to sacrifice up to 15% of the best

observed performance. On both GPUs, we need 8 kernel

instances to get the best possible performance at every

point. Note that this number is for a particular test case

(square sizes) and for a particular precision (double). If

we choose to accept up to a 15% drop in performance,

we can reduce the number of kernels by 25% for the

P100 GPU, and by 50% for the V100 GPU.

4.3 Run-time tuning parameters

This type of parameter is not required to be defined during

compilation time as a constant. It can be defined during the

exact moment the application is to be launched. A famous

example for such parameters is the blocking size (often

referred to as nb) used in one-sided matrix factorization

(LU factorization, QR factorization, and Cholesky factor-

ization). These algorithms are the fundamental components

of solving linear systems of equations or least squares prob-

lems. The blocking size often affects the performance of

the trailing-matrix updates, which often involves a matrix

multiplication operation. Generally speaking, the larger the

value of nb, the better the performance of the matrix multi-

plication step, and in turn the entire factorization. However,

this also means that the panel factorization step will deal

with very wide panels, which is not always a good approach

since the panel factorization usually includes memory-

bound kernels.

For the MAGMA library backend, hybrid algorithms are

usually used in one-sided matrix factorization. The CPU

performs the panel factorization step, while the GPU is

performing the compute-bound update of the previous

iteration. A key performance metric here is that the total

execution time to: (1) send the panel to the CPU, (2) per-

form the factorization, and (3) send the factorized panel

back to the GPU, which should be less than or equal to the

time of the trailing-matrix update on the GPU. It is clear

that there is a performance trade-off with respect to block-

ing sizes selection. For instance, a very large blocking size

may result in the CPU, and thereby the CPU-and-GPU bus

interconnect, being the bottleneck, which causes idle times

for the GPU, and that leads to a bad performance. The best

blocking size may even change from a matrix size to

another, and from a GPU architecture to another. This is

why auto-tuning is very important.

Experiments that involve run-time tuning parameters are

often simpler to perform, since they do not require a com-

pilation of the backend for each set of tuning parameters.

One way to perform the tuning sweep is to expose the

Figure 2. Tuning batched GEMM kernel of MAGMA through MAGMA Templates interface. The results are for the Pascal P100 GPU
(left), as well as for the Volta V100 GPU (right).
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blocking size nb through the high-level interface of each

factorization algorithm. Such exposure enables defining nb

during run time. When the tuning experiment is complete,

we roll back the interface to its standard (i.e., LAPACK-

compliant) form, and the value of nb will be defined

through a separate function, as further detailed below.

Figure 3 exhibits the tuning experiment for the LU fac-

torization (DGETRF) on the two GPUs mentioned above.

In general, we observe similar behavior for the blocking

sizes across both GPUs. Moving from the P100 GPU to the

V100 GPU, we observe around a 40% asymptotic perfor-

mance gain. We also notice that choosing a very large

blocking size (e.g., 1024) might have implications for per-

formance. In terms of the best blocking sizes, they are 128,

256, and 512. The only difference between the two GPUs is

where to switch from nb ¼ 256 to nb ¼ 512.

As for the QR factorization (DGEQRF), Figure 4, we

can see more noticeable differences between the two sys-

tems, especially for the middle range of sizes. The blocking

size nb ¼ 64 is good for sizes between 7 k and 15 k on the

P100 GPU, while it pays off between sizes 10 k and 20 k on

the V100 GPU. This is why it is best to have a tunable value

of nb that can change according to the GPU architecture.

The best asymptotic performance is achieved with

nb ¼ 128. Larger values for nb lead to performance drops.

Cholesky factorization, Figure 5, presents a different

behavior for the impact of nb on performance. In fact, the

Cholesky factorization seems to benefit from very large

values of nb. This is because the Cholesky panel factoriza-

tion is much simpler than LU and QR panel factorization.

This makes the CPU workload minimal with respect to the

GPU workload, which always benefits from large matrix

sizes.

5 Related work

There have been many efforts in the HPC research com-

munity that target building portable APIs across architec-

tures for the software stack, upon which the scientific

applications’ performance depends. This is indeed due to

the fact that the hardware ecosystem keeps changing dra-

matically in completely unpredictable directions and the

programming models may be different across architectures.

In addition, the application requirements vary differently

based upon the problems that are being addressed, which

are highly dependent upon the time and the availability of

Figure 4. Tuning batched DGEQRF kernel of MAGMA through MAGMA Templates interface.

Figure 3. Tuning batched DGETRF kernel of MAGMA through MAGMA Templates interface.
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the computational resources—hardware and software. For

example, the interest in machine learning has increased

recently due to the significant performance gains brought

by the advancements in GPU-driven computing. This is in

spite of the fact that artificial intelligence, in particular—on

which machine learning algorithms and methodologies are

based one way or the other—has been around for decades.

In this section, we concisely describe three (closely related

to MAGMA Templates) performance-portable layers that

are being actively developed.

Kokkos: Portability framework for node-level parallel

programming that aims to make performance-centric appli-

cation development portable across different architectures,

irrespective of the underlying hardware (Edwards et al.,

2014). Ultimately, Kokkos provides a unified programming

model that works for different architectures, similar to

OpenMP, OpenACC and OpenCL, with a unique charac-

teristic of preserving the application performance across

different hardware.

RAJA: A performance portability layer that leverages

the fine-grained parallelism at the node-level with cross-

platform support RAJA.

OCCA: An open-source library which aims to make it

easy to program different types of devices, provides a uni-

fied API for interacting with backend device APIs, and uses

just-in-time compilation to build backend kernels (Medina

et al., 2014).

Eigen: A high-level Cþþ linear algebra library based

on OOP EIGEN (EIGEN, 2018).

ATLAS: A research effort focusing on figuring out

empirical approaches to provide portable performance

(Whaley et al., 2001).

BONSAI: A state-of-the-art auto-tuning library for gen-

eration and pruning of the parameter search space to find

the optimal parameter combinations on a specific architec-

ture (Kurzak et al., 2019b).

All of the aforementioned libraries and frameworks aim

to provide performance portable APIs that work on differ-

ent hardware; however, their performance is driven from

the kernels that are included in the libraries. Indeed, at least

in the area of dense linear algebra, if a BLAS kernel is

coded through a single source (plus code generation for

various architectures, or even multiple sources through the

use of some polymorphic approach), the resulting perfor-

mance in general will be much lower than that of vendor-

optimized code for each particular architecture (e.g., that

most probably would be written in an assembly language,

Abalenkovs et al., 2015). Thus, in these cases, while the

systems mentioned will achieve functional portability, per-

formance will not be portable unless vendor-optimized

BLAS is called, as in the approach adopted in the MAGMA

Templates library.

In addition, programming using these libraries requires

application developers to change their code significantly to

adapt to the requirements of different libraries used. On the

contrary, MAGMA Templates provides a thin layer that

enables the use of multiple existing libraries through uni-

fied function calls; no data structures or memory layouts

are required to be changed. Furthermore, the performance

is preserved because it is driven from the underlying

numerical kernels, which are actively being developed.

Finally, the MAGMA Templates interface allows us to

easily encapsulate any new kernels or link against new

libraries based on the user needs, without changing the

application codes; it is a library that is easily pluggable to

any application code that uses linear algebra and strives for

performance on modern architectures.

A more complete review of different programming

models, software technology trends and analysis for their

applicability in the area of dense linear algebra can be

found in Abdelfattah et al. (2017).

6 Conclusions and future directions

Numerical libraries that can harness the current petascale

computing systems to solve today’s real world problems

may confront severe challenges and a need to embrace

opportunities at the dawn of the exascale supercomputers

era. Therefore, revising such traditional libraries to leverage

their capabilities to extreme-scale settings becomes mission-

Figure 5. Tuning batched DPOTRF kernel of MAGMA through MAGMA Templates interface.
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critical for pushing the edge of what is possible for science

and engineering to develop the technology of the future.

This paper presented a performance portable approach

for high-performance scalable linear algebra, the backbone

for many scientific and engineering applications on current

and emerging architectures. The approach uses polymorph-

ism to reuse existing developments and to provide access,

seamlessly to the users, to latest algorithms and

architecture-specific optimizations through a single, easy-

to-use Cþþ based API. As a proof of concept, the ideas

were implemented and illustrated in a new, MAGMA Tem-

plates library. The library provides an essential computa-

tional linear algebra backend, either for sparse or dense

computations, that many production codes need in order

to be ported to new architectures. MAGMA Templates

created a layered package with APIs that make the routines

easily pluggable, extendable, tunable, and interoperable

with other numerical libraries and applications.

The main accomplishments leveraged MAGMA’s prior

developments through a polymorphic approach with a task-

based OpenMPþMPI programming model. MAGMA

Templates is based on MAGMA versions for various archi-

tectures, but provides a single library with a unified interface

that is portable across architectures. MAGMA Templates

also relies on the SLATE library, which is currently under

development at ICL, to provide dense linear algebra routines

for distributed-memory systems. The sparse computations

component of MAGMA Templates, which is built on the

single node functionalities in the MAGMA Sparse library,

was extended to distributed-memory heterogeneous systems

using domain decomposition–based parallelization. This is

significant because it aligns with the wide acquisition of

hardware resources that rely on accelerator/wide-vector–

based computing, and provides a portable software solution

for the strong need for science applications and many pro-

duction codes to take advantage of the latest hardware assets.

Magma Templates also enhances user-productivity since it

permits a single application code to run on top of various

backend high-performance libraries.

While MAGMA Templates is a proof of concept devel-

opment, the design is flexible and easy to extend, so future

work includes extending the package by adding more func-

tionalities, access to newer algorithms, tuning for new

architectures, as well as linking and applying it to applica-

tions of interest. Future work also includes adding support

for mixed-precision factorizations and solvers, including

support for FP16 and use of mixed-precision hardware

accelerated FP16 computations, like the Tensor Cores

(TC) in Nvidia’s V100 GPUs. Some of these routines,

including mixed-precision LU factorizations and mixed-

precision iterative refinement, are already available

through the MAGMA library (Haidar et al., 2017, 2018).
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