W) Check for updates

nternational Journal of

HIGH PERFORMANCE

Special Issue: CCDSC 2022 Special Issue Editor: Jack Dongarra COMPUTING APPLICATIONS

The International Journal of High
Performance Computing Applications
2023, Vol. 0(0) 1-16

© The Author(s) 2023

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420231 166365
journals.sagepub.com/home/hpc

®SAGE

Combining multitask and transfer learning
with deep Gaussian processes for
autotuning-based performance engineering

Piotr Luszczek' ©, Wissam M Sid-Lakhdar' and Jack Dongarra'?*?

Abstract

We combine deep Gaussian processes (DGPs) with multitask and transfer learning for the performance modeling and
optimization of HPC applications. Deep Gaussian processes merge the uncertainty quantification advantage of Gaussian
processes (GPs) with the predictive power of deep learning. Multitask and transfer learning allow for improved learning
efficiency when several similar tasks are to be learned simultaneously and when previous learned models are sought to help
in the learning of new tasks, respectively. A comparison with state-of-the-art autotuners shows the advantage of our
approach on two application problems. In this article, we combine DGPs with multitask and transfer learning to allow for
both an improved tuning of an application parameters on problems of interest but also the prediction of parameters on any

potential problem the application might encounter.

Keywords

Gaussian process regression, performance autotuning, Efficient Global Optimization, Linear Coregionalization Model, Latin

Hypercube Sampling

Introduction

Motivation

Automated performance engineering, a.k.a. autotuning,
focuses on finding the best hyper-parameters of an algo-
rithm implementation (or kernel). Recently, autotuners have
been used for optimizing machine learning applications.
However, these efforts lack attempts at complete perfor-
mance tuning for scientific applications. Another aspect of
this type of autotuning that we seek to remedy is ability to
transfer the trained models between application and su-
percomputing platforms to leverage the inherent correla-
tions in the proposed multitask setting. Furthermore, we
also aim at utilizing multiple sources of data such as ap-
plication performance metrics and low-level hardware
metrics to inform the multi-fidelity modeling.

Our work is motivated by low-data regime that precludes
the use of artificial neural networks (ANNs) which need
large data volumes to successfully generalize. Might be just
me, but this and the following sentence/idea seem like they
should be swapped in order. Gaussian process (GP)
(Rasmussen and Williams, 2006) is a solution that needs
augmentation to handle our complex scenario of multiple
applications/platforms. To handle the non-stationary nature

of our data sets, that are guaranteed to feature discontinu-
ities, we build our proposed approach on top of deep
Gaussian processes (DGPs) (Damianou and Lawrence,
2013). This allows to produce reusable models that may
be used for predictions for unknown tasks. In the future, we
plan to provide reusable models for higher-level or appli-
cation prediction beyond performance metrics and more
along the lines of behavior and anomaly detection.

Solution

In the field of machine learning, (i) multitask learning
consists of learning several tasks simultaneously while
sharing common knowledge in order to improve the pre-
diction accuracy of each task and/or speed up the training
process and (if) transfer learning consists in using the

'"The University of Tennessee, Knoxville, TN, USA
20ak Ridge National Laboratory, Oak Ridge, TN, USA
3University of Manchester, Manchester, UK

Corresponding author:

Piotr Luszczek, The University of Tennessee College of Engineering,
1122 Volunteer Blvd. #203, Knoxville, TN 37996 USA.

Email: luszczek@icl.utk.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/10943420231166365
https://journals.sagepub.com/home/hpc
https://orcid.org/0000-0002-0089-6965
mailto:luszczek@icl.utk.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420231166365&domain=pdf&date_stamp=2023-03-30

2 The International Journal of High Performance Computing Applications 0(0)

Table I. Definition of symbols used in the text.

Symbol Interpretation

S(T) Task space

S(P) Parameter space

S(0) Output space (e.g., runtime)
D(T) Dimension of S(T)

D(P) Dimension of S(P)

D(0) Dimension of S(0)

NeT Number of tasks

Ne P Number of samples per task

knowledge of one (or several) task(s) to improve the
learning accuracy and/or the speed of another task. Fol-
lowing these two paradigms, we propose in the present
article, the Multitask Learning Autotuning (MLA) and two
variants of the Transfer Learning Autotuning (TLA) (first
Transfer Learning Algorithm (TLA1) and second Transfer
Learning Algorithm (TLA2)). Given the knowledge gath-
ered and model built on previously autotuned representative
tasks, we would like to be able to predict an optimal, or at
least good enough, parameter configuration on a new un-
known task. The underlying assumption, which is at the
core of these algorithms, is that the objective function to
optimize is expected to be continuous or, at least similar, for
similar tasks and for similar parameter values.

Framework

Multitask learning and transfer learning for autotuning. Let us
now define autotuning in the multitask and transfer learning
setting. The notations used in this article are summarized in
Table 1.

Throughout the article, we refer to input problem as an
input of the target application to be tuned. Moreover, we
refer to task as the problem of tuning the parameters of the
target application given a specific input problem.

We define S(T), the Task Space, as the space of all the input
problems that the application may encounter. We also make the
simple (non-restrictive) assumption that S(T) may be char-
acterized as a finite dimensional space of dimension D(T). This
means that it is possible to identify any input problem with a
finite number of features. Several application problems are
amenable to such a formalism, potentially after some ap-
proximations are made. If this finite dimension task space
assumption does not hold, the multitask learning methods in
Section “Model phase” remain valid, but some of the transfer
learning methods would require additional attention that we
leave as future work (e.g., space of all possible sparse matrices).

We then define S(IP), the Parameter Space, or space of the
parameters to be optimized, of dimension D(P), the number
of parameters. Every point in S(IP) can be referred to as a
parameter configuration. In practice, parameters can be

either real, integer, or categorical (e.g., a list of » algorithms
(which can map to an interval [1, #])). In our work, all
parameter kinds are translated internally to the real case in the
normalized interval [0, 1.]. Moreover, most applications have
constraints on their parameters as not all possible combi-
nations of parameters (point in the parameter space) are valid.

We define S(Q), the Output Space, as the space of the results
of the evaluation of objective function, for a given task and for a
given parameter configuration. It is a single dimensional space
(e.g., computation time, memory consumption, and energy), the
case of multi-dimensional spaces (corresponding to multi-
objective optimization) being left for future work.

We denote by y(t,x) € S(Q) and f(t,x) € S(O), the
values of the objective function y and model prediction f,
respectively, for a task # € S(T) and for a parameter con-
figuration x € S(IP). As is the case in Bayesian optimization,
the model f'is optimized instead of the measured value y,
while the optimum found is hoped to be that of y.

In this setting, it is possible to describe the application
performance autotuning problem under the mathematical
framework of black-box optimization. Every evaluation of
the objective function is an expensive run of the application
and no gradient information is available. The fundamental
aspect of autotuning is optimization, that is, finding a
configuration of the parameters of an application that makes
it solve a given input problem optimally. Indeed, given a
task 1 € S(T), the autotuning goal is to find

arg min £(£,x) 1)
xeS(P)

The nature of autotuning makes this optimization
problem lie within the family of black-box optimization
problems, which are among the hardest to solve. Indeed, an
expensive run of the application is necessary in order to get
the value of the objective function to optimize (e.g., runtime
and energy) for a given combination of parameters.
Moreover, even in the presence of approximate (coarse)
analytical models of the application (e.g., flop count and
memory consumption), no precise enough formulation
generally exists to predict more detailed phenomena (e.g.,
memory hierarchy communications and network conten-
tion) influencing the application behavior. Furthermore, the
human cost of deriving such models (if even possible to
derive) is too expensive to be practical. Similarly, no an-
alytical information on the gradient of the objective function
is available, but only numerical approximations are, through
sample evaluations of the objective function.

The autotuning stopping criteria is classically defined as
one or a combination of the following: (7) a maximum number
of evaluations of the objective function (runs of the applica-
tion); (i/) a maximum wall-clock time; (iii) threshold on a
relevant measure of the quality of the solution provided by the
application (e.g., numerical accuracy and energy

Luszczek et al.

consumption). In order to be able to fairly compare different
autotuning algorithms, we chose to fix a maximum number of
runs of the application as the stopping criteria. The total
runtime spent in the application is also measured and reported.

Article contributions

We combine DGP model (instead of GP) with multitask and
transfer learning: (i) this allows us to merge S(T) and S(PP)
instead of considering S(IP) only as in traditional approaches;
(i) we perform run-free autotuning and accelerated online
tuning with pre-trained model available offline.

® Multitask learning: the fact of tuning the application
on several tasks simultaneously helps the tuning of
each independent task.

® Transfer learning: the model produced allows for
predicting good guesses of the parameters of the
application for completely new problems for which
no data is available.

® [ndependence of the different optimizations (of the
different tasks) allows for a high degree of parallel-
ism, that can easily be exploited. This comes in ad-
dition to the parallelism available within the Efficient
Global Optimization (EGO) algorithm itself.

® Optimum of every task should be close to the opti-
mum of related (close) tasks. Thus, the exploration
around the optimum of one task will benefit the
neighboring tasks as new data is gathered in the
vicinity of their own optimum.

® [Increased confidence while predicting a given task
when taking into account other tasks’ contribution for
the prediction (decreases variance). This leads the
MLA to converge faster to the global optimum.

Overview

This article is organized as follows. Section “Related work and
proposed approach” presents the literature on autotuning. It
contrasts the existing work on shallow learning versus deep
learning as well as single-task versus multitask learning.
Moreover, it describes the motivation and sketch of our pro-
posed methodology. Sections “Sampling phase”, “Model
phase”, and “‘Search phase” and describe our proposed algo-
rithms alongside the classic EGO algorithm which is central to
our work. Section “Experimental results” compares the per-
formance of our proposed algorithms against that of existing
autotuning methods. Section “Conclusion” summarizes the
presented work and describes the potential future directions.

Related work and proposed approach

For a thorough survey of autotuning, multitask learning, and
transfer learning, we refer the reader to Balaprakash et al.

(2018), Zhang and Yang (2017), and Pan and Yang (2010),
respectively. Optimization methods that take into account
application-specific knowledge are left aside to keep the
focus on general-purpose approaches.

Sections “Single task optimization with deep learning”,
“Single-task optimization with shallow learning” and “Multitask
optimization with shallow learning” present the works on
single-task shallow learning, single-task deep learning and
multitask shallow learning, respectively. Specifically, black-box
optimization techniques can be grouped in two categories:
Section “Model-free optimization” describes Model-fiee
methods, which are used in OpenTuner (Ansel et al., 2014) and
HbBandSter (Falkner et al., 2018), two state-of-the-art auto-
tuners that we compare our results against. Section “Model-
based optimization” describes Model-based methods that
comprise the backbone of the optimization method of signifi-
cance to our work. The present work on deep Bayesian opti-
mization in multitask and transfer learning settings is described
in Section “Multitask optimization with shallow learning”.

Single-task optimization with shallow learning

The simplest black-box optimization methods, that are
typically first attempted before resorting to more advanced
methods, are known as: (i) The deterministic exhaustive
search (resp. its variant grid search) which tries all (resp. a
subset of all) possible combinations of parameter values and
selects the best performer. The drawback is that these
methods quickly become intractable when the number of
parameters increases (a.k.a. curse of dimensionality
(Bellman, 1957)); (if) The stochastic random search, which
tries random combinations of parameter values to generate
candidate solutions, then selects the best performing one.

Model-free optimization. Two main families of model-free
optimization approaches exist. The deterministic approaches,
such as Nelder-Mead simplex (Nelder and Mead, 1965) and
Orthogonal Search (Chan et al., 2011), make improvements
over the previous solutions by exploring their neighboring
region until convergence to a local minimum. The stochastic
approaches, such as Simulated Annealing (SA) (Kirkpatrick
et al, 1983), Genetic Algorithms (GAs) (Srinivas and
Patnaik, 1994), and Particle Swarm Optimization (PSO)
(Kennedy and Eberhart, 1995), try to find a balance between
exploiting the vicinity of the data gathered and exploring new
promising regions of the search space.

OpenTuner. OpenTuner (Ansel et al., 2014) and HbBand-
Ster (Falkner et al., 2018) are two state-of-the-art general-
purpose autotuning frameworks. They rely on meta-
heuristics to solve a multi-armed bandit problem
(Katehakis and Veinott, 1987) where application runtime
(our case) is the resource to be allocated. OpenTuner’s
philosophy is that no optimization algorithm can be better

4 The International Journal of High Performance Computing Applications 0(0)

than all other algorithms all the time (a.k.a. no free lunch
theorem). It allocates and distributes application runtime
over a variety of optimization methods (mentioned in the
previous paragraphs) in such a way as to adaptively select
the best performing one method to solve the autotuning
optimization problem. HpBandSter’s algorithm mixes a
Bayesian Optimization method (see the following section)
with that of Hyperband (Li et al., 2017), an early-stopping
method that allocates application runtime uniformly over
randomly sampled configurations, keeping only the half
best performing configurations at each iteration, and ex-
tending the corresponding runtime per remaining config-
urations, until a single (best) configuration remains.

Random-tree search. Several other non-Bayesian black-box
optimization packages for autotuning exist in the literature.
Notably, SuRf (Balaprakash, 2015) uses random forests to
discover regions of interest for further exploration. One of
its main strengths is its ability to elegantly handle cate-
gorical parameters (choices).

Model-based optimization. Any kind of statistical model can
be used in model-based optimization methods. However,
Bayesian optimization (Shahriari et al., 2016), a.k.a. response
surface methodology, is unique in that it relies on a Bayesian
(probabilistic) surrogate model of the actual objective
function. A prior, representing the assumptions on the ob-
jective function, is chosen and a posterior is built from it so as
to maximize the likelihood of some sample data of the ob-
jective function to be a realization of that model. Instead of
directly optimizing the true objective function, the model is
optimized over instead (as it is much cheaper to evaluate) and
iteratively updated until convergence to an optimum.

The EGO algorithm (Jones et al., 1998) is a classical
Bayesian optimization algorithm. It is composed of three
phases: (7) sampling phase (Section “Sampling phase™); (i7)
modeling phase (Section “Model phase”); and (iii) search/
optimization phase (Section “Search phase”). Once the first
phase completes, the second and third are repeated until
convergence or stopping of the tuning process. Specifically,
EGO starts by selecting an initial sample of data in order to
build an initial model. Then, the search phase seeks to find a
new candidate location to explore. In order to balance
between exploration and exploitation, EGO tries to optimize
a certain acquisition function (e.g., Expected Improvement
(ED (Qin et al., 2017)) instead of the model itself. This
metric considers the value of the model at a given point in
the search space together with the confidence of the model at
that location. For instance, if the model predicts a good
value of the objective function with a high confidence at a
given location, while a worse value at another location but
with a lower confidence, it might be worth exploring this
second location as an optimum might be located nearby.
After finding the candidate location, it is evaluated through a

call to the expensive black-box objective function. This
value is used to update the surrogate model. Efficient Global
Optimization iterates between the model phase and the
search phase until the acquisition function reaches a certain
threshold, at which point the algorithm is considered to have
converged to an optimum. Several effective autotuners,
such as Spearmint (Snoek et al., 2012) and HyperOpt
(Bergstra et al., 2015), implement a version of EGO.

Efficient Global Optimization being the backbone of our
work, it is described in detail in Sections “Sampling phase”,
“Model phase”, and “Search phase”, alongside our
contributions.

Single-task optimization with deep learning

Recent studies introduced the combined use of deep Bayesian
models with black-box optimization. Wang and Shan (2007)
apply this approach in the field of Design of Experiments
(DoE) (Wang and Shan, 2007) for civil engineering appli-
cations. Additionally, Hebbal et al. (2018) and Hebbal et al.
(2021) combine DGP with EGO to circumvent the inherent
limitations of GP in the modeling of non-stationary and
discontinuous objective functions arising in the field of de-
sign optimization for aerospace applications. The authors
extend their line of work to the case of constrained multi-
objective design optimization of aerospace vehicles in
Hebbal et al. (2019). Furthermore, Rajaram et al. (2021)
assesses the benefit of using DGP, compared to GP, as a
surrogate model in optimization problems relative to both
canonical tests and an airfoil design problem, focusing on the
accuracy of the models and their training cost.

Multitask optimization with shallow learning

The generalization of GP from real-valued functions
(single-task setting) to vector-valued functions
(multitask setting) through the Linear Coregionalization
Model (LCM)' has originally found its use in geostatistics
(Journel and Huijbregts, 1978 and Goovaerts, 1997), but
gained renewed interest in machine learning (Seeger et al.,
2005, Bonilla et al., 2008, and Alvarez and Lawrence,
2011). For instance, Swersky et al. (2013) combine LCM
with a search strategy relying on an entropy-based acqui-
sition metric (Hennig and Schuler, 2012) on the information
gain per unit cost to achieve an efficient multitask opti-
mization. Moreover, Liu et al. (2021) rely on LCM in the
GPTune package as the core model in a dual multitask and
multi-objective optimization setting.

Multitask optimization with deep learning

The present section is a sketch of our proposed autotuning
methodology, while Sections “Sampling phase”, “Model
phase” and “Search phase” dive into further details.

Luszczek et al.

Tuning an application for a specific input problem makes
that application efficient on solving that particular case.
However, it offers no guarantee regarding its behavior on
other unprecedented cases. Our aim is to tune an application
for any problem it might encounter. This goal is potentially
unrealistic in general, given the infinity of input problems that
might exist. Therefore, we wish to expeditiously find fa-
vorable combinations of parameters of the application for any
given input problem. The fact of tuning an application on the
whole space of input problems instead of a single one opens
up the door for leveraging multitask and transfer learning. We
believe that tuning the application on each problem inde-
pendently from the others is less efficient than tuning all of
them simultaneously. This allows to benefit from the gathered
knowledge on all input problems to speed up the whole
tuning process. This is critical especially in an exascale
setting, where every run of the application is extremely
expensive. The tuning process then follows a traditional
machine learning approach of model training followed by
model inference, where the result of the tuning in the mul-
titask learning setting is a sufficiently powerful DGPs model
that then can be exploited in the subsequent transfer learning
setting. In contrast to other multitask models such as LCMs, a
DGP model is naturally able to render predictions not only on
the current tasks being tuned but also on future unknown
tasks, which is key to the subsequent transfer learning setting.

The guiding ideas behind our work are twofold. First, our
Multitask Learning Algorithm (MLA) is an adaptation of
EGO to the multitask learning setting and relies on DGP as its
core model. The sample phase (Section “Sampling phase”)
encompasses not only the space of parameters but also the
space of input problems. A finite set of input problems is
selected, to every element of which a standard sampling is
carried in the corresponding problem space. The model phase
(Section “Model phase”) merges all gathered data relative to
all sampled input problems into a single powerful DGPs
model. While the complexity of the model training grows
quadratically with data size, this additional cost is balanced
by the improved prediction accuracy due to the sharing of
information among input tasks. The search phase (Section
“Search phase”) boils down to parallel standard EGO search
phases over the set of sampled input tasks. Second, our TLA1
is a fast online tuning method that relies solely on the set of
optimal parameters found on the initial sampled tasks in order
to predict the optimal parameters of a new task at hand
through a simple GP regression. Our TLA2 takes full ad-
vantage of the final DGPs model obtained at completion of
MLA by querying it in a similar way as in the search phase of
EGO in order to identify the best candidate solution for
unobserved tasks. A major difference however is that, while a
balance of exploration and exploitation is necessary in a
standard EGO search phase, a pure exploitation strategy is
needed in TLA2 as there is only a single possible attempt at
finding the optimum parameters.

Sampling phase

The sampling phase in EGO consists in choosing an initial
sample of data with which an initial model can be built.
While the subsequent phases aim at selecting candidates
that improve upon the best solution found so far. The aim of
the sampling phase is not to find optima, but rather to choose
locations that cover uniformly the search space, to ensure
the homogeneous accuracy of the model.

While a single sampling step (over S(IP)) is needed in a
classical single-task Bayesian optimization scheme, two
sampling steps are needed in MLA (over both S(T) and
S(P)).

First sampling step

The goal of this step is to select a set 7 of N T tasks
T = [t1;0; .3 tA\por] ES(T)N\b”T. This set should con-
tain a representative sample of the variety of problems that
the application may encounter, rather than focusing on a
specific type of problems. Given the freedom in the se-
lection of the tasks together with the existence of a space of
tasks S(T), we choose a space filling sampling in S(T) to
select 7. Such samplings are widely used in the field of
DoE. Particularly, we choose a Latin Hypercube Sampling
(LHS) (McKay et al., 1979; Eglajs and Audze, 1977; and
Iman et al., 1981) in MLA. Such samplings try to cover the
whole search space uniformly. Several off-the-shelf soft-
ware packages exist that implement different types of
sampling strategies (including LHS). Alternatively, one
might opt for a specific strategy to select 7 or might even
provide 7 altogether.

Second sampling step. The aim of this step is to select an
initial sampling X" of parameter configurations for every
task X = X155 ...; X0 7] ES(IP’)NOTXN(‘P. For task ¢, its
initial sampling X; consists of A"® P parameter configu-
rations X; = [x; J]je[l, NoP] ES(P)NOP . Two cases arise in
the multitask framework: (i) The isotropic case, when all
the tasks share the same sampling in PS; and (ii) the
heterotropic case, when different tasks do not necessarily
share the same samples. In the former case, the advantage
of a multi-output regression is the sharing of information
for the optimization of the hyper-parameters of the model
governing the tasks. In the latter case, however, more
knowledge can be shared. Indeed, insights on the true cost
of a task on an unknown configuration can be learned
from a similar task with a sample at that location. Ad-
ditionally, in real-life applications, given the existence of
constraints on the parameters, not all parameter config-
urations are feasible for all tasks simultaneously; a
configuration may be valid for a subset of tasks, but
violate the constraints on another subset. Thus, we choose

6 The International Journal of High Performance Computing Applications 0(0)

to generate the initial sampling X in a heterotropic way by
generating the X; as independent LHS.

Constraint handling. Given the application constraints, a ge-
neric sampling technique might fail, both for the selection of
the task samples and for the selection of their corresponding
parameter samples. Such a situation arises frequently when the
total number of combinations of parameter values is of the
order of thousands of billions (curse of dimensionality) while
the number of valid parameter configurations that respect the
constraints is only of the order of hundreds of thousands. An
example is the tuning of matrix multiplication on GPU in
MAGMA (Anzt et al., 2015 and Nath et al., 2010a; 2010b). In
such a case, either specific knowledge of the application
should be used to design a tailored space filling sampling, or a
Monte Carlo strategy should be implemented. In practice, this
strategy may lead to a very large number of iterations before
generating enough satisfiable samples. Thus, in MLA, at every
iteration, we double the number of samples we generate.
Consequently, the cost of the sampling algorithm adapts to the
complexity of the constraints.

Samples evaluation. Once 7 and X are selected, every
sample x; ; is evaluated through a run of the application. The
set) represent the results q)f alol these evaluations,
Y= [Yl;Yz;...;YNoT}ES((O))N NP Where every Y,
represents the results corresponding to task
Y = il ae] €SO

Model phase

Once 7 and X are selected and) evaluated, the modeling
phase consists in training a model of the black-box objective
function relative to tasks 7. However, instead of building a
separate model for every task, as is usually the case in a
regular single-task Bayesian optimization scheme, the
challenge in MLA is to derive a single encompassing model
that allows the sharing of knowledge between tasks in order
to better predict them all.

GPs are customarily used in EGO for the modeling in
single-task tuning (Snoek et al., 2012). Moreover, LCM
(Journel and Huijbregts, 1978 and Goovaerts, 1997) has al-
ready been used as a shallow learning model in multitask tuning
(Swersky et al., 2013; Sid-Lakhdar et al., 2020; and Liu et al.,
2021). We propose to rely on DGP in MLA as the general-
ization of GPs to the deep learning and multitask settings.

The following Sections “Gaussian processes” and “Deep
Gaussian processes” describe the GP and DGP models,
respectively.

Gaussian processes

We provide here a brief presentation of Gaussian pro-
cesses. We invite the reader to consult (Rasmussen and

Williams, 2006) for a detailed description. A GP is the
generalization of a multivariate normal distribution to an
infinite number of random variables. It is a stochastic
process where every finite subset of variables follows a
multivariate normal distribution. While other regression
methods set a prior on the function to be predicted, at-
tempting to learn the parameters of such a function, GPs
set a prior on some characteristics of the functions (e.g.,
smoothness) to learn the functions themselves. This shift
in prior allows for the expressiveness of a much richer
variety of functions.

A GP is completely specified by its mean function z(x)
and by its covariance function k(x, x'). A function f{x)
following such a GP is written as

f(x)~GP(u(x), k(x,x')) 2)

where
u(x) = E[f (x)] ®)
k(x,x) =E[(f(x) —u(0) (f () — ()] @

In most practical scenarios, u is taken to be the null
function and all the modeling is done through the kernel
function k. A variety of kernels exist in the literature. The
adequate choice depends on the data at hand. The run-
away generic choice is the following exponential qua-
dratic kernel:

D) (1, x{)z
k(x,x") = o’exp —217’

i=1

)

where o® (variance) and /; (lengthscales) are hyper-
parameters governing the behavior of the kernel. These
are learned by optimizing the following log-likelihood of
the samples X with values y on the GP:

log(p(y1X)) = —3(v — (X)) (K +0°1) " (v~ (X))

1 n
—Elog‘K +0’I| - Elog(27t)
(6)

where ¢°/ is a regularization term, and K is the covariance
matrix whose elements are generated from the kernel .

Given the high cost of computations as the size of the
data increases (O(N?)), several approximate training strat-
egies have been derived. One of the most popular is the
inducing points approximation. In this method, a set of
pseudo data points (of size M) is used in lieu of the original
data (of size N) with M < N. The location of the pseudo
points (inducing inputs) is defined by Z = {z|, ..., z),},
whereas the corresponding values (inducing outputs) are
defined by U = f(Z2).

Luszczek et al.

After defining /= f(X), the joint density of y, f, and u is
given by

N
pW.fou) = p(flu; X, Z)p(u, Z) [T p(vin fi) @)
i=1
Once the model is trained, that is, its hyper-parameters
optimized, it can be queried for a prediction relative to input
x* through the formulation:
T
(") = k(LX) KX,X) Y (8)
A fundamental property of GP-based models is the
ability to estimate the confidence in the predictions
alongside the predictions themselves. The confidence can be
expressed as

oK) - K6 K x) K (LX)
€]

The formulation in equations (8) and (9) holds for both
the GP model and LCM.

var(x

Linear Coregionalization Model

Particularly, we chose to use the LCM (Journel and
Huijbregts, 1978; Goovaerts, 1997), the choice of which
is driven by its generality, flexibility, and modeling power,
albeit its modeling cost, compared to the plethora of models
in the literature that are derived from it as special and
constrained cases (Bonilla et al., 2008). The key to LCM is
the construction of an approximation of the covariance
between the different outputs of the model (model of every ¢
e 7).

In this method, the relations between outputs are ex-
pressed as linear combinations of independent latent ran-
dom functions

E ai, gty (x

where a;, (i€[I,N°T]) are hyper-parameters to be
learned, and u, are the latent functions, whose hyper-
parameters need to be learned, as well.

The independence hypothesis is important as it allows us
to compute the covariance between the outputs only through
the auto-covariance of the latent functions themselves, as it
implies

t,,x

(10)

(11)

cov(u,u) Lif i=j
cov (1) = {0 Jif i)

The covariance of every latent function u, is assumed to
be generated from a kernel function:

cov(uq(x) uq()) k() (12)

This kernel can take x and x’ to be vectors as input, in
which case k, is a scalar. However, this kernel can also
consider them to be vectors of vectors (i.e., matrices). In
such a case, k,(x, x’) is a matrix, instead of a scalar, where
the (i, f) entry corresponds to the evaluation of the kernel £,
on the i vector of x and j” vector of x'.

The covariance structure between two outputs can now
be expressed as

XQ: XQ: Qi qQi', g COV (uq (x), uy (x’))

(13)

cov (f (t;,x),f (tr,x'
qg=1 ¢'=1

which thanks to equation (11) simplifies to

cov (f (&, x), [(tr,¥ Zaf 407,420V (g (x), 1y (')

(14

The covariance matrix between all the tasks on inputs x
and x’ can now be expressed through the kernel K(x, x')

[Y
K(x,x’) = ZBq ® kq(x,x') +D®I

q=1

(15)

where ® is a Kronecker product, k, is the covariance
function of the ¢” latent function, / is the identity matrix of
size N°PxN°P, D is a diagonal matrix, whose elements
are the variance of the noise in the measurement of the
samples, and B, is a N T x N° T matrix of parameters of
the model such that
Byli.i'] = aigar g = WyW,] (16)
with W, a vector of parameters. The D @ [term acts as a
regularization term that prevents overfitting and helps make
the covariance matrix non-singular. The use of a Kronecker
product holds in the isotropic case, where all the tasks to be
modeled are sampled at the same locations. In the hetero-
tropic case, where every task has its own samples, the
formulation is more complex. However, the idea remains
the same. The parameters that need to be learned are the
elements of the W, vectors as well as the hyper-parameters
of the kernels k,. As this task can be computationally ex-
pensive, several techniques exist in the literature to reduce
its cost. The one that we use is to assume that the rank of the
B, matrices is one, that is they require less effort to estimate.
In order to find the best hyper-parameters of the model,
the log-likelihood of the model on the data needs to be
optimized. The solution of this non-convex optimization
problem is a subject of active research. Some software

8 The International Journal of High Performance Computing Applications 0(0)

libraries rely on model-free black-box optimization tech-
niques to solve it while others rely on gradient-based op-
timization techniques with multi-start (to circumvent the
non-convexity), as is the case in the GPy machine learning
group package we rely on.

Deep Gaussian processes

Model description. A DGP (Damianou and Lawrence, 2013)
is a hierarchical composition of GPs (in our case, a deep
stacking). In a DGP of depth L, the GP at layer / models a
vector-valued stochastic function £; of dimension D’ whose
input is the output of function f;_; at the previous layer and
whose output is the input of function f. at the next layer.
Then, X is the input of the first layer and) is the output of
the last layer. The noise between layers is assumed to be
i.i.d. Gaussian, which means that the output produced by a
layer is corrupted by a Gaussian noise before being fed to
the next layer.

Inference in DGPs is intractable. Indeed, the tractability
in GPs stems from the fact that the likelihood is assumed to
be Gaussian in such models, which greatly simplifies the
computations. Unfortunately, composition of Gaussian
probability distributions is in general not Gaussian, which
greatly complicates the integration of the probability den-
sities. Hence, the inducing point framework is used. The
inducing inputs at every layer are denoted by Z = {Z', ...,
7%}, and the corresponding inducing outputs are denoted by
U= {U"=fYZ"), ..., U =f*Z")}. These inducing points
are then parameters of the model that can be optimized and
used to propagate the GPs predictions through the suc-
cessive layers.

The joint probability density function of ¥, F, and U can
be extended from that of a GP model (equation (7)) as

() -

B N
[p(F'|USF, 27 p(Uh 27 H}P(yflﬁl)

=1

(17)

Model training. Two main families of methods exist for
training (i.e., hyper-parameter optimization) and inference
(i.e., prediction) in DGPs: Variational Inference (VI) (Blei
et al., 2017) and Markov Chain Monte Carlo (MCMC)
(Andrieu et al., 2003). The difficulty with DGPs is the
existence of complex correlations both within and between
layers.

The original paper on DGPs (Damianou and Lawrence,
2013) relies on a mean-field variational approach that makes
strong independence assumptions and Gaussianity as-
sumptions. It uses a variational posterior which maintains
the exact model conditioned on the inducing outputs but
forces independence between layers. The true posterior is

likely to exhibit high correlations between layers, but mean-
field variational approaches are known to severely under-
estimate the variance in these situations (Turner and Sahani,
2011). A consequent advantage is that this approach admits
a tractable lower bound on the log marginal likelihood
(under some assumptions). A drawback, however, is that the
probability density over the outputs is merely a single-layer
GP with independent Gaussian inputs and therefore cannot
express the complexity of the full model. Since the posterior
loses all the correlations between, and so is likely to un-
derestimate the variance. In practice, we found that opti-
mizing the objective in Damianou and Lawrence (2013)
results in layers being “turned oft” (the signal to noise ratio
tends to zero). In contrast, our posterior retains the full
conditional structure of the true model.

The Doubly Stochastic Variational Inference (DSVI)
(Salimbeni and Deisenroth, 2017) relies on a double source
of stochasticity: (7) a sparse inducing point VI scheme
(Matthews et al., 2016) is used to simplify the correlations
and achieve computational tractability within each layer.
However, the correlations between layers are maintained
(independence is not forced as is the case in previous
methods). This leads to a sacrifice of the analytic tractability
of the variational lower bound. However, this is overcome
by the ability to draw efficiently unbiased samples from the
variational posterior which has the same structure as the
exact model conditioned on the inducing points. (ii) a
minibatch subsampling of the data is used to scale to ex-
tremely large datasets (up to a billion data points).

Doubly Stochastic Variational Inference does not force
independence between layers as is customarily the case with
other VI techniques that assume approximate posteriors

The Stochastic Gradient Hamiltonian Monte Carlo
(SGHMC) (Havasi et al., 2018 and Chen et al., 2014)
method can be used to generate samples from the intrac-
table posterior distribution of the inducing outputs p(U, Y).
The underlying idea is to rely on the principles of Hamil-
tonian dynamics by trying to minimize a total energy of a
dynamic system described as

p(U,R|Y)O<eXp(U(u)erM_lr> (18)

2
where the negative log posterior U(u) = —log(p(U]Y)) plays
the role of the potential energy, and the 1/2/"M ' term
plays the role of the kinetic energy, where 7 is an artificially
introduced momentum variable.

Given that the computation of gradients in the Hamil-
tonian Monte Carlo (HMC) (Neal, 2010) method is in-
tractable in DGP in the case of large training data, stochastic
gradient estimates can be computed following the work of
Chen et al. (2014), where

Au=eM'r 19)

Luszczek et al.

Ar = —VU(u) — eCM~'r + N'(0,2¢(C — B)) (20)

where C is the friction term (introduced to allow for batched
computations), M is the mass matrix, B is the Fisher in-
formation matrix, and € is the step-size.

Given this sampling framework, a Markov Chain can be
built. However, due to the high correlation between suc-
cessive samples, the optimization of the hyper-parameters
of the model while the sampler progresses is an operation
likely to fail. As a remedy, the authors in Havasi et al. (2018)
propose a variant of the Monte Carlo Expectation Maxi-
mization (MCEM) (Wei and Tanner, 1990) that they call
Moving Window Markov Chain Expectation Maximization
(MWEM). While MCEM alternates between the sampling
from the posterior (E-step, equation (21)) and the maxi-
mization of the joint probability of the samples and the data
(M-step, equation (22)),

ul,...,mNp(u|Y9X’H) (21)

0 = arg max%Xf’:llog p(Y,u;|X,0) (22)
0

Moving Window Markov Chain Expectation Maximi-
zation maintains a window of samples, where a newly
generated sample replaces the oldest one. Additionally, the
number of samples in the E-step is set to m = 1. At every M-
step, a random sample from the window is selected and the
hyper-parameters 6 of the model are optimized with respect
to this sample only. Experimentally, MWEM is able to
converge faster than alternate methods such as DSVI.

While DSVI is often used for training DGPs, we choose
SGHMC instead. It makes no assumptions regarding the
kernels and the likelihood being used. Moreover, the ac-
curacy of the model can be controlled and traded off with
computational training time, which is not necessarily the
case with other training methods. These two characteristics
are advantageous in a practical setting such as autotuning.
The pros of DGPs make them a great tool for tuning ex-
ascale applications, while their usual computational draw-
backs are leveraged in the exascale setting where few
samples only can be collected, making the DGP model
tractable (albeit with some approximations).

Search phase
Acquisition function optimization

This section describes the mathematical formulation of
inference in the GP model and LCM together, as the for-
mulation is nearly identical, than in DGPs.

Once the Bayesian model is either built (at the first it-
eration) or updated (at subsequent iterations), the EGO
algorithm relies on a model-free black-box optimization
algorithm to optimize a quantity called acquisition function.

This latter is based on both the prediction and the confidence
of the model in the outcome of the black-box objective
function at different locations in the search space. In our
multitask setting, not one but many such optimizations need
to be carried out. Given their relative independence, they
can occur in parallel. The resulting solution found for every
task is then evaluated through an expensive run of the
application to be tuned and then re-injected into the model.
The TLA2 strategy we propose is not an optimization of an
acquisition function but rather a direct optimization of the
mean prediction of the model. The underlying idea is that
there are not enough runs available to balance exploration
and exploitation, as the goal is only to exploit previous data.
This strategy is meant for the transfer learning setting, when
the user is not interested in tuning the application on a
completely new input problem, but is rather interested in
leveraging the data and model built on a previous tuning of
the application.

Fast online prediction of the optima

In a practical setting, after spending enough time offline in
tuning the application on a variety of relevant input prob-
lems, one can rely on TLA2 to guess the best parameter
values of the application on a new problem. However, al-
though the optimization queries a DGP model that is much
cheaper to query than the real application, the search phase
can take tens of seconds to minutes. When such waiting
times are unacceptable, we propose a quick online pre-
diction strategy, TLA, that can return a good guess within a
fraction of a second.

First Transfer Learning Algorithm applies if an ap-
proximation to the optimum parameter configuration of a
new task is considered enough, or, if a specific tuning for
that task cannot be afforded. It consists of building a model
of the optima of any new unexplored tasks, for which no
data is available. Specifically, a GP model predicting the
optima is built over S(T) and is trained on the parameter
configuration of the optimum found for every task #; in T.
The goal of TLA1 is to create a model that can predict the
optimal configuration corresponding to an unexplored task
without having to tune it.

Let us define the set of optima OPT corresponding to the
set of tasks T as

OPT; = arg min f(;,x), Vi€ [I,NOT}
xeS(P)

(23)

An optimum parameter configuration is composed of as
many parameters as D(P). Consequently, the solution that
we propose is to create D(IP) separate and independent GPs
Gicp1,pp) to model every component of the optimal solu-
tions separately. Such a GP model is described in Section
“Gaussian processes”. The set OPT represents the input data

10 The International Journal of High Performance Computing Applications 0(0)

of every one of these GPs. It is important to notice that the
input and output spaces of the GPs in EGO and in TLA1 are
different. In the former case, the input space is S(IP) and the
output space is S(0). In the latter case, the input space is
S(T) and the output space is one of the dimensions of S(P).
For any unexplored task #*, a prediction of its optimal
parameter configuration is then given by

OPT((") = [Gi(), Ga(("), ... Goge ()] € S(B) 24)

Additionally, the confidence in the prediction of the G;
models can serve as an indicator on whether an extra tuning
step is needed. An alternative solution could be to define a
single multi-output GP to model all the components si-
multaneously. However, no a priori hypothesis can be made
in the general case on the correlation between the different
components characterizing the optima.

Experimental results

This section presents the experimental results assessing the
combined advantage of a DGP model in a multitask and
transfer learning setting. An introductory example is first
presented in Section “Motivational autotuning example”
consisting in the tuning of the Cholesky factorization
routine DPOTRF in the PLASMA library. This simple
example allows for the plotting of the model prediction and
confidence together with a plot of the data. Section “Ex-
perimental setting” describes the applications to be tuned
together with the different algorithms that are compared
against. Section “Autotuning results” presents the com-
parative results and show the advantage that DGP-based
multitask and transfer learning framework brings to ap-
plication performance autotuning.

Motivational autotuning example

The Cholesky factorization routine DPOTRF in the PLASMA
library has the merit to be simple enough, in that its problem
space is a one dimensional space, characterized by the size of
the matrices to be factorized, and its parameter space is also a
one dimensional space, characterized by the block size to be
used to tile matrices. In order to make the experimental results
stable and reproducible, a single thread is used.

Given that, on matrix sizes below 1000, DPOTRF can
take less than a second to execute, we were able to get
exhaustive results, that is, for all matrices sizes in the range
[1, 1000] and for all block sizes in the range [1, 1000].
Figure 1 represents the Gflop/s rate obtained, the X-axis
representing the matrix size, the y-axis representing the
block size, and the shade of gray color representing the
GFlop rate (black representing 0 Gflop/s and white repre-
senting the highest Gflop/s obtained on any experiment).

Given the constraint that the block size cannot be larger than
the size of a matrix, the upper left triangular part of the figure
corresponds to the invalid parameter configurations.
Moreover, the area of low values of the block size (bottom
of the figure) is in dark gray which corresponds to low
Gflop/s rate. This is consistent with the fact that very small
values of blocking do not allow for enough cache reuse, and
thus lead the application to exhibit BLAS2 behavior instead
of BLAS3 behavior. Furthermore, within the lower trian-
gular part of the figure, representing the valid values, several
diagonal gray lines are visible. These areas simply corre-
spond to jumps in performance due to cache effects. Indeed,
given the size of matrices considered, the performance of
the application sharply drops whenever the matrix sizes get
too large to fit in L1 or L2 caches.

Given this exhaustive dataset, we run MLA on 50 tasks
and give every task a budget of 10 runs, split into 5 runs
chosen in the sampling phase and 5 runs chosen by the
search phase. Figure 2 shows the final results at the end of
the tuning for two neighboring tasks, that is, close in the
problem space. The results of the executions are represented
as blue dots, the prediction of the model as a pink curve and
the confidence of the model as a pink shaded area.

In both figures, it is straightforward to differentiate be-
tween the configurations proposed by the sampling phase as
the blue dots spread over the whole parameter space and the
configurations proposed by the search phase as the ones
clustered around the best value predicted by the model. This
immediate convergence to the optima is of course only
possible in such a simple case as the DPOTRF routine and is
not usually observed on more complicated cases. Moreover, it
is interesting to see in the second figure that, although no data

PLASMA DPOTRF GFlop/s

800

600

nb

400

200

400 600 800

Figure 1. Exhaustive Gflop/s results of the DPOTRF routine in
the PLASMA library. The X-axis represents the matrix size. The
y-axis represents the block size. The shade of gray represents the
Gflop/s.

Luszczek et al.

have been gathered in the lower spectrum of the parameter
space (values of the block size smaller than 0.2), the model is
still able to predict the drop in performance of the application
in that regime, and the tuner to not waste precious application
runs in exploring this area. The reason is that the model has
learned the behavior of the application in that range but on the
similar task represented in the first figure. Indeed, in the first
figure, the low end of the spectrum has indeed been sampled.
This behavior is representative of the power of leveraging the
multitask learning in an autotuning setting.

Experimental setting

Hardware setup. Two computers are used for the experi-
ments: ALPHA is a 64 nodes computer, each containing 12
cores of Intel™® Xeon™ X5660 at 2.80 GHz. BETA is a
single-node computer, containing 40 cores of Intel™
Xeon™ CPU E5-2650 v3 at 2.30 GHz.

Optimization problems. Two applications are considered: the
DGEQRF routine of the PLASMA library, and the
DGEMM routine of the SLATE library.

The first problem aims at computing the QR factorization
of a rectangular matrix on shared-memory computers. The
task space is characterized by m and n, the number of rows
and columns of a matrix, together with 7, the number of
OpenMP threads to be used in the computation. The pa-
rameter space is characterized by 7, and i,, the block and
internal panel sizes. The output space is simply described by
the resulting Gflop/s of the application. The range of sizes of
the matrices considered (together with the parameters to be
tuned) is [1, 5000] and the range of number of threads is [1,
40]. Hundred tasks are used for training and 100 others are
used for testing. The budget of number of runs per task is 30,
split equally between the sampling phase and the remaining
optimization phase.

The second problem aims at computing the multiplication
of two matrices on distributed-memory computers. The task
space is described by m, n, and k, the sizes of the matrices to be
multiplied, together with the number of nodes to be used for
the computations. The parameter space is described by the
block size n,, the number of threads #,, in each MPI process,
the ratio p x g of number of processes per row versus column
in the 2D block cyclic process mapping, and the number /a of

Figure 2. Result of MLA on the tuning of DPOTRF. The two subfigures correspond to two neighbor tasks. The X-axis represents the
block size. The y-axis represents the Gflop/s rate. The blue dots represent runs of the application. The pink curve represents the model
prediction and the pink shaded area represents the confidence of the model.

12 The International Journal of High Performance Computing Applications 0(0)

lookahead panels to be prefetched and precomputed. The
range of matrix sizes is [1, 10,000], and the range of compute
nodes is [1, 64]. The range of number of threads is [1, 12], the
range of the p x ¢ parameter is [0, 1] and of /a is [0, 2]. In order
to get a fair comparison between different runs, the number of
threads can only be 1, 2, 3, 4, 6, 12, which guarantees that all
cores of all nodes are used in all runs. Moreover, the number of
processes times the number of threads per process must be
equal to the total number of available cores on the nodes.
Hundred tasks are used for training and 100 others are used for
testing. The budget of number of runs per task is 50, split
equally between the sampling phase and the remaining op-
timization phase.

For both DGEQRF and DGEMM problems, the
number of runs per task follows a simple rule of thumb of
five times the number of parameters for the initial sam-
pling phase and as many runs for the subsequent opti-
mization iterations. This allows for enough runs for the
tuners to find relevant results while keeping the budget of
runs sufficiently low for the whole tuning process to be
attractive in a real life setting. It is likely that, given a
large enough number of runs, all tuners would likely
converge to an optimum. However, the goal of autotuning
is to reach such a goal at reduced cost. Moreover, the
choice of number of tasks (100 for DGEQRF and 100 in
DGEMM) follows a similar argument of having enough
tasks to enrich the DGP model with enough data to make
it able to predict the behavior of the application on new
unknown tasks. At the same time, we must keep the
number of tasks small enough so that the total wall-clock
time of the tuning process remains attractive. The average
autotuning time in our experiments for most tuners (given
the chosen numbers of samples and tasks) is about 24 h
for the DGEQRF problem and 48 h for the DGEMM
problem.

Autotuner types. Our proposed algorithms are compared
against several autotuning techniques: OpenTuner (Ansel
et al., 2014) and HpBandSter (Falkner et al., 2018), two
general-purpose model-free autotuners (Section “Model-free
optimization”), and EGO with a GP model at its core (EGO-
GP). Given that all of the Bayesian optimization methods
used and compared against rely on the EGO algorithm at their
core, we differentiate them by the relied upon model. Thus,
the two Bayesian-based autotuners are GP and DGP. The first
uses a GP model and only applies to single-task tuning. The
second uses the DGP model and not only allows for multitask
tuning but also for transfer learning.

Autotuning results

In order to showcase the benefits of the DGP model, a
comparison of the different autotuners is made. We present
results of multitask learning and transfer learning separately.

Multitask learning setting. The initial experiments consist in
tuning a set of training tasks in a multitask learning setting
while building a DGP model to be used subsequently for
transfer learning. While LCM and MLA attempts to tune all
training tasks simultaneously, OpenTuner, HpBandSter, and
EGO-GP operate on singe-tasks independently. Figure 3
shows the results for the DGEQRF problem. The result of a
given tuner on a given task is the smallest runtime of the
application obtained within the multiple runs attempted. In
each figure, the black horizontal line (on y-axis at 1) is the

OpenTuner .vs. MLA

1.0
0.8 1
0.6
0.4
0.2
0.0 -

0 20 40 60 80 100

HpBandster .vs. MLA

1.0

0.8

0.6

0.4

0.2 4

0.0-
0 20 40 60 80 100

EGO-GP .vs. MLA

1.0

0.8

0.6

0.4

0.2 4

0.0

0 20 40 60 80 100

LCM .vs. DGP

Figure 3. Relative performance of DGEQRF on train tasks given
the parameters optimized by OpenTuner, HpBandSter, and
EGO-GP and LCM compared to the ones found by MLA (black
horizontal lines).

Luszczek et al.

13

TLA1 and TLA2 .vs. Best of OpenTuner, HpBandSter and EGO-GP
1.4 4

1.2

* MO

0 20

Figure 4. Relative performance of DGEQRF on test tasks given
the parameters predicted by TLAI (gray) and TLA2 (red) using
the DGP model compared to the ones optimized by EGO-GP
(black horizontal lines).

TLAL and TLA2 .vs. EGO-GP

1.4 4
1.2

1.0 4 4

0.8
0.6
0.4 1

0.2

0.0 -
0 20 40 60 80 100

Figure 5. Relative performance of DGEMM on test tasks given
the parameters predicted by TLAI (gray) and TLA2 (red) using
the DGP model compared to the ones optimized by EGO-GP
(black horizontal lines).

reference result obtained by MLA for every test task rep-
resented on the X-axis. The tasks are sorted in each sub-
figure in increasing ratio of performance of the compared
tuner with MLA. Each sub-figure compares the best per-
formance found with a given tuner (colored bars) with that
found by MLA (black horizontal line). Graphically, the
metric of success of MLA compared to the others is the
number of times a colored bar is below the black horizontal
line, the more often the better.

Transfer learning setting (TLAI and TLA2). After training the
DGP model on the training tasks, new test tasks are
presented to the DGP-based autotuner. For each test task
in each of the two problems, the standard EGO-GP is
used similarly to the case of the training tasks. The best
result (Gflop/s) obtained for each test task is then
considered as the reference value. Then, the TLA1 and
TLA2 methods are applied to predict the optimal pa-
rameter for each test task, but without ever running the
applications on them. Figures 4 and 5 show the com-
parative results for the DGEQRF and DGEMM prob-
lems, respectively. In each figure, the black horizontal

line (on y-axis at 1) is the reference result obtained by
EGO-GP for every test task represented on the X-axis.
Moreover, the gray and red bars represent the results for
the TLA1 and TLA2 methods, respectively. The tasks
are sorted by increasing performance ratio of TLA2
compared to EGO-GP.

The surprising result is that, on the DGEQRF problem,
not only TLA1 is able to outperform TLA2, but it is also
competitive with the classical EGO-GP. On the other hand,
as expected, TLA2 presents better results than TLA1 on the
DGEMM problem.

It is important to notice that there is a clear imbalance in
the results. Indeed, TLA1 and TLA2, compared to EGO-GP,
yield a dreadful performance on some tasks and better
performance on other tasks. However, the average perfor-
mance offered by TLA2 compared to the reference EGO-GP
is about 80% (on both DGEQRF and DGEMM problems).
This result showcases the viability of transfer learning
through the DGP model. Moreover, the DGP model to-
gether with the results of TLA1 and TLA2 can be used as a
starting point for an additional tuning step on the test tasks,
if the user of an application can afford to spare some ad-
ditional runs to improve the parameters tuning.

As a final note, we must highlight the potential drawback
of our work. The fundamental assumption we made by
relying on multitask and transfer learning when autotuning
an application is that the behavior of the application is
somehow similar on loosely similar problems. This simi-
larity can be evaluated by the distance between two points in
the input problem space, each representing a different
problem. If an application fails to exhibit the assumed
behavior, the use of multitask and transfer learning should
not bring any benefit compared to tuning different tasks
separately.

Conclusion
Summary of findings

This article introduced multitask learning and transfer
learning as effective frameworks for autotuning HPC ap-
plications. At the heart of this work is the use of the
powerful DGP Bayesian model, which is able to identify the
relationships between tantamount autotuning tasks. The
proposed autotuning approach is based on the classical EGO
algorithm. This approach adapts autotuning in two ways: (7)
multitask learning: an application is tuned not on one but
multiple input problems. The sampling phase incorporates
an additional sampling step to choose which problems to
tune, then applies the usual sampling phase for each chosen
problem. The modeling phase is the same but relies on the
DGP model instead of the usual GP. The search phase is
applied in parallel on each chosen input problems; (if)
transfer learning: after the tuning phase has been carried on

14 The International Journal of High Performance Computing Applications 0(0)

a set of training tasks, the DGP model can be used to predict
a good guess of the parameters for a new unknown test task.
This is done simply by applying the search phase on the new
test task (TLA2). In the case where a quick prediction is
needed, an approximation is proposed (TLA1) that uses a
simple GP regression of the best parameters found for all
training tasks.

Perspectives

Several avenues for improvement are possible.

An ongoing work is the adaptation of the ideas in Pearce
and Branke (2018), namely, continuous multitask Bayesian
optimization with correlation. Although this latter work
relies on a shallow GP model, it can be adapted (albeit with
some approximations) to the deep GP model we rely on. The
idea is that, given the availability of data over a whole space
of tasks, not only new parameters can be tried in the loop of
EGO, but the tasks to be tuned can also be chosen incre-
mentally. This allows for a principled selection of the input
problems to be tuned, thus spreading the tuning effort in the
regions of the task space that need it most.

Another perspective is in the field of multi-fidelity. It is
common for HPC applications to be able to execute in a
somehow degraded mode. For example, FEM solvers can
use coarse-grain meshes instead of fine-grain ones. Al-
though the accuracy of the resulting numerical result is low,
the computation time of the application is greatly reduced.
In this setting, it is possible to leverage the availability of a
large amount of low-quality data in order to improve the
model prediction of the targeted scarce high-quality data. In
the shallow learning context, the co-Kriging method
(Perdikaris et al., 2015) has successfully been applied to this
end when relying on GP models. We seek to apply a similar
approach on the DGP model in a broad multitask learning
and transfer learning setting.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: The
surrogate performance model portion of this work was supported
by the U.S. Department of Energy, Office of Science, and ASCR
under Award Number DE-SC0021419. The development of some
of the software libraries tested in this work was supported by the
National Science Foundation Office of Advanced Cyberinfras-
tructure Directorate for Comp. & Info. Sci. & Eng. under Grant No.
2004541. This research and software used in this work was also
supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office of

Science and the National Nuclear Security Administration, and by
the U.S. Department of Energy and Office of Science, under
Contracts DE-AC05-000R22725 and DE-AC52-07NA27344.

ORCID iD

Piotr Luszczek @ https://orcid.org/0000-0002-0089-6965

Note

1. Linear Model of Coregionalization (LMC) and Linear Cor-
egionalization Model (LCM) are used interchangeably in the
literature.

References

Alvarez MA and Lawrence ND (2011) Computationally efficient
convolved multiple output Gaussian processes. Journal of
Machine Learning Research 12: 1459.

Andrieu C, de Freitas N, Doucet A, et al. (2003) An introduction to
memc for machine learning. Machine Learning 50(1): 5-43.
DOLI: 10.1023/A:1020281327116

Ansel J, Kamil S, Veeramachaneni K, et al. (2014) OpenTuner: an
extensible framework for program autotuning. In: Interna-
tional Conference on Parallel Architectures and Compilation
Techniques. Edmonton, Canada: Association for Computing
Machinery, 303-316. http://groups.csail.mit.edu/commit/
papers/2014/ansel-pact14-opentuner.pdf

Anzt H, Haugen B, Kurzak J, et al. (2015) Experiences in auto-
tuning matrix multiplication for energy minimization on
GPUs. Concurrency and Computation: Practice and Expe-
rience 27(17): 5096-5113. DOI: 10.1002/cpe.3516

Balaprakash P (2015) SuRF': Search Using Random Forest. https://
github.com/brnorris03/Orio/tree/master/orio/main/tuner/
search/mlsearch

Balaprakash P, Dongarra JJ, Gamblin T, et al. (2018) Autotuning in
high-performance computing applications. Proceedings of
the IEEE 106(11): 2068-2083. DOI: 10.1109/JPROC.2018.
2841200

Bellman R (1957) Dynamic Programming. First Edition.
Princeton, NJ, USA: Princeton University Press.

Bergstra J, Komer B, Eliasmith C, et al. (2015) Hyperopt: a python
library for model selection and hyperparameter optimization.
Computational Science & Discovery 8(1): 014008. http://
stacks.iop.org/1749-4699/8/i=1/a=014008

Blei DM, Kucukelbir A and McAuliffe JD (2017) Variational
inference: a review for statisticians. Journal of the American
Statistical Association 112(518): 859-877. DOI: 10.1080/
01621459.2017.1285773

Bonilla EV, Chai KMA and Williams CKI (2008) Multi-task
Gaussian Process Prediction. NIPS.

Chan TM, Larsen KG and Patrascu M (2011) Orthogonal range
searching on the ram, revisited. In: Proceedings of the
Twenty-Seventh Annual Symposium on Computational Ge-
ometry (Paris, France) (SoCG ’'11). New York, NY, USA:
ACM, 1-10.

https://orcid.org/0000-0002-0089-6965
https://orcid.org/0000-0002-0089-6965
https://doi.org/10.1023/A:1020281327116
http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf
http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf
https://doi.org/10.1002/cpe.3516
https://github.com/brnorris03/Orio/tree/master/orio/main/tuner/search/mlsearch
https://github.com/brnorris03/Orio/tree/master/orio/main/tuner/search/mlsearch
https://github.com/brnorris03/Orio/tree/master/orio/main/tuner/search/mlsearch
https://doi.org/10.1109/JPROC.2018.2841200
https://doi.org/10.1109/JPROC.2018.2841200
http://stacks.iop.org/1749-4699/8/i=1/a=014008
http://stacks.iop.org/1749-4699/8/i=1/a=014008
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080/01621459.2017.1285773

Luszczek et al.

I5

Chen T, Fox EB and Guestrin C (2014) Stochastic gradient
Hamiltonian Monte Carlo. In: International Conference on
Machine Learning, pp. 1683—-1691.

Damianou A and Lawrence N (2013) Deep gaussian processes.
Artificial Intelligence and Statistics 16: 207-215.

Eglajs V and Audze P (1977) New approach to the design of
multifactor experiments.
Strengths 35(1): 104-107.

Falkner S, Klein A and Hutter F (2018) BOHB: robust and
efficient hyperparameter optimization at scale. In: Dy J and
Krause A (eds), Proceedings of the 35th International
Conference on Machine Learning (Proceedings of Ma-
chine Learning Research, Vol. 80), PMLR, Stock-
holmsmaissan, Stockholm Sweden, 10-15 July 2018,
pp. 1437-1446. http://proceedings.mlr.press/v80/
falkner18a.html.

Goovaerts P (1997) Geostatistics for Natural Resources Evalua-
tion. Oxford, UK: Oxford University Press.

Havasi M, Hernandez-Lobato JM and Murillo-Fuentes JJ (2018)
Inference in deep gaussian processes using stochastic gradient
hamiltonian monte carlo. In: Proceedings of the 32nd In-
ternational Conference on Neural Information Processing
Systems, NIPS’18. Red Hook, NY, USA: Curran Associates
Inc., pp. 7517-7527.

Hebbal A, Brevault L, Balesdent M, et al. (2018) Efficient global
optimization using deep gaussian processes. In: 2018 IEEE
Congress on Evolutionary Computation (CEC), Rio de Ja-
neiro, Brazil, 08—13 July 2018, pp. 1-8. DOI:10.1109/CEC.
2018.8477946

Hebbal A, Brevault L, Balesdent M, et al. (2019) Multi-Objective
Optimization Using Deep Gaussian Processes: Application to
Aerospace Vehicle Design. DOI: 10.2514/6.2019-1973

Hebbal A, Brevault L, Balesdent M, et al. (2021) Bayesian op-
timization using deep gaussian processes with applications to

Problems of Dynamics and

aerospace system design. Optimization and Engineering
22(1): 321-361. DOTI: 10.1007/s11081-020-09517-8

Hennig P and Schuler CJ (2012) Entropy search for information-
efficient global optimization. Journal of Machine Learning
Research 13: 18009.

Iman RL, Helton JC and Campbell JE (1981) An approach to
sensitivity analysis of computer models: part [—introduction,
input variable selection and preliminary variable assessment.
Journal of Quality Technology 13(3): 174-183. DOI: 10.
1080/00224065.1981.11978748

Jones DR, Schonlau M and Welch WJ (1998) Efficient global
optimization of expensive black-box functions. Journal of
Global Optimization 13(4): 455-492. DOI: 10.1023/A:
1008306431147

Journel AG and Huijbregts CJ (1978) Mining Geostatistics.
London: Academic Press.

Katehakis MN and Veinott AF Jr (1987) The multi-armed bandit
problem: Decomposition and computation. Mathematics of
Operations Research 12(2): 262-268. DOI: 10.1287/moor.
12.2.262

Kennedy J and Eberhart R (1995) Particle swarm optimization. In:
Proceedings of ICNN'95 — International Conference on
Neural Networks, Volume 4. Perth: IEEE, 1942-1948.

Kirkpatrick S, Gelatt CD and Vecchi MP (1983) Optimization by
simulated annealing. SCIENCE 220(4598): 671-680.

Li L, Jamieson K, DeSalvo G, et al. (2017) Hyperband: a novel
bandit-based approach to hyperparameter optimiza- tion.
Journal of Machine Learning Research 18(1): 6765-6816.
http://dl.acm.org/citation.cfm?id=3122009.3242042

Liu Y, Sid-Lakhdar WM, Marques OA, et al. (2021) Gptune:
Multitask learning for autotuning exascale applications. In:
Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP
"21. New York, NY, USA: Association for Computing Ma-
chinery, 234-246. DOIL: 10.1145/3437801.3441621

Matthews AGG, Hensman J, Turner R, et al. (2016) On sparse
variational methods and the kullback-leibler divergence between
stochastic processes. In: Gretton A and Robert CC (eds), Pro-
ceedings of the 19th International Conference on Artificial In-
telligence and Statistics, Proceedings of Machine Learning
Research, Volume 51. Cadiz, Spain: PMLR, 231-239. https://
proceedings.mlr.press/v51/matthews16.html

McKay MD, Beckman RJ and Conover WJ (1979) A comparison
of three methods for selecting values of input variables in the
analysis of output from a computer code. Technometrics
21(2): 239-245. DOI: 10.2307/1268522

Nath R, Tomov S and Dongarra J (2010a) Accelerating GPU
kernels for dense linear algebra. In: Proceedings of the 2009
International Meeting on High Performance Computing for
Computational ~ Science, VECPAR’10. Berkeley, CA:
Springer.

Nath R, Tomov S and Dongarra J (2010b) An Improved MAGMA
GEMM For Fermi Graphics Processing Units. The Interna-
tional Journal of High Performance Computing Applications
24(4): 511-515. DOI: 10.1177/1094342010385729

Neal RM (2010) MCMC using Hamiltonian dynamics. Handbook
of Markov Chain Monte Carlo 54: 113-162.

Nelder JA and Mead R (1965) A simplex method for function
minimization. The Computer Journal 7: 308-313.

Pan SJ and Yang Q (2010) A survey on transfer learning. /EEE
Transactions on Knowledge and Data Engineering 22(10):
1345-1359.

Pearce M and Branke J (2018) Continuous multi-task bayesian
optimisation with correlation. European Journal of Opera-
tional Research 270(3): 1074-1085. DOI: 10.1016/j.ejor.
2018.03.017 https://www.sciencedirect.com/science/article/
pii/S0377221718302261

Perdikaris P, Venturi D, Royset JO, et al. (2015) Multi-fidelity
modelling via recursive co-kriging and Gaussian-Markov
random fields. Proceedings. Mathematical, Physical, and
Engineering Sciences 471(2179): 20150018. DOI: 10.1098/
rspa.2015.0018

Qin C, Klabjan D and Russo D (2017) Improving the
expected improvement algorithm. In: Guyon I, Luxburg

http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/falkner18a.html
https://doi.org/10.1109/CEC.2018.8477946
https://doi.org/10.1109/CEC.2018.8477946
https://doi.org/10.2514/6.2019-1973
https://doi.org/10.1007/s11081-020-09517-8
https://doi.org/10.1080/00224065.1981.11978748
https://doi.org/10.1080/00224065.1981.11978748
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1287/moor.12.2.262
https://doi.org/10.1287/moor.12.2.262
http://dl.acm.org/citation.cfm?id=3122009.3242042
https://doi.org/10.1145/3437801.3441621
https://proceedings.mlr.press/v51/matthews16.html
https://proceedings.mlr.press/v51/matthews16.html
https://doi.org/10.2307/1268522
https://doi.org/10.1177/1094342010385729
https://doi.org/10.1016/j.ejor.2018.03.017
https://doi.org/10.1016/j.ejor.2018.03.017
https://www.sciencedirect.com/science/article/pii/S0377221718302261
https://www.sciencedirect.com/science/article/pii/S0377221718302261
https://doi.org/10.1098/rspa.2015.0018
https://doi.org/10.1098/rspa.2015.0018

16 The International Journal of High Performance Computing Applications 0(0)

UV, Bengio S, et al. (eds), Advances in Neural Information
Processing Systems, Volume 30. Red Hook, NY: Curran
Associates, Inc. URL https://proceedings.neurips.cc/
paper/2017/file/b19aa25{f58940d974234b48391b9549-
Paper.pdf

Rajaram D, Puranik TG, Ashwin Renganathan S, et al. (2021)
Empirical assessment of deep gaussian process surrogate
models for engineering problems. Journal of Aircraft 58(1):
182-196. DOI: 10.2514/1.C036026

Rasmussen CE and Williams C (2006) Gaussian Processes for
Machine Learning. Cambridge: MIT Press.

Salimbeni H and Deisenroth M (2017) Doubly stochastic varia-
tional inference for deep gaussian processes. In: Guyon I,
Luxburg UV, Bengio S, et al. (eds), Advances in Neural
Information Processing Systems, Volume 30. Red Hook, NY:
Curran Associates, Inc. https://proceedings.neurips.cc/paper/
2017/£11e/8208974663db80265e9bfe7b222dcb18-Paper.pdf

Seeger M, Teh YW and Jordan MI (2005) Semiparametric Latent
Factor Models. AISTATS.

Shahriari B, Swersky K, Wang Z, et al. (2016) Taking the human
out of the loop: a review of bayesian optimization. Pro-
ceedings of the IEEE 104(1): 148-175.

Sid-Lakhdar WM, Demmel JW, Li XS, et al. (2020) Gptune
Users Guide. https://github.com/gptune/GPTune/tree/
master/Doc

Snoek J, Larochelle H and Adams RP (2012) Practical bayesian
optimization of machine learning algorithms. In: Proceedings
of NIPS.

Srinivas M and Patnaik LM (1994) Genetic algorithms: a survey.
Computer 27(6): 17-26.

Swersky K, Snoek J and Adams RP (2013) Multi-task bayesian
optimization. In: Burges CJC, Bottou L, Welling M, et al.
(eds), Advances in Neural Information Processing Systems,
Volume 26. Red Hook, NY: Curran Associates, Inc. https://
proceedings.neurips.cc/paper/2013/file/
f33bal5effaSc10e873bt3842afb46a6-Paper.pdf

Turner RE and Sahani M (2011) Two problems with varia-
tional expectation maximisation for time-series models.
In: Barber D, Cemgil AT and Chiappa S (eds), Bayesian
Time Series Models. Cambridge University Press.

Wang GG and Shan S (2007) Review of metamodeling techniques
in support of engineering design optimization. Journal of
Mechanical Design 129(4): 370-380.

Wei GCG and Tanner MA (1990) A Monte Carlo implementation of the
em algorithm and the poor man’s data augmentation algorithms.
Journal of the American Statistical Association 85(411): 699-704.

Zhang Y and Yang Q (2017) A survey on multi-task learning. In:
CoRR abs/1707.08114, 1. arXiv:1707.08114.

Author biographies

Piotr Luszczek is a Research Assistant Professor at the In-
novative Computing Laboratory in University of Tennessee,
Knoxville’s Department of Electrical Engineering and Com-
puter Science. Piotr earned MSc in Computer Science from
A.G.H. University of Science and Technology in Krakow,
Poland, and PhD in Computer Science from the University of
Tennessee Knoxville. Piotr’s research interests include
benchmarking, numerical linear algebra for high-performance
computing, automatic performance tuning for hardware ac-
celerators, and stochastic models for performance. Piotr has
over a decade of experience developing high-performance
numerical software for large scale, distributed memory sys-
tems with multicore processors and GPU accelerators. His
main research interest includes benchmarking and automated
performance tuning. Currently, Piotr serves a co-PI for the ECP
xSDK project that has a main goal to improve access to the
world-class software on the Exascale machines.

Wissam M. Sid-Lakhdar is a Research Scientist at the In-
novative Computing Laboratory in University of Tennessee,
Knoxville. He earned Master in Computer Science and
Applied Mathematics from Institut National Polytechnique
de Toulouse, France, and PhD in Computer Science, Ecoles
Normales Supérieures de Lyon, France. His research in-
terests include parallel algorithms, high performance
computing, sparse, or dense linear algebra with low-rank
structure, Bayesian Optimization for autotuning, and scal-
able deep kernel methods.

Jack Dongarra received a Bachelor of Science in Mathe-
matics from Chicago State University in 1972 and a Master of
Science in CS from the Illinois Institute of Technology in
1973. He received his PhD in Applied Mathematics from the
University of New Mexico in 1980. He worked at the Ar-
gonne National Laboratory until 1989, becoming a senior
scientist. He now holds an appointment as University Pro-
fessor Emeritus of Computer Science in the EECS Depart-
ment at the University of Tennessee and holds the title of
Distinguished Research Staff in the Computer Science and
Mathematics Division at ORNL; Turing Fellow at Man-
chester University; an Adjunct Professor in the Computer
Science Department at Rice University; and a Faculty Fellow
ofthe Texas A&M University’s Institute for Advanced Study.
He is the director of the Innovative Computing Laboratory at
the University of Tennessee. He is also the recipient of the
ACM’s Alan M. Turing Award for HPC research
contribution.

https://proceedings.neurips.cc/paper/2017/file/b19aa25ff58940d974234b48391b9549-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/b19aa25ff58940d974234b48391b9549-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/b19aa25ff58940d974234b48391b9549-Paper.pdf
https://doi.org/10.2514/1.C036026
https://proceedings.neurips.cc/paper/2017/file/8208974663db80265e9bfe7b222dcb18-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8208974663db80265e9bfe7b222dcb18-Paper.pdf
https://github.com/gptune/GPTune/tree/master/Doc
https://github.com/gptune/GPTune/tree/master/Doc
https://proceedings.neurips.cc/paper/2013/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf

	Combining multitask and transfer learning with deep Gaussian processes for autotuning-based performance engineering
	Introduction
	Motivation
	Solution
	Framework
	Multitask learning and transfer learning for autotuning

	Article contributions
	Overview

	Related work and proposed approach
	Single-task optimization with shallow learning
	Model-free optimization
	OpenTuner
	Random-tree search
	Model-based optimization

	Single-task optimization with deep learning
	Multitask optimization with shallow learning
	Multitask optimization with deep learning

	Sampling phase
	First sampling step
	Second sampling step
	Constraint handling
	Samples evaluation

	Model phase
	Gaussian processes
	Linear Coregionalization Model
	Deep Gaussian processes
	Model description
	Model training

	Search phase
	Acquisition function optimization
	Fast online prediction of the optima

	Experimental results
	Motivational autotuning example
	Experimental setting
	Hardware setup
	Optimization problems
	Autotuner types

	Autotuning results
	Multitask learning setting
	Transfer learning setting (TLA1 and TLA2)

	Conclusion
	Summary of findings
	Perspectives

	Declaration of conflicting interests
	Funding
	ORCID iD
	Note
	References
	Author biographies

