Acta Numerica

http://journals.cambridge.org/ANU cta
Bl merica

Additional services for Acta Numerica: Volume 25

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Linear algebra software for large-scale accelerated multicore computing

A. Abdelfattah, H. Anzt, J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomoy, I.
Yamazaki and A. YarKhan

Acta Numerica / Volume 25 / May 2016, pp 1 - 160
DOI: 10.1017/S0962492916000015, Published online: 23 May 2016

Link to this article: http://journals.cambridge.org/abstract S0962492916000015

How to cite this article:

A. Abdelfattah, H. Anzt, J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomoy, I.
Yamazaki and A. YarKhan (2016). Linear algebra software for large-scale accelerated multicore
computing. Acta Numerica, 25, pp 1-160 doi:10.1017/S0962492916000015

Request Permissions : Click here

CAMBRIDGE JOURMNALS

Downloaded from http://journals.cambridge.org/ANU, IP address: 192.50.6.17 on 24 May 2016

Acta Numerica (2016), pp. 1-160 (© Cambridge University Press, 2016
doi:10.1017/S0962492916000015 Printed in the United Kingdom

Linear algebra software for large-scale
accelerated multicore computing®

A. Abdelfattah, H. Anzt, J. Dongarra, M. Gates,
A. Haidar, J. Kurzak P. Luszczek, S. Tomov,
I. Yamazaki and A. YarKhan

Innovative Computing Laboratory, University of Tennessee,
1122 Volunteer Boulevard, Suite 203 Claxton,

Knozville, TN 37996, USA
E-mail: {ahmad,hanzt,dongarra,mgates3,haidar,kurza,
luszczek,tomov,iyamazak,yarkhan}Qicl.utk.edu

Many crucial scientific computing applications, ranging from national secur-
ity to medical advances, rely on high-performance linear algebra algorithms
and technologies, underscoring their importance and broad impact. Here
we present the state-of-the-art design and implementation practices for the
acceleration of the predominant linear algebra algorithms on large-scale accel-
erated multicore systems. Examples are given with fundamental dense linear
algebra algorithms — from the LU, QR, Cholesky, and LDLT factorizations
needed for solving linear systems of equations, to eigenvalue and singular
value decomposition (SVD) problems. The implementations presented are
readily available via the open-source PLASMA and MAGMA libraries, which
represent the next generation modernization of the popular LAPACK library
for accelerated multicore systems.

To generate the extreme level of parallelism needed for the efficient use
of these systems, algorithms of interest are redesigned and then split into
well-chosen computational tasks. The task execution is scheduled over the
computational components of a hybrid system of multicore CPUs with GPU
accelerators and/or Xeon Phi coprocessors, using either static scheduling or
light-weight runtime systems. The use of light-weight runtime systems keeps
scheduling overheads low, similar to static scheduling, while enabling the
expression of parallelism through sequential-like code. This simplifies the de-
velopment effort and allows exploration of the unique strengths of the various
hardware components. Finally, we emphasize the development of innovative
linear algebra algorithms using three technologies — mixed precision arith-
metic, batched operations, and asynchronous iterations — that are currently
of high interest for accelerated multicore systems.

* Colour online for monochrome figures available at journals.cambridge.org/anu.

2 A. ABDELFATTAH et al.

CONTENTS

1 Legacy software packages for dense linear algebra 2
2 New hardware architectures 12
3 Dynamic runtime scheduling 16
4 LU factorization 31
5 QR factorization 44
6 Cholesky factorization 48
7 LDLT decomposition 55
8 Eigenvalue and singular value problems 64
9 Mixed precision algorithms 103
10 Batched operations 114
11 Sparse linear algebra 138
12 Conclusion 148
References 149

1. Legacy software packages for dense linear algebra

Over the years, computational physics and chemistry have provided ongo-
ing demand for the ever-increasing performance in hardware and software
required to efficiently solve problems in these fields. Fortunately, most of
these problems can be translated into solutions for systems of linear equa-
tions — the very topic of numerical linear algebra. Seemingly then, a set
of efficient linear solvers could be solving important scientific problems for
years to come. We also argue that dramatic changes in hardware design,
precipitated by the shifting nature of the computer hardware marketplace,
has had a continuous effect on numerical linear algebra software, and the
extraction of high percentages of peak performance from evolving hard-
ware requires continuous adaptation in software. If the history of linear
algebra software’s adaptive nature is any indication, then the future holds
yet more changes — changes aimed at harnessing the incredible advances of
the evolving hardware infrastructure.

1.1. The LINPACK library and its implementations

In the 1970s, Fortran was the language for scientific computation: see Fig-
ure 1.1. Fortran stores two-dimensional arrays in column-major order (all
of the elements of the first column are stored first, then the elements of
the second column are stored, and so on). Accessing the array in a row-
wise fashion within the matrix could involve successive memory reference
to locations separated from each other by a large increment, depending on
the size of the declared array. This situation was further complicated by
the operating system’s use of memory pages to effectively control memory

ACCELERATED MULTICORE LINEAR ALGEBRA 3

subroutine dgefa(a,lda,n,ipvt,info) a(kk) =t
integer Ida,n,ipvt(1),info 10 continue
double precision a(lda,1) c
double precision t c compute multipliers
integer idamax,j,k,kpl,l,nm1 c
c t = -1.0d0/a(k,k)
c gaussian elimination with partial pivoting call dscal(n-k,t,a(k+1,k),1)
c c
info =0 c row elimination with column indexing
nml=n-1 c
if (nm1 .It. 1) go to 70 do 30 j = kpl, n
do 60 k = 1, nm1l t = a(lj)
kpl =k + 1 if (1 .eq. k) go to 20
c a(lj) = a(k.j)
c find | = pivot index a(kj) =t
c 20 continue
| = idamax(n-k+1,a(kk),1) + k-1 call daxpy(n-k,t,a(k+1,k),1,a(k+1,j),1)
ipvt(k) = | 30 continue
c go to 50
c zero pivot implies this column is already triangularized 40 continue
c info = k
if (a(l,k) .eq. 0.0d0) go to 40 50 continue
c 60 continue
c interchange if necessary 70 continue
c ipvt(n) = n
if (1 .eq. k) go to 10 if (a(n,n) .eq. 0.0d0) info = n
t = a(l,k) return
a(lk) = a(k,k) end

Figure 1.1. LINPACK variant of LU factorization. This is the original FORTRAN 66
code; if LINPACK were written today it would use a modern Fortran standard.

usage. With a large matrix and a row-oriented algorithm in a Fortran en-
vironment, an excessive number of page swaps might be generated in the
process of running the software. Cleve Moler pointed out this issue in the
1970s (Moler 1972).

In the mid-to-late 1970s, the introduction of vector computer systems
marked the beginning of modern supercomputing. These systems offered a
performance advantage of at least one order of magnitude over conventional
systems of that time. Raw performance was the main, if not the only,
selling point of new computing hardware. In the first half of the 1980s
the integration of vector systems in conventional computing environments
became more important. Only the manufacturers who provided standard
programming environments, operating systems, and key applications were
successful in earning industrial customers and survived. Performance was
mainly increased by improved chip technologies and by producing shared
memory multiprocessor systems. These systems were able, in one step, to
perform a single operation on a relatively large number of operands stored in
vector registers. Expressing matrix algorithms as vector—vector operations
was a natural fit for this type of machine (Dongarra, Gustavson and Karp
1984). However, some of the vector designs had a limited ability to load and
store the vector registers in main memory. A technique called ‘chaining’
allowed this limitation to be circumvented by moving data between the

4 A. ABDELFATTAH et al.

registers before accessing main memory. Chaining required recasting linear
algebra in terms of matrix—vector operations.

Vector architectures exploit pipeline processing by running mathematical
operations on arrays of data in a simultaneous or pipelined fashion. Most
algorithms in linear algebra can be easily vectorized. Therefore, in the
late 1970s there was an effort to standardize vector operations for use in
scientific computations. The idea was to define some simple, frequently used
operations and implement them on various systems to achieve portability
and efficiency. This package came to be known as the Level 1 Basic Linear
Algebra Subprograms (BLAS) or Level 1 BLAS (Lawson, Hanson, Kincaid
and Krogh 1979).

The term Level 1 denotes vector—vector operations. As we will see, Level 2
(matrix—vector operations: Hammarling, Dongarra, Du Croz and Hanson
1988), and Level 3 (matrix—matrix operations: Dongarra, Du Croz, Ham-
marling and Duff 1990) play important roles as well. In the 1970s, dense
linear algebra algorithms were implemented in a systematic way by the LIN-
PACK project (Dongarra, Bunch, Moler and Stewart 1979). LINPACK is
a collection of Fortran subroutines that analyse and solve linear equations
and linear least-squares problems. The package solves linear systems whose
matrices are general, banded, symmetric indefinite, symmetric positive def-
inite, triangular, and square tridiagonal (only diagonal, super-diagonal, and
sub-diagonal are present). In addition, the package computes the QR (mat-
rix Q is unitary or Hermitian and R is upper trapezoidal) and singular value
decompositions of rectangular matrices and applies them to least-squares
problems. LINPACK uses column-oriented algorithms, which increase effi-
ciency by preserving locality of reference. By column orientation, we mean
that the LINPACK code always references arrays down columns, not across
rows. This is important since Fortran stores arrays in column-major order.
This means that as one proceeds down a column of an array, the memory
references proceed sequentially through memory. Thus, if a program refer-
ences an item in a particular block, the next reference is likely to be in the
same block.

The software in LINPACK was kept machine-independent partly through
the introduction of the Level 1 BLAS routines. Calling Level 1 BLAS did
almost all of the computation. For each machine, the set of Level 1 BLAS
would be implemented in a machine-specific manner to obtain high perform-
ance. The Level 1 BLAS subroutines DAXPY, DSCAL, and IDAMAX are used in
the routine DGEFA.

It was presumed that the BLAS operations would be implemented in
an efficient, machine-specific way suitable for the computer on which the
subroutines were executed. On a vector computer, this could translate into
a simple, single vector operation. This avoided leaving the optimization up
to the compiler and explicitly exposing a performance-critical operation.

ACCELERATED MULTICORE LINEAR ALGEBRA 5

In a sense, then, the beauty of the original code was regained with the
use of a new vocabulary to describe the algorithms: the BLAS. Over time,
the BLAS became a widely adopted standard and was most likely the first
to enforce two key aspects of software: modularity and portability. Again,
these are taken for granted today, but at the time they were not. One
could have the advantages of the compact algorithm representation and the
portability, because the resulting Fortran code was portable.

Most algorithms in linear algebra can be easily vectorized. However,
to gain the most out of such architectures, simple vectorization is usually
not enough. Some vector computers are limited by having only one path
between memory and the vector registers. This creates a bottleneck if a pro-
gram loads a vector from memory, performs some arithmetic operations, and
then stores the results. In order to achieve top performance, the scope of the
vectorization must be expanded to facilitate chaining operations together
and to minimize data movement, in addition to using vector operations. Re-
casting the algorithms in terms of matrix—vector operations makes it easy
for a vectorizing compiler to achieve these goals.

Thus, as computer architectures became more complex in the design of
their memory hierarchies, it became necessary to increase the scope of the
BLAS routines from Level 1 to Level 2 to Level 3.

1.2. Implementation in terms of submatrices

RISC (reduced instruction set computing) computers were introduced in the
late 1980s and early 1990s. While their clock rates might have been compar-
able to those of the vector machines, the computing speed lagged behind due
to their lack of vector registers. Another deficiency was their creation of a
deep memory hierarchy with multiple levels of cache memory to alleviate the
scarcity of bandwidth that was, in turn, caused mostly by a limited number
of memory banks. The eventual success of this architecture is commonly
attributed to the price point and astonishing improvements in performance
over time as predicted by Moore’s law (Moore 1965). With RISC computers,
the linear algebra algorithms had to be redone yet again. This time, the
formulations had to expose as many matrix—matrix operations as possible,
which guaranteed good cache re-use.

As mentioned before, the introduction in the late 1970s and early 1980s of
vector machines brought about the development of another variant of algo-
rithms for dense linear algebra. This variant was centred on the multiplica-
tion of a matrix by a vector. These subroutines were meant to give improved
performance over the dense linear algebra subroutines in LINPACK, which
were based on Level 1 BLAS. In the late 1980s and early 1990s, with the
introduction of RISC-type microprocessors (the ‘killer micros’) and other
machines with cache-type memories, we saw the development of LAPACK

6 A. ABDELFATTAH et al.

(Anderson et al. 1999) Level 3 algorithms for dense linear algebra. A Level 3
code is typified by the main Level 3 BLAS, which, in this case, is matrix
multiplication (Anderson and Dongarra 19900).

The original goal of the LAPACK project was to allow linear algebra prob-
lems to run efficiently on vector and shared memory parallel processors. On
these machines, LINPACK is inefficient because its memory access patterns
disregard the multilayered memory hierarchies of the machines, thereby
spending too much time moving data instead of doing useful floating-point
operations. LAPACK addresses this problem by reorganizing the algorithms
to use block matrix operations, such as matrix multiplication, in the inner-
most loops (see the paper by Anderson and Dongarra 1990a). These block
operations can be optimized for each architecture to account for its memory
hierarchy, and so provide a transportable way to achieve high efficiency on
diverse modern machines.

Here we use the term ‘transportable’ instead of ‘portable’ because, for
fastest possible performance, LAPACK requires that highly optimized block
matrix operations already be implemented on each machine. In other words,
the correctness of the code is portable, but high performance is not — if we
limit ourselves to a single Fortran source code.

LAPACK can be regarded as a successor to LINPACK in terms of func-
tionality, although it does not use the same function-calling sequences. As
such a successor, LAPACK was a win for the scientific community because
it could keep LINPACK’s functionality while getting improved use out of
new hardware.

Most of the computational work in the algorithm from Figure 1.2 is con-
tained in three routines:

e DGEMM — matrix—matrix multiplication,
e DTRSM — triangular solve with multiple right-hand sides,

e DGETF2 — unblocked LU factorization for operations within a block
column.

One of the key parameters in the algorithm is the block size, called NB here.
If NB is too small or too large, poor performance can result — hence the
importance of the ILAENV function, whose standard implementation was
meant to be replaced by a vendor implementation encapsulating machine-
specific parameters upon installation of the LAPACK library. At any given
point of the algorithm, NB columns or rows are exposed to a well-optimized
Level 3 BLAS. If NB is 1, the algorithm is equivalent in performance and
memory access patterns to LINPACK’s version.

Matrix—matrix operations offer the proper level of modularity for perform-
ance and transportability across a wide range of computer architectures,
including parallel systems with memory hierarchy. This enhanced perform-
ance is due primarily to a greater opportunity for re-using data. There are

ACCELERATED

SUBROUTINE DGETRF(M, N, A, LDA, IPIV, INFO)
INTEGER INFO, LDA, M, N

INTEGER IPIV(*)

DOUBLE PRECISION A(LDA, *)

DOUBLE PRECISION ONE

PARAMETER (ONE = 1.0D+0)
INTEGER I, lINFO, J, JB, NB
EXTERNAL DGEMM, DGETF2, DLASWP, DTRSM
EXTERNAL XERBLA
INTEGER ILAENV
EXTERNAL ILAENV
INTRINSIC MAX, MIN
INFO = 0
IF(M.LT.0) THEN
INFO = -1
ELSE IF(N.LT.0) THEN
INFO = -2
ELSE IF(LDA.LT.MAX(1, M)) THEN
INFO = -4
END IF

IF(INFO.NE.O) THEN
CALL XERBLA(*DGETRF’, -INFO)
RETURN
END IF
IF(M.EQ.0 .OR. N.EQ.0) RETURN
NB = ILAENV(1, *DGETRE’, * *, M, N, -1, -1)
IF(NB.LE.1 .OR. NB.GE.MIN(M, N)) THEN
CALL DGETF2(M, N, A, LDA, IPIV, INFO)
ELSE

MULTICORE LINEAR ALGEBRA 7

DO 20 J = 1, MIN(M, N), NB
JB = MIN(MIN(M, N)-J4+1, NB)

* Factor diagonal and subdiagonal blocks and test for exact
* singularity.

CALL DGETF2(M-J+1, JB, A(J, J), LDA, IPIV(J), IINFO)
* Adjust INFO and the pivot indices

IF(INFO.EQ.0 .AND. IINFO.GT.0) INFO = IINFO + J- 1
DO 10 1 = J, MIN(M, J4JB-1)
IPIV(1)=J-1+IPIV(I)
10 CONTINUE
Apply interchanges to columns 1:J-1
CALL DLASWP(J-1, A, LDA, J, J+JB-1, IPIV, 1)
IF(J+JB.LE.N) THEN
Apply interchanges to columns J+JB:N.
CALL DLASWP(N-J-JB+1, A(1, J+JB), LDA, J, J+JB-1, IPIV, 1)
Compute block row of U
CALL DTRSM(’Left’, ’Lower’, ’No transpose’, ’Unit’, JB,
$ N-J-JB-+1, ONE, A(J, J), LDA, A(J, J+JB), LDA)
IF(J+JB.LEM) THEN
Update trailing submatrix
CALL DGEMM(’No transpose’, ’No transpose’, M-J-JB+1,

$ N-J-JB+1, JB, -ONE, A(J+JB, J), LDA,
$ A(J, J+JB), LDA, ONE, A(J+JB, J+JB), LDA)
END IF
END IF
20 CONTINUE
END IF
RETURN
END

Figure 1.2. LAPACK’s LU factorization routine DGETRF using FORTRAN 77.

numerous ways to accomplish this re-use of data to reduce memory traffic
and to increase the ratio of floating-point operations to data movement
through the memory hierarchy. This improvement can bring a three- to
tenfold improvement in performance on modern computer architectures.

The jury is still out concerning the productivity of writing and reading the
LAPACK code: How hard is it to generate the code from its mathematical
description? The use of vector notation in LINPACK is arguably more
natural than LAPACK’s matrix formulation. The mathematical formulas
that describe algorithms are usually more complex if only matrices are used,
as opposed to mixed vector—matrix notation.

1.3. Beyond a single compute node

The traditional design focus for massively parallel processing (MPP) systems
was the very high end of performance. In the early 1990s, the symmetric
multiprocessing (SMP) systems of various workstation manufacturers, as
well as the IBM SP series — which targeted the lower and medium market
segments — gained great popularity. Their price/performance ratios were
better thanks to the economies of scale associated with larger production
numbers, and due to lack of overhead in the design for support of the very
large configurations. Due to the vertical integration of performance, it was

8 A. ABDELFATTAH et al.

no longer economically feasible to produce and focus on the highest end of
computing power alone. The design focus for new systems shifted to the
market of medium performance systems.

The acceptance of MPP systems, not only for engineering applications
but also for new commercial applications (e.g. databases), emphasized dif-
ferent criteria for market success, such as the stability of the system, con-
tinuity /longevity of the manufacturer, and price/performance. Thriving in
commercial environments became an important endeavour for a successful
supercomputer business in the late 1990s. Due to these factors, and the
consolidation of the number of vendors in the market, hierarchical systems
built with components designed for the broader commercial market replaced
homogeneous systems at the very high end of performance. The market-
place adopted clusters of SMPs readily, while academic research focused on
clusters of workstations and PCs.

At the end of the 1990s, clusters were common in academia but mostly as
research objects and not primarily as general-purpose computing platforms
for applications. Most of these clusters were of comparable small scale,
and as a result the November 1999 edition of the TOP500 (Meuer, Stroh-
maier, Dongarra and Simon 2011) listed only seven cluster systems. This
changed dramatically as industrial and commercial customers started de-
ploying clusters as soon as applications with less stringent communication
requirements permitted them to take advantage of the better price/per-
formance ratio. At the same time, all major vendors in the HPC market
started selling this type of cluster to their customer base. In November 2004,
clusters were the dominant architectures in the TOP500, with 294 systems
at all levels of performance. Companies such as IBM and Hewlett-Packard
were selling the majority of these clusters, and a large number of them were
installed for commercial and industrial customers.

In the early 2000s, clusters built with off-the-shelf components gained
more and more attention not only as academic research objects, but also as
viable computing platforms for end-users of HPC computing systems. By
2004, these groups of clusters represented the majority of new systems on
the TOP500 in a broad range of application areas. One major consequence
of this trend was the rapid rise in the utilization of Intel processors in HPC
systems. While virtually absent in the high end at the beginning of the
decade, Intel processors are now used in the majority of HPC systems.
Clusters in the 1990s were mostly self-made systems designed and built by
small groups of dedicated scientists or application experts. This changed
rapidly as soon as the market for clusters based on PC technology matured.
Today, the large majority of TOP500-class clusters are manufactured and
integrated by either a few traditional large HPC manufacturers, such as
IBM or Hewlett-Packard, or numerous small, specialized integrators of such
systems.

ACCELERATED MULTICORE LINEAR ALGEBRA 9

In addition, clusters generally still have different uses compared to their
more integrated counterparts: clusters are mostly used for capacity comput-
ing, while the integrated machines are primarily used for capability com-
puting. The largest supercomputers are used for capability or turnaround
computing where the maximum processing power is applied to a single prob-
lem. The goal is to solve a larger problem, or to solve a single problem in a
shorter period of time. Capability computing enables the solution of prob-
lems that cannot otherwise be solved in a reasonable period of time (e.g.,
by moving from a two-dimensional to a three-dimensional simulation, us-
ing finer grids, or using more realistic models). Capability computing also
enables the solution of problems with real-time constraints (e.g. predicting
weather). The main figure of merit is time to solution. Smaller or cheaper
systems are used for capacity computing, where smaller problems are solved.
Capacity computing can be used to enable parametric studies or to explore
design alternatives; it is often needed to prepare for more expensive runs
on capability systems. Capacity systems will often run several jobs sim-
ultaneously. The main figure of merit is sustained performance per unit
cost. Traditionally, vendors of large supercomputer systems have learned
to provide for the capacity mode of operation as the precious resources of
their systems were required to be used as effectively as possible. In contrast,
Beowulf clusters (clusters made up of commodity computers linked together
via a local area network) mostly use the Linux operating system (a small
minority use Microsoft Windows), and these operating systems either lack
the tools or the tools lack the maturity to utilize a cluster effectively for
capability computing. However, as clusters become both larger and more
stable on average, in terms of continuous operation, there is a trend to also
use them as computational capability servers.

There are a number of communication networks available for use in clus-
ters. Of course 100 Mb/s Ethernet or Gigabit Ethernet is always possible,
which is attractive for economic reasons, but it has the drawback of a high
latency (~100 us) — the time it takes to send the shortest message. Al-
ternatively, there are, for instance, networks that operate from user space,
like InfiniBand. The speeds of these networks are more-or-less on a par
with some integrated parallel systems. So, apart from the speed of the pro-
cessors and of the software that is provided by the vendors of traditional
integrated supercomputers, the distinction between clusters and the class of
custom capability machines becomes rather small and will, especially with
advances of the Ethernet standard into the 100 Gb/s territory with latencies
well below 10 us, decrease further in the coming years.

LAPACK was designed to be highly efficient on vector processors, high-
performance ‘superscalar’ workstations, and shared memory multiproces-
sors. LAPACK can also be used satisfactorily on all types of scalar ma-
chines (PCs, workstations, and mainframes). However, LAPACK in its

10 A. ABDELFATTAH et al.

present form is less likely to give good performance on other types of par-
allel architectures (e.g. massively parallel single instruction multiple data
(SIMD) machines or multiple instruction multiple data (MIMD) distributed
memory machines). Instead, the ScaLAPACK effort was intended to adapt
LAPACK to these new architectures.

Like LAPACK, the ScaLAPACK routines are based on block-partitioned
algorithms in order to minimize the frequency of data movement between
different levels of the memory hierarchy. The fundamental building blocks of
the ScaLAPACK library are distributed memory versions of the Level 2 and
Level 3 BLAS (Choi 1995), and a set of Basic Linear Algebra Communica-
tion Subprograms (BLACS: Dongarra and Whaley 1995) for communication
tasks that arise frequently in parallel linear algebra computations. In the
ScaLAPACK routines, all interprocessor communication occurs within the
distributed BLAS and the BLACS, so the source code of the top software
layer of ScaLAPACK looks very similar to that of LAPACK.

In order to simplify the design of ScaLAPACK, and because the BLAS
routines have proved to be very useful tools outside LAPACK, we chose to
build a parallel BLAS, or PBLAS (Choi 1995), whose interface is as similar
to the BLAS as possible. This decision has permitted the ScaLAPACK
code to be quite similar, and sometimes nearly identical, to the analogous
LAPACK code.

It was our aim that the PBLAS would provide a distributed memory
standard, just as the BLAS provided a shared memory standard. This
would simplify and encourage the development of high performance and
portable parallel numerical software, as well as provide manufacturers with
only a small set of routines to be optimized. The acceptance of the PBLAS
requires reasonable compromises between competing goals of functionality
and simplicity.

The PBLAS operate on matrices distributed in a two-dimensional block
cyclic layout. Because such a data layout requires many parameters to
fully describe the distributed matrix, we have chosen a more object-oriented
approach and encapsulated these parameters in an integer array called an
‘array descriptor’.

By using this descriptor, a call to a PBLAS routine is very similar to a call
to the corresponding BLAS routine, as shown in Table 1.1. DGEMM computes
C =BETA x C + ALPHA X op(A) X op(B), where op(A) is either A or its
transpose depending on TRANSA, op(B) is similar, op(A) isM x K, and op(B)
is K x N. PDGEMM is the same, with the exception of the way submatrices
are specified. To pass the submatrix starting at A(IA,JA) to DGEMM, for
example, the actual argument corresponding to the formal argument A is
simply A(TA,JA). PDGEMM, on the other hand, needs to understand the global
storage scheme of A to extract the correct submatrix, so IA and JA must be
passed in separately.

ACCELERATED MULTICORE LINEAR ALGEBRA 11

Table 1.1. Comparison between parameters of DGEMM and PDGEMM.

Description of parameter DGEMM PDGEMM
Transpose operator: A, AT, AH TRANSA TRANSA
Transpose operator: B, BT, BH TRANSB TRANSB

Matrix dimensions:

A e RMXK B c REXN O c RMXN M, N, K M, N, K
Input scaling: a4 x B ALPHA ALPHA
Upper left corner of the matrix: Ajaj, AC IA, JA) A, TA, JA
Leading dimension of A LDA (see DESCA)
Local memory layout of A (see LDA) DESCA
Upper left corner of the matrix: By, j, B(IB, JB) B, IB, JB
Leading dimension of B LDB (see DESCB)
Local memory layout of B (see LDB) DESCB
Output scaling: 5C BETA BETA
Upper left corner of the matrix: Cicjc c(1Cc, JC) c, Ic, JC
Leading dimension of C LDC (see DESCC)
Local memory layout of C (see LDC) DESCC

1.4. Into the modern era of heterogeneous hardware

Clearly, the previous sections were historical in nature. Interestingly, many
of the design principles and implementation techniques remain relevant
when moving into the era of heterogeneous hardware, which requires un-
precedented parallelism and customization of algorithmic choices that play
into the particular strengths of the underlying computing hardware. The
data locality is still important, especially with the growing disparity between
the compute units and the memory hierarchy. Vectorization is still present
in the form of short vector instructions such as the SSE, AVX, and AltiVec
extensions, as well as warps and half-warps on NVIDIA GPUs. Data distri-
bution comes to the fore when deciding the placement of inputs and outputs
of the computational kernels, and now includes the decision of dividing the
data between the CPU memory and the accelerator memory. Looking back
at the past hardware helps one understand these techniques in a much sim-
pler context.

12 A. ABDELFATTAH et al.

2. New hardware architectures
2.1. The CORAL machines

Current trends in HPC architectures can best be illustrated by the US
Department of Energy’s plans for pre-exascale machines, that is, machines
with computing capabilities in the range of hundreds of Petaflops, meant to
be the stepping stones towards future exascale machines. Under the CORAL
collaboration, Oak Ridge National Laboratory (ORNL), Argonne National
Laboratory (ANL), and Lawrence Livermore National Laboratory (LLNL)
will each deploy powerful pre-exascale supercomputers. These systems will
provide the computing power required to meet the mission of the Office
of Science and the National Nuclear Security Administration (NNSA) of
the US DoE. While NVIDIA GPU-accelerated systems, named Summit and
Sierra and based on the IBM OpenPOWER platform, were selected for
ORNL and LLNL, an Intel system named Aurora and based on the Xeon
Phi platform was selected for ANL. These systems will serve as the models
for future exascale designs.

The NVIDIA /IBM-based systems will share a heterogeneous node archi-
tecture that tightly integrates IBM POWER CPUs with NVIDIA GPUs
using NVIDIA NVLink high-speed coherent interconnect technology. Both
machines will be based on IBM Power9 chips, which will emerge just in
time for delivery of these systems. The performance and efficiency boost
will come from NVIDIA Volta Tesla GPUs, with Mellanox EDR InfiniBand
hooking the hybrid Power-Tesla nodes together. The two key features of
the Volta GPU are the stacked memory and NVLink interconnect, both of
which are important for keeping the processors on both the Power and Tesla
components fed. At the same time, the Aurora system at ANL will rely on
Intel’s HPC scalable system framework, which is a flexible blueprint for de-
veloping high-performance, balanced, power-efficient, and reliable systems
capable of supporting both compute- and data-intensive workloads. The
framework combines next generation Intel Xeon processors and Intel Xeon
Phi processors, Intel Omni-Path fabric, silicon photonics, and innovative
memory technologies.

2.2. Stacked memory

3D-stacked memories are manufactured by stacking silicon wafers and/or
dies and interconnecting them vertically using through-silicon vias (TSVs),
so that they behave as a single device to achieve performance improvements
with reduced power consumption and smaller footprint than conventional
two-dimensional memory. Two leading three-dimensional memory techno-
logies are high bandwidth memory (HBM) and hybrid memory cube (HMC).
HBM is a high-performance RAM interface for 3D-stacked DRAM memory

ACCELERATED MULTICORE LINEAR ALGEBRA 13

from AMD and Hynix. It is to be used in conjunction with high-performance
graphics accelerators and network devices. HBM achieves higher bandwidth
while using less power in a substantially smaller form factor than DDR4 or
GDDRS5. This is achieved by stacking up to eight DRAM dies, including
an optional base die with a memory controller, which are interconnected by
TSVs and microbumps. The first chip utilizing HBM is AMD Fiji, powering
the AMD Radeon R9 Fury X. While the memory bandwidth of the Fury X
GPU peaks at 512 GB/s, by 2018 the bandwidth of the NVIDIA Volta is
expected to approach 1 TB/s.

HMC is a high-performance RAM interface for TSV-based stacked DRAM
memory competing with HBM. HMC promises a 15X speed improvement
from DDR3. HMC is backed by several major technology companies in-
cluding Samsung, Micron Technology, Open-Silicon, ARM, HP, Microsoft,
Altera, and Xilinx. Both Intel and IBM target HMC as the memory tech-
nology for their future processors. HMC combines TSVs and microbumps
to connect multiple dies of memory cell arrays on top of each other. The
memory controller is integrated as a separate die. HMOC uses standard
DRAM cells but it has more data banks than classic DRAM memory of
the same size. HMC is intended to greatly increase the amount of memory
bandwidth that can be used to feed a processor. This is accomplished by
putting the memory as close to the processor as possible to allow what is es-
sentially an extremely wide memory interface, through which an enormous
amount of memory bandwidth can be created. The current standard allows
for bandwidths as high as 320 GB/s, while IBM advertises bandwidths as
high as 230 GB/s for the Power8 CPU.

Multi-channel DRAM (MCDRAM) is a variant of HMC designed just
for Intel’s processors. Intel and Micron have taken HMC and replaced the
standard memory interface with a custom interface better suited for the
next generation Xeon Phi, the Knights Landing. The end result is a memory
technology that can scale up to 16 GB of RAM while offering up to 500 GB/s
of memory bandwidth.

2.3. NVLink

NVLink is the node integration interconnect for both the Summit and Si-
erra pre-exascale supercomputers commissioned by the US Department of
Energy, enabling NVIDIA GPUs and CPUs such as IBM POWER to access
each other’s memory quickly and seamlessly. NVLink is an energy-efficient,
high-bandwidth path between the GPU and the CPU that uses up to 3x
less energy to move data on the node at bandwidths of 80-200 GB/s, or
5x to 12x that of the current PCle Gen3 x16, delivering faster applica-
tion performance. Each compute node in Summit will be equipped with
over 512 GB of coherent memory, including large-capacity DDR4 system

14 A. ABDELFATTAH et al.

memory and ultra-fast HBM stacked memory on the GPU. All data will be
directly addressable from either the CPU or the GPU, an important feature
enabled by the NVLink interconnect.

2.4. Intel Omni-Path and silicon photonics

Intel Omni-Path is Intel’s interconnection technology competing with Infini-
Band. While the Summit and Sierra systems will have Mellanox’s EDR
100 Gb/s InfiniBand networks, The Aurora system will have an Omni-Path
network. Starting with the Knights Landing processor, and continuing with
Knights Hill, Intel will be integrating their fabric controller on to the pro-
cessor itself, doing away with the external fabric controller, the space it
occupies, and the potential bottlenecks that come from using a discrete
fabric controller. Current versions of Omni-Path are running at 100 Gb/s,
using the Prairie River chip. Before the delivery of the Aurora machine, it
is expected to scale up to at least 200 Gb/s, utilize silicon photonics, and
be based on the Wolf River chip.

Silicon photonics is an application of photonic systems which use silicon
as an optical medium. Silicon photonic devices can be made using existing
semiconductor fabrication techniques, and because silicon is already used
as the substrate for most integrated circuits, it is possible to create hy-
brid devices in which the optical and electronic components are integrated
onto a single microchip. Consequently, silicon photonics is being actively
researched by many electronics manufacturers including Intel and IBM, as
well as by academic research groups, and is seen as a means for keeping
on track with Moore’s law, by using optical interconnects to provide faster
data transfer both between and within microchips.

2.5. Hybrid computing

The Summit and Sierra computers put emphasis on hybrid computing.
For uncompromising performance, a heterogeneous architecture, coupling
powerful latency-optimized processors with highly parallel throughput-op-
timized accelerators, can significantly outperform non-specialized, homo-
geneous alternatives. Today’s most successful scalable HPC applications
distribute data, work across the nodes of a system, and organize algo-
rithms to operate as independently as possible on millions or billions of
data elements. However, even simple applications can transition many times
between periods of throughput-intensive parallel calculations and sections
of latency-sensitive serial operations. The architectural emphasis on paral-
lelism in GPUs leads to optimization for throughput, hiding, rather than
minimizing, latency. Support for thousands of threads ensures a ready pool
of work in the face of data dependencies in order to sustain performance
at a high percent of peak. The memory hierarchy design and technology

ACCELERATED MULTICORE LINEAR ALGEBRA 15

thoroughly reflect optimization for throughput performance at minimal en-
ergy per bit. By contrast, a latency-optimized CPU architecture drives
completely different design decisions. Techniques designed to compress the
execution of a single instruction thread into the smallest possible time de-
mand a host of architectural features (e.g. branch prediction, speculative
execution, register renaming) that would cost far too much energy to be
replicated for thousands of parallel GPU threads, but are entirely appropri-
ate for CPUs. The essence of the heterogeneous computing model is that one
size does not fit all. Parallel and serial segments of the workload execute on
the best-suited processor — latency-optimized CPU or throughput-optimized
GPU - delivering faster overall performance, greater efficiency, and lower
energy and cost per unit of computation.

By contrast, the Aurora computer offers a much more homogeneous en-
vironment. While the existing Knights Corner (first generation Xeon Phi)
is a slot-in coprocessor, that must be paired with a standard Xeon CPU,
the next generation Knights Landing will be a standalone processor (‘self-
hosted’), and so will its successor, Knights Hill, which will power the Aurora.
Knights Landing will have up to 16 GB of DRAM, 3D-stacked on-package,
providing up to 500 GB/s of memory bandwidth (along with up to 384 GB of
DDR4-2400 mainboard memory). It also promises three Teraflops of double
precision performance, which is 3x more than Knights Corner. This jump
is thanks to moving from Intel’s enhanced Pentium 1 (P54C) x86 cores to
the company’s modern Silvermont x86 cores, which currently lie at the heart
of Intel’s Atom processors. All the while, these cores are further modified
to incorporate AVX units, allowing AVX-512F operations that provide the
bulk Knights Landing’s computing power and are a similarly potent upgrade
over Knights Corner’s more basic 512-bit SIMD units.

2.6. Impact on software

The current generation of accelerated machines already have a profound
impact on HPC software, and so will the next generation, as the hybrid
computing model is here to stay. The challenge comes with the sheer size of
the machines (millions of cores), heterogeneity of the architectures (latency-
optimized cores and throughput-optimized cores), and complexity of the
memory system and data links. Exascale machines will have two to three
orders of magnitude of parallelism over petascale computers, with much
greater parallelism on nodes than is available today. The bulk-synchronous
execution models that dominate today’s parallel applications will not scale
to this level of parallelism. New algorithms need to be developed that
identify and leverage more concurrency and reduce synchronization and
communication.

16 A. ABDELFATTAH et al.

3. Dynamic runtime scheduling
3.1. Multithreading in PLASMA

Parallel linear algebra software for multicore architectures (PLASMA) is a
numerical software library for solving problems in dense linear algebra on
systems of multicore processors and multi-socket systems of multicore pro-
cessors (Agullo et al. 2009a). PLASMA offers routines for solving a wide
range of problems in dense linear algebra, such as non-symmetric, symmet-
ric and symmetric positive definite systems of linear equations, least-squares
problems, singular value problems and eigenvalue problems (currently only
symmetric eigenvalue problems). PLASMA solves these problems in real
and complex arithmetic and in single and double precision. As of this writ-
ing, the majority of such systems are on-chip symmetric multiprocessors
with classic super-scalar processors as their building blocks (x86 and the
like) augmented with short-vector SIMD extensions (SSE and the like).
PLASMA has been designed to supersede LAPACK (Anderson et al. 1999),
principally by restructuring the software to achieve much greater efficiency
on modern computers based on multicore processors.

PLASMA is built on top of well-established dense linear algebra software
components, and Figure 3.1 shows PLASMA’s software stack. PLASMA re-
lies on the collection of Basic Linear Algebra Subroutines (BLAS: Dongarra,
Du Croz, Hammarling and Duff 1990), available in many commercial pack-
ages (e.g. Intel MKL, AMD ACML, IBM ESSL, Cray LibSci), to extract
maximum performance from each individual core. Academic implement-
ations of BLAS are also available (e.g. ATLAS, OpenBLAS). PLASMA
utilizes the C interface to BLAS (CBLAS), which is part of most BLAS
distributions, but is also available from Netlib in the form of C wrappers
to the legacy Fortran interface.! PLASMA relies on LAPACK for serial
implementations of more complex routines, such as matrix factorizations.
Here, PLASMA also utilizes the C interface (LAPACKE), which is distrib-
uted by Intel in the MKL software suite, and is also available from Netlib.?
PLASMA encapsulates all calls to CBLAS and LAPACKE in the core_blas
component, which constitutes the set of all serial building blocks for the
parallel algorithms in PLASMA.

The main algorithmic work in PLASMA revolves around efficient multi-
threading using core_blas components. Initially, PLASMA was developed
using static thread scheduling, but high interest in dynamic task scheduling
led to the development of the QUARK scheduler (YarKhan, Kurzak and
Dongarra 2011) and gradual introduction of dynamic scheduler routines
in PLASMA. PLASMA’s statically scheduled routines follow the single

1
2

www.netlib.org/blas/# _cblas
www.netlib.org/lapack/lapacke.html

ACCELERATED MULTICORE LINEAR ALGEBRA 17

POSIX Threads
core BLAS WinThreads hwloc

PLASMA Distribution

LAPACKE

CBLAS
(C)JLAPACK

BLAS

Figure 3.1. The software stack of PLASMA version 2.7.

program multiple data (SPMD) programming paradigm, where each thread
relies on its thread ID and the total number of threads in the system to
figure out its unique path through the workflow. Synchronization is im-
plemented using shared progress tables and busy waiting. PLASMA’s dy-
namically scheduled routines follow the superscalar programming paradigm,
where the code is written sequentially and parallelized at runtime through
the analysis of the dataflow between different tasks. As of version 2.7,
PLASMA utilizes both types of scheduling, and many routines are available
for the two implementations. With the adoption of superscalar scheduling
in the OpenMP standard,? transition from QUARK to OpenMP is a very
likely path forward for PLASMA.

OpenMP is an API that supports multi-platform shared memory multi-
processing programming in C, C++, and Fortran, on most processor archi-
tectures and operating systems, including Linux, Mac OSX, and Windows.
It consists of a set of compiler directives, library routines, and environment
variables that influence runtime behaviour. OpenMP is an implementation
of multithreading, a method of parallelizing whereby a master thread (a
series of instructions executed consecutively) forks a specified number of
slave threads, and the system divides a task among them. The threads then
run concurrently, with the runtime environment allocating threads to dif-
ferent processors. By default, each thread executes the parallelized section

3 OpenMP Application Program Interface, Version 4.0.

18 A. ABDELFATTAH et al.

of code independently. Work-sharing constructs can be used to divide a
task among the threads so that each thread executes its allocated part of
the code. Both task parallelism and data parallelism can be achieved using
OpenMP in this way.

The OpenMP Architecture Review Board (ARB) published its first API
specifications, OpenMP for Fortran 1.0, in October 1997. In October 1998,
the C/C++ standard was released. The year 2000 saw version 2.0 of the
Fortran specifications, with version 2.0 of the C/C++ specifications being
released in 2002. Version 2.5 is a combined C/C++ /Fortran specification
that was released in 2005. Up until that point, OpenMP provided mostly
fork—join parallelism exemplified by the #parallel for construct. Version
3.0, released in May 2008, included the concept of tasks and the task con-
struct, which drew heavily from the Cilk project (Blumofe et al. 1995) and
was quite limited. Version 4.0 of the specification, released in July 2013,
adds or improves the following features: support for accelerators, atomics,
error handling, thread affinity, tasking extensions, user-defined reduction,
SIMD support, and Fortran 2003 support. Most importantly, from the
standpoint of PLASMA, the 4.0 standard fully embraces the concept of
scheduling work expressed in the form of a Direct Acyclic Graph (DAG) of
tasks, also referred to as superscalar scheduling.

Superscalar scheduling relies on the resolution of data hazards/dependen-
cies: read after write (RaW), write after read (WaR), and write after write
(WaW). The read after write (RaW) hazard, often referred to as true de-
pendency, is the most common. It defines the relation between a task of
writing (creating) the data and the task of reading (consuming) the data.
In that case the latter task has to wait until the former task completes.
The write after read (WaR) hazard is caused by a situation where a task
attempts to write/modify data before a preceding task has finished reading
the data. In such a case, the writer has to wait until the reader completes.
The dependency is not referred to as a true dependency, because it can be
eliminated by renaming (making a copy) of the data. Although the de-
pendency is unlikely to appear often in dense linear algebra, it has been
encountered, and it has to be handled by the scheduler to ensure correct-
ness. The write after write (WaW) hazard is caused by a situation where a
task attempts to write data before a preceding task has finished writing the
data. The final result is expected to be the output of the latter task, but if
the dependency is not preserved (and the former task completes after the
latter one), incorrect output will result. This is an important dependency in
the hardware design of processor pipelines, where resource contention can
be caused by a limited number of registers. The situation is, however, quite
unlikely for a software scheduler, where the occurrence of the WaW hazard
means that some data are produced and overwritten before being consumed.
Like the WaR hazard, the WaW hazard can be removed by renaming.

ACCELERATED MULTICORE LINEAR ALGEBRA 19

#pragma omp parallel
#pragma omp master
{ POTRF(A); |
POTRF(A) {
for (k = 0; k < M; k++) {
#pragma omp task depend(inout:A(k,k)[0:tilesize])
{ POTF2(A(k,k)); }
for (m = k+1; m < M; mt+) {
#pragma omp task \
depend (in:A(k,k)[0: tilesize]) \
depend (inout :A(m,k)[0: tilesize])
{ TRSM(A(k,k), A(m,k)); }
}
for (m = k+1; m < M; mt+) {
#pragma omp task \
depend (in:A(m,k)[0: tilesize]) \
depend (inout :A(m,m)[0: tilesize])
{ SYRK(A(m,k), A(mm)); }
for (n = k+1; n < m; nt++) {
#pragma omp task \
depend (in:A(m,k)[0: tilesize], \
A(n,k)[0: tilesize]) \
depend (inout :A(m,n)[0: tilesize])
{ GMM(A(m,k), A(n,k), A(m,n)); }

}

Figure 3.2. Tile Cholesky algorithm using OpenMP 4.0 tasks with dependencies.

In linear algebra, the Cholesky decomposition or Cholesky factorization
is a decomposition of a Hermitian positive definite matrix into the product
of a lower triangular matrix and its conjugate transpose. When it is ap-
plicable, the Cholesky decomposition is roughly twice as efficient as the LU
decomposition for solving systems of linear equations. Figure 3.2 shows the
Cholesky factorization expressed using OpenMP 4.0 tasks. The outermost
loop iterates over the steps of the factorization. The inner loops iterate
over the vertical (m) and horizontal (n) dimensions of the matrix. At each
step, a diagonal block A (k k) is factored (POTRF). Then a triangular solve is
used to update all the panel tiles A(m,n) below the diagonal block (TRSM).
Finally, all the tiles to the right of the panel (the trailing submatrix) are
updated, using a symmetric rank-k update (SYRK) for diagonal tiles A (m,m)
and matrix multiplication (GEMM) on the other tiles A(m,n). The #pragma
omp task clauses are used to queue tasks for execution and the depend
statements are used to specify data dependencies by providing the direction
(in/out), the pointer to the data, and the data size.

20 A. ABDELFATTAH et al.

Figure 3.3. The DAG of a 4x4 (tiles) Cholesky factorization.

Figure 3.3 shows the DAG of a 4 x 4 (tiles) Cholesky factorization. Fac-
torization of the first diagonal block (POTRF) unlocks three triangular solves
(TRSM) below that block, which in turn unlock three symmetric rank-k up-
dates (SYRK) and three matrix multiplications (GEMM) to the tiles of the
trailing submatrix. One of the SYRK operations updates the second diag-
onal block, which unlocks the factorization of that block (the second POTRF).
This process continues until the last diagonal block is factored (the POTRF
at the bottom of the DAG), which concludes the factorization of the matrix.

Figure 3.4 shows an execution trace of a larger, 9 x 9 (tiles), Cholesky
factorization using eight cores. Here, the first POTRF task unlocks eight
TRSM tasks, which in turn unlock many more SYRK and GEMM tasks. Due to
dynamic scheduling, there are no clear boundaries between the steps of the
factorization. Instead, operations are well pipelined until the cores run out
or work at the end of the factorization. The last operations (TRSM, SYRK,
POTRF) are serialized due to a chain of dependencies in the DAG.

ACCELERATED MULTICORE LINEAR ALGEBRA 21

CPU 0:
CPU 1:
CPU 2:
CPU 3:
CPU 4:
CPU 5:
CPU 6:
CPU 7:

Time (sec): 0.0

|
HEEEN EEE EE N RN
ol

L]
| []

[O] T N T [[
]

Figure 3.4. Trace of a 9x9 (tiles) Cholesky factorization.

Figure 3.5 compares the performance of different implementations using
a dual-socket, 20-core, Intel Haswell system, while Figure 3.6 compares the
performance using an eight-socket, 48-core AMD Istanbul system. All codes
were compiled using the GCC compiler and linked against the MKL library.
In both cases the DGEMM routine from MKL is used as a reference point (ba-
sically the upper bound of performance). In the case of the Haswell system,
OpenMP delivers performance which matches or exceeds the performance of
all the other systems, including: QUARK, PLASMA static scheduling, and
the DPOTRF routine from MKL. In the case of the Istanbul system, OpenMP
delivers performance better than MKL, almost identical to QUARK and
slightly lower than PLASMA static scheduling. In this case, the gap to the
static scheduling can probably be closed by further tuning.

A slightly more challenging problem is that of scheduling the LU decom-
position. LU decomposition (where ‘LU’ stands for ‘lower upper’, and is also
called LU factorization) factors a matrix as the product of a lower triangular
matrix and an upper triangular matrix. The product sometimes includes
a permutation matrix as well. The LU decomposition can be viewed as
the matrix form of Gaussian elimination. Computers usually solve square
systems of linear equations using the LU decomposition, and it is also a
key step when inverting a matrix, or computing the determinant of a mat-
rix. The OpenMP 4.0 implementation of the LU factorization is consider-
ably more complex than the Cholesky factorization. Therefore, Figure 3.7
shows a serial implementation of the LU factorization instead of the actual
OpenMP 4.0 implementation. At each step, a block of columns (a panel)
is factored (GETRF). Within the panel factorization, partial (row) pivot-
ing is applied and a pivoting pattern is created. That pivoting pattern is

22 A. ABDELFATTAH et al.

700
/»—"‘w—‘—‘—‘\

600 .
500 N
“\E :/E—E

Gflops

// j; -
400 /}{/ /
300 /77
200 /
Cholesky OpenMP 4.0 —»—
Cholesky QUARK dynamic

100 Cholesky PLASMA static —s—]
Cholesky MKL multithreaded —&—
DGEMM MKL multithreaded ——

0 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Problem size (N)

Figure 3.5. Cholesky factorization performance: DPOTRF Intel Xeon E5-2650 v3
(Haswell) 2.3 GHz, 20 cores.

350
—t
P j
300 =
/K 4
250 7
o
w 200 /! '\a/ p—
‘_3' / AvXA
O 150](%
100
Cholesky OpenMP 4.0 —%—
Cholesky QUARK dynamic
50 Cholesky PLASMA static —e— |
Cholesky MKL multithreaded —&—
0 DGEMM MKL multithreaded ——

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Problem size (N)

Figure 3.6. Cholesky factorization performance: DPOTRF AMD Opteron 8439 SE
(Istanbul) 2.8 GHz, 48 cores (8 sockets, 6 cores).

ACCELERATED MULTICORE LINEAR ALGEBRA 23

GETRF(A) {
for (k = 0; k < M; k++) {
// panel factorization
GETRF(A(k:M-1,k));
for (n = k+1; n < N; nt++) {
// row interchanges to the right
LASWP (A(k:M—1,n));
// triangular solve at the top
TRSM (A(k,n));
for (m = k+1; m < M; mt+) {
// matrix multiply to the right
GEMM(A(m,k), A(k,n), A(m,n));

}
}
for (k = 1; k < M; k++) {
// row interchanges to the left
for (n = 0; n < k—=1; n++) {
LASWP(A(k:M—1,n));

Figure 3.7. Serial LU factorization.

then applied to the trailing submatrix through a series of row interchanges
(LASWP). Then a block of top rows is updated with a triangular solve (TRSM),
and finally, all the tiles to the right of the panel are updated, using matrix
multiplication (GEMM). At the end of the factorization, row interchanges are
applied to the left of each panel.

Figure 3.8 shows the DAG of a 3 x 3 (tiles) LU factorization. The first
task is the factorization of the first block of columns (panel). Since this is
a demanding task, located in the critical path of the algorithm, PLASMA
utilizes a very fast, cache-friendly, recursive, multithreaded implementation
of this operation, as indicated by the ‘REC’ postfix in the ‘GETRF-REC’
label. This task unlocks row interchanges to the right of the panel (LASWP)
due to the partial row pivoting technique. They, in turn, unlock triangular
solves in the top block of rows (TRSMs), followed by matrix multiplications to
update the remainder of the matrix (GEMMs). Two of those GEMM operations
update the second panel, and therefore unlock the second GETRF-REC
task, and so on. The increased complexity of multithreading the LU factor-
ization stems from the fact that the panel factorization task (GETRF-REC)
spans an entire column of tiles, and is internally multithreaded using low-
level constructs for synchronization (locks, atomics).

24 A. ABDELFATTAH et al.

Figure 3.8. The DAG of a 3x3 (tiles) LU factorization.

Figure 3.9 shows an execution trace of a larger, 10 x 10 (tiles), LU factor-
ization using eight cores. The first task is the multithreaded GETRF-REC
task. In this small example it only uses two threads, and only in the first
three steps of the factorization. More threads would be used in a larger case.
Completion of the GETRF-REC task unlocks nine LASWP tasks, which in
turn unlock nine TRSM tasks, which in turn unlock many more GEMM tasks.
Notably, factorization of the second panel can proceed concurrently with
the GEMM updates from the first step, factorization of the third panel can
proceed concurrently with the GEMM updates from the second step, and so
on. Operations are well pipelined until work runs out towards the end of
the factorization.

Figure 3.10 compares the performance of different implementations using
a dual-socket, 20-core, Intel Haswell system, while Figure 3.11 compares the
performance using an eight-socket, 48-core AMD Istanbul system. All codes
were compiled using the GCC compiler and linked against the MKL library.
In both cases the DGEMM routine from MKL is used as a reference point (the

ACCELERATED MULTICORE LINEAR ALGEBRA 25
cPuo: 0 000OOEnnoOnn e O No0mp _pmao go o 0o
cPUL (1T I | [111 1T 00 0o Crmp [
CPU2: ! CLTTT 0TI (IO (1110 [l ool 1
crus i EERENNRNEN S ENREEE! (L o O o 0
CPU 4: ;_ NERREREARE = INNRENRERE] = R EEEED O O — T (o [0 [
CPUS: | [NINRINRRRERRL S RERRERREE] [{11] O B W] COf (]
cPus NEINNNNNANNNASIEE 2 NEEE Wil Ny (e 00 00 m
CPU7: | NRINEIRINAENSENE. [N |NNDEEEIEE S Eammn o I 00O 0n

i
Time (sec): 0.0 0.1

Figure 3.9. Trace of a 10 x 10 (tiles) LU factorization.

performance upper bound). In the case of the Haswell system, OpenMP
delivers slightly lower performance than QUARK and MKL. In the case
of the Istanbul system, OpenMP delivers performance almost identical to
MKIL, and slightly lower than QUARK up to 16000 and slightly higher
beyond that point. OpenMP’s performance can, most likely, be improved
by further tuning.

In summary, the superscalar scheduling capabilities of OpenMP 4.0 pro-
vide many benefits over a proprietary scheduling system. By being language
extensions, OpenMP directives produce much more compact and readable
codes. By being a standard, OpenMP provides portability to different op-
erating systems, and solves a multitude of lower-level problems, such as
thread affinity, etc. At the same time, the GCC implementation provides
performance that matches or exceeds that of other similar systems. There-
fore, OpenMP seems to be a clear path forward for multithreaded numerical
libraries that require sophisticated scheduling, such as PLASMA.

3.2. Distributed memory scheduling in DPLASMA

Distributed parallel linear algebra software for multicore architectures (or
DPLASMA) is a distributed memory counterpart of PLASMA. DPLASMA
contains a subset of PLASMA routines, including routines for solving linear
systems of equations and least-squares problems, reductions to condensed
form (block-bidiagonal, block-tridiagonal), and a full set of Level 3 BLAS.
DPLASMA supports real and complex arithmetic and in single and double
precision. DPLASMA targets systems with large numbers of interconnected
nodes, where each node may contain multiple sockets of multicore processors
and multiple GPU accelerators or Xeon Phi coprocessors. DPLASMA has
been designed to supersede ScaLAPACK (Blackford et al. 1997), mainly by
restructuring the software to use dataflow runtime scheduling.

DPLASMA is built on top of a few more components than PLASMA.
Figure 3.12 shows DPLASMA’s software stack. In addition to requiring
PLASMA and its subcomponents (BLAS, etc.), DPLASMA also relies on
their GPU counterparts (MAGMA, cuBLAS, etc.) The scheduling compon-
ent of DPLASMA is the parallel runtime scheduler and execution controller

26 A. ABDELFATTAH et al.

700
/"—'\o—/’—"\
600 /"\\ /'/
e
N s . -

Gflops

400 //
300 /*/ ?Zf
wlf 75"
LU OpenMP 4.0 —%—

100 LU QUARK dynamic —s—]
LU MKL multithreaded —&—
DQEMM MKL mulltithrealded ——

0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Problem size (N)

Figure 3.10. LU factorization performance: DGETRF Intel Xeon E5-2650 v3
(Haswell) 2.3 GHz, 20 cores.

350
300 H// Y
20 - /\\
» 200 /
Q.
g /
S 450]l kE/E/E/Ea/H
100 ,—E/E
j LU OpenMP 4.0 —*—
50 LU QUARK dynamic —s—]
LU MKL multithreaded —&—
. DGEMM MKL multithreaded ——

0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Problem size (N)

Figure 3.11. LU factorization performance: DGETRF AMD Opteron 8439 SE (Istan-
bul) 2.8 GHz, 48 cores (8 sockets, 6 cores).

ACCELERATED MULTICORE LINEAR ALGEBRA 27

i DPLASMA

Algorithms
(geqrf, potrf, getrf, gesv, ...)

PLASMA MAGMA PaRSEC
Tile Kernels GPU Kernels Parallel Runtime Scheduling and Execution Control

BLAS CUDA hwloc pthread MPI

Figure 3.12. The software stack of PLASMA, version 1.2.

(PaRSEC), which manages multithreading using Pthreads, message passing
using MPI, and accelerator offload using CUDA.

PaRSEC is a generic framework for architecture-aware scheduling and
management of micro-tasks on distributed many-core heterogeneous archi-
tectures. Workloads are expressed as DAGs of tasks with labelled edges des-
ignating data dependencies. DAGs are represented in a compact problem-
size independent format that can be queried on-demand to discover data
dependencies in a completely distributed fashion. PaRSEC assigns com-
putation threads to the cores, overlaps communications and computations,
and uses a dynamic fully distributed scheduler.

PaRSEC relies on the concept of a parametrized task graph (PTG), which
is a size-independent representation of a DAG. The notation used in PaR-
SEC is called job dependency format (JDF). Figure 3.13 shows the JDF for
the Cholesky factorization. The four sections correspond to the four types
of tasks used in the factorization: POTRF, TRSM, SYRK, and GEMM. The JDF
defines the execution space for each task and the dependencies for all its
parameters. Every individual task in the DAG is uniquely identified by a
tuple. For instance, the POTRF tasks are identified by the k index in the
range from 0 to N — 1, while the TRSM tasks are identified by the (m, k)
tuple, where m is in the range from 1 to N — 1 and k is in the range from
0 to m — 1. The POTRF has a single read/write parameter 7. In the first
step (k == 0) the data come from the memory (A(k,k)). In the follow-
up steps, it comes from the SYRK task of coordinates (k — 1,k). After the
task executes, the result is forwarded to a set of TRSM tasks of coordinates
(k+1..N —1,k), and is also returned to the memory (A(k, k)). In this case
forwarding the result from a single source task to multiple destination tasks
produces a broadcast pattern.

28 A. ABDELFATTAH et al.

POTRF (k)

k=0 .. N-1

RWT <— (k= 0) ? A(k, k) : T SYRK(k—1, k)
—> T TRSM(k+1..N-1, k)

— A(k, k)
TRSM(m, k)
m=1 .. N-1
k=0 .. m1

READ T <— T POTRF(k)
RW C<— (k=10) ? A(m, k) : C G®MM(m, k, k—1)
—> A SYRK(k, m)

A

—> A GEMM(m, k+1..m—1, k)
—> B GEMM(m+1..N-1, m, k)
—> A(m, k)

SYRK(k, m)

k=0 .. N=2

m =k . N-1

+1 .
READ A <— C TRSM(m, k)
T <— (k= 0) ? A(m, m) : T SYRK(k—1, m)
—> (m = k+1) ? T POTRF(m) : T SYRK(k+1, m)

k=20 . N-3
m = k+2 .. N-1
n=%kk+ .. m1
READ A <— C TRSM(m, k)
READ B <— C TRSM(n, k)
RW C<— (k= 0) ? A(m, n) : C GENII\/[(m, n, k—1)
—> (n = k+1) ? C TRSM(m, n) C GEMM(m, n, k+1)

Figure 3.13. Tile Cholesky algorithm expressed using the JDF notation.

Figure 3.14 shows the principles of PaRSEC execution using the DAG
of the Cholesky factorization as an example. While the tasks are statically
partitioned to nodes, the execution proceeds dynamically by only activating
a small portion of the DAG at a time. Execution is asynchronous and
communication is hidden, to the best ability of the hardware (i.e., MPI
messages and PCI transfers take place while CPU cores and GPU devices are
occupied with useful work, given that the code is rich enough in computation
to hide the communication). For efficient management of the memories of
multiple GPUs, PaRSEC implements its own GPU memory allocator and
applies the replacement policy if memory is exhausted. Currently, PAaRSEC
applies the least recently used (LRU) policy. More sophisticated approaches
are possible.

ACCELERATED MULTICORE LINEAR ALGEBRA 29

PO

v
R\
\/

TR

Y\sv/ VAN

ACTIVE
PO ‘(
R Node0
Node1
FUTURE \ -
sy Node2
l Node3

PO

Figure 3.14. DAG execution in PaRSEC.

Figure 3.15 compares the performance of PaRSEC to ScaLAPACK, and
the theoretical peak when executing the Cholesky factorization in double
precision (DPOTRF) on a Cray XT5 system, using up to 3072 CPU cores. It
is a weak scaling comparison (i.e., the size of the matrix grows as the core
count grows, such that the data size per core remains constant). The Cray
implementation of ScaLAPACK is used (LibSci). While LibSci’s perform-
ance approaches 20 Tflops, PaRSEC’s performance crosses 25 Tflops, an
improvement of ~25%. At the same time, PaRSEC gets within 10% of the
theoretical peak.

Figure 3.16 shows the performance of PaRSEC executing the DPOTRF
routine on a hybrid system, with 64 nodes including three NVIDIA GPUs
per node. Performance is shown using a single GPU per node, two GPUs per
node, and all three GPUs per node. When using all 192 GPUs, performance
of 50 Gflops is achieved for a matrix of size 200 000.

30

Figure 3.15.

Figure 3.16.

A. ABDELFATTAH et al.

[[#4)
o o

N
[=]

PERFORMANCE (TFLOP/S)
= &

o

0
108 432 768 1200 3072

NUMBER OF CORES

Cholesky factorization performance: DPOTRF Cray XT5 (Kraken).

90 —ooooooooccccooccccccomecocoo—eeoooooo—eooooo—eooa-
EXTRAPOLATED PRACTICAL PEAK 64X DGEMM PEAK ON 1 NODE
80
g 70 EXTRAPOLATED IDEAL SCALING 64X PARSEC DPOTRF PEAK ON 1 NODE
0 PaRSEC DPOTRF on 1 node: 1187Gflop/s MAGMA DPOTRF on 1 node: 1155Gflop/s
|
t 60
= PaRSEC DPOTRF (on 64 nodes, 16 cores+3GPUs/node)
ul 50
2
< 40
E 30 aRSEC DPOTRF (on 64 nodes, 16 cores+2GPUs/node)
o]
('S
o 20
E PaRSEC DPOTRF (on 64 nodes, 16 cores+1GPU/node)
10

100k 150k 200k 250k 300k
MATRIX SIZE (N)

Cholesky factorization performance: distributed hybrid DPOTRF Keene-

land 64 nodes (1024 cores, 192 M2090 GPUs, InfiniBand 20G).

ACCELERATED MULTICORE LINEAR ALGEBRA 31

4. LU factorization

Gaussian elimination has a long history that can be traced back some
2000 years (Grear 2011). Today, dense systems of linear equations have
become a critical cornerstone for some of the most compute-intensive ap-
plications. A sampling of domains using dense linear equations include
fusion reactor modelling (Jaeger et al. 2006), aircraft design (Quaranta and
Drikakis 2009), acoustic scattering (Bendali, Boubendir and Fares 2007),
antenna design, and radar cross-section studies (Zhang et al. 2008). Sim-
ulating fusion reactors, for instance, generates dense systems that exceed
half a million unknowns, which are solved using LU factorization (Barrett
et al. 2010). Many dense linear systems arise from the solution of boundary
integral equations via boundary element methods (Edelman 1993), variously
called the method of moments in electromagnetics (Harrington 1990), and
the panel method in fluid dynamics (Hess 1990). These methods replace
a sparse three-dimensional problem of O(n?) unknowns with a dense two-
dimensional problem of O(n?) unknowns. Any improvement in the time to
solution for dense linear systems has a direct impact on the execution time
of these applications.

4.1. Algorithms

4.1.1. Partial pivoting

The LAPACK block LU factorization is the main point of reference here,
and the LAPACK naming convention is followed. The initial ‘D’ in names
denotes double precision routines. The LU factorization of a matrix A has
the form

PA=1LU,

where L is a unit lower triangular matrix, U is an upper triangular matrix,
and P is a permutation matrix. The LAPACK algorithm proceeds in the
following steps. Initially, a set of n; columns (the panel) is factored and a
pivoting pattern is produced (implemented by the DGETF2 routine). Then
the elementary transformations, resulting from the panel factorization, are
applied in a block fashion to the remaining part of the matrix (the trailing
submatriz). This involves swapping up to nj rows of the trailing submat-
rix (DLASWP), according to the pivoting pattern, application of a triangular
solve with multiple right-hand sides to the top nj rows of the trailing sub-
matrix (DTRSM), and finally application of matrix multiplication of the form
Ajj + Aij — Ai, X Ag; (DGEMM), where A;), is the panel without the top
ny rows, Ay, is the top ny rows of the trailing submatrix, and A;; is the
trailing submatrix without the top nj rows. Then the procedure is applied
repeatedly, descending down the diagonal of the matrix: see Figure 4.1.

32 A. ABDELFATTAH et al.

U (done)
)
c
-
= Aj

Figure 4.1. The block LU factorization (Level 3 BLAS algorithm of LAPACK).

The block algorithm is described in detail in section 2.6.3 of the book by
Demmel (1997).

Instead of the Level 2 BLAS panel factorization (DGETF2) of LAPACK, we
use a recursive partial pivoting panel factorization, which uses Level 3 BLAS
operations. For a panel of k columns, the algorithm recursively factors the
left k/2 columns, updates the right k/2 columns with DLASWP, DTRSM, and
DGEMM, then recursively factors the right k/2 columns, and finally applies
swaps to the left k/2 columns with DLASWP. The recursion terminates at
a single column, where it simply searches for the maximum pivot, swaps
elements, and scales the column by the pivot. Parallelism is introduced
by splitting the panel into p block rows, which are assigned to different
Processors.

4.1.2. Incremental pivoting

The most performance-limiting aspect of Gaussian elimination with partial
pivoting is the panel factorization operation. First, it is an inefficient op-
eration, usually based on a sequence of calls to Level 2 BLAS. Second, it
introduces synchronization, by locking an entire panel of the matrix at a
time. Therefore, it is desirable to split the panel factorization into a number
of smaller, finer-granularity operations, which is the basic premise of the in-
cremental pivoting implementation, also known in the literature as the tile
LU factorization.

In this algorithm, instead of factoring the panel one column at a time,
the panel is factored one tile at a time. The operation proceeds as follows.
First the diagonal tile is factored using the standard LU factorization pro-
cedure. Then the factored tile is combined with the tile directly below it and

ACCELERATED MULTICORE LINEAR ALGEBRA 33

A

Figure 4.2. Incremental LU factorization.

factored. Then the refactored diagonal tile is combined with the next tile
and factored again. The algorithm descends down the panel until the bot-
tom of the matrix is reached. At each step, the standard partial pivoting
procedure is applied to the tiles being factored. Also, at each step, all
the tiles to the right of the panel are updated with the elementary trans-
formations resulting from the panel operations: see Figure 4.2. This way
of pivoting is basically the idea of pairwise pivoting applied at the level of
tiles, rather than individual elements. The main benefit comes from the fact
that updates of the trailing submatrix can proceed alongside panel factor-
izations, leading to a very efficient parallel execution, where multiple steps
of the algorithm are smoothly pipelined.

A straightforward implementation of incremental pivoting incurs more
floating-point operations than partial pivoting. To reduce this additional
cost, a second level of blocking, called inner blocking, is used within each tile
(Joffrain, Quintana-Orti and van de Geijn 2006, Buttari, Langou, Kurzak
and Dongarra 2009). The total cost to factor an n X n matrix is

i
2p3 <1 + 272()) +0(n?),
where ny, is the tile size and iy is the inner blocking size. A small value for 4,
decreases the flops but may hurt the efficiency of Level 3 BLAS operations,
so ny and 7, should be chosen to offer the best compromise between extra
operations and BLAS efficiency.

With n, = 1, incremental pivoting reduces to pairwise pivoting, hence
the stability of incremental pivoting is assumed to be the same as pairwise
pivoting (Joffrain et al. 2006). For pairwise pivoting, the growth factor

34 A. ABDELFATTAH et al.

bound is 47!, Trefethen and Schreiber (1990) observed an average growth
factor of n for n < 1024, but more recently, Grigori, Demmel and Xiang
(2011) observed an average growth factor > n for n > 4096, leaving the
question of stability open for large n.

4.1.3. Tournament pivoting

Classic approaches to the panel factorization with partial pivoting commu-
nicate asymptotically more than the established lower bounds (Demmel,
Grigori, Hoemmen and Langou 2008a). The basic idea of communication-
avoiding LU is to minimize communication by replacing the pivot search
performed at each column with a block reduction of all the pivots together.
This is done thanks to a new pivoting strategy referred to as tournament
pivoting, which performs extra computations and is shown to be stable in
practice. Tournament pivoting factors the panel in two steps. First, using
a tournament selection, it identifies rows that can be used as good pivots
for the factorization of the whole panel. Second, it swaps the selected pivot
rows to the top of the panel, and then factors the entire panel without
pivoting. With this strategy, the panel is efficiently parallelized, and the
communication is provably minimized.

Figure 4.3 presents the first step of tournament pivoting for a panel W us-
ing a binary tree for the reduction operation. First, the panel is partitioned
into p, blocks, that is, W = [Wyo, Wi, ..., Wp,—1,0], where Wj; represents
the block owned by thread 7 at step j of the reduction operation. Figure 4.3
shows an example with p, = 4.

At the first step of the reduction operation, each thread, i, applies Gaus-
sian elimination with partial pivoting to its block, Wjg; then the resulting
permutation matrix Pjg is applied to the original unfactored block, W;g, and
the first n;, rows of the permuted block PjyW;y are selected as pivot can-
didates. These first pivot candidates represent the leaves of the reduction
tree. At each node of the tree, the pivot candidates of two child nodes are
merged on top of each other, and Gaussian elimination with partial pivot-
ing is applied on the merged block. The resulting permutation matrix is
then applied on the original unfactored merged block and the first n, rows
are selected as new pivot candidates. By using a binary tree, this step is
repeated log, p, times. The pivots obtained at the root of the tree are then
considered to be good pivots for the whole panel. Once these pivots are
permuted to the top of the panel, each thread applies Gaussian elimination
without partial pivoting to its block, Wjg.

The example presented in Figure 4.3 uses a binary tree with two tiles re-
duced together at each level, but any reduction tree can be used, depending
on the underlying architecture. The tournament pivoting implementation
in PLASMA, used for experiments in this section, reduces four tiles at each

ACCELERATED MULTICORE LINEAR ALGEBRA 35

g -u—g--u—g-n

TO Pozwoz(l:nb’l:nb)
good
WOI\\D /%\\p pivots

T1
o) A
1% 2l
QOKZ../? W 91(2.,/7
[7,1, 91\\,0 (/)’]./7
— 2, ’
Wzo_onLzouzo) ! g\; Y
Y
T3 30VV
30(2,
/%
.\Z.b
W, =P L U Y
307 ' 3030 30

Figure 4.3. Example of tournament pivoting with p, = 4 processors, using a binary
tree for the reduction operation.

level. This number of tiles is chosen because it gives a good ratio of kernel
efficiency over one single core, relative to the time spent to perform the
factorization of the subset.

For tournament pivoting, the best growth factor bound proved so far
is 2" where H is the height of the reduction tree. With a binary tree,
H = log, pr, so the bound is p;'. However, Grigori et al. (2011) have never
observed a growth factor as large as 2”1, even for pathological cases such as
the Wilkinson matrix (Wilkinson 1988), and they conjecture that the upper
bound is the same as partial pivoting, 2"~!. They observed an average
growth factor of 1.5n2/3, independent of p. Our experiments in Section 4.2.3
confirm that tournament pivoting is as stable as partial pivoting in practice.

4.1.4. Random butterfly transform

As an alternative to pivoting, the partial random butterfly transformation
(PRBT) preconditions the matrix as A, = WZAV, such that, with prob-
ability close to 1, pivoting is unnecessary. This technique was proposed
by Parker (1995b) and later adapted by Baboulin, Dongarra, Herrmann
and Tomov (2013) to reduce the computational cost of the transformation.

36 A. ABDELFATTAH et al.

Algorithm 1 Solving Az = b using PRBT.

A, =WTAV

factor A, = LU without pivoting
y = U\(L\(WTD))

x=Vy

I N

An n x n butterfly matrix is defined as
B — 1R S
V2 R =S)

where R and S are random diagonal, non-singular matrices. W and V are
recursive butterfly matrices of depth d, defined by

B2 0 0]
wod _ |0 : o x B
. . 0
n d—1
0 .0 BWET

We use a depth d = 2, previously found to be sufficient in most cases
(Baboulin et al. 2013). Since each R and S is diagonal, W and V can be
stored as n x d arrays. Due to the regular sparsity pattern, multiplying an
m x n matrix by W and V is an efficient, O(dmn) operation.

After applying the PRBT, Gaussian elimination without pivoting is used
to obtain the solution, as indicated in Algorithm 1.

While the randomization reduces the need for pivoting, the lack of pivot-
ing can still be unstable, so we use iterative refinement to reduce the po-
tential for instability. The cost of pivoting is thus avoided, at the expense
of applying the PRBT and iterative refinement. As with no-pivoting LU,
the growth factor remains unbounded. This can easily be seen by letting
A =W-TBV~1 where the first pivot, bgo, is zero. However, probabilistic-
ally no-pivoting LU (and hence PRBT) has been shown to have an average
growth factor of n3/2 (Yeung and Chan 1995).

4.1.5. No pivoting

This implementation of Gaussian elimination completely abandons pivoting.
This can be done very rarely in practice without risking serious numerical
consequences, or even a complete breakdown of the algorithm if a zero is
encountered on the diagonal. In the following experiments, the implement-
ation serves only as a performance baseline. Dropping pivoting increases
performance for two reasons. First, the overhead of swapping matrix rows

ACCELERATED MULTICORE LINEAR ALGEBRA 37

Table 4.1. Summary of floating-point operations (add, multiply, divide), floating-
point comparisons, best known growth factor bound, and average-case growth
factor. Differences in flops compared to partial pivoting are shown in bold. Refer-
ences: [1] Trefethen and Schreiber (1990); [2] Grigori et al. (2011); [3] Buttari et al.
(2009); [4] Baboulin et al. (2013); [5] Yeung and Chan (1995).

Method Total flops Comparisons Bound Average
Complete 2n3 _ l’I’LQ + §7’L O(n3) < Cn%#»%logn n1/2
pivoting [1] 3 2 6

Partial 2.3 1,2, 5 1,2 1 n—1 2/3
pivoting [1] ELU L A EAL] 2 "
Incremental 2p3(1 4 ip)+0m?) 1n?—1ln gn—1 nor>n
pivoting [1,2,3] 3 2np 2 2

Tournament 5 3 2 19 nH 2/3
pivoting [2] :n° +npn” 4+ O(n) 5n° + O(prnpn) <2 1.5n
PRBT [4] 2n® — in® 4+ 3n+ 5dn® none unbound n3/?

No pivoting [5] 2n® — 1n® + 2n none unbound n3/?

disappears. Second, the level of parallelism dramatically increases, since the
panel operations now become parallel, and can also be pipelined with the
updates to the trailing submatrix.

4.2. Experimental results

4.2.1. Hardware and software

The experiments were run on an Intel system with 16 cores and an AMD
system with 48 cores. The Intel system has two sockets with 8-core Intel
Sandy Bridge CPUs clocked at 2.6 GHz, with a theoretical peak of 16 cores x
2.6 GHz x 8 ops per cycle ~ 333 Gflops in double precision arithmetic. The
AMD system has eight sockets with 6-core AMD Istanbul CPUs clocked at
2.8 GHz, with a theoretical peak of 48 cores x 2.8 GHz x 4 ops per cycle ~
538 Gflops in double precision arithmetic.

All presented LU codes were built using the PLASMA framework, relying
on the CCRB tile layout and the QUARK dynamic scheduler. The GCC
4.1.2 compiler was used for compiling the software stack and Intel MKL
(Composer XE 2013) was used to provide an optimized implementation
of serial BLAS. On both systems, to avoid important variation in NUMA
effects, the PLASMA framework relies on the hwloc library (Broquedis
et al. 2010) to efficiently bind the threads to cores located in multiple CPU

38 A. ABDELFATTAH et al.

sockets. And all experiments were run with the numactl command to dis-
tribute the data in a round-robin fashion over the NUMA locales of the
machine. When the number of threads is insufficient to keep all sockets
occupied then the memory pages are only bound to the NUMA locales with
active PLASMA threads rather than the entire machine.

4.2.2. Performance

We now study the performance of our implementations on square random
matrices in double real precision, and compare their performance with that
of the LU factorization in MKL (DGETRF). While the absolute performance is
different for single, single-complex, and double-complex precisions, we have
observed trends similar to double precision for all precisions. In all cases,
the matrix is initially in column-major layout, and we include the conver-
sion to and from tiled layout in the time. Since each of our implementations
uses a different pivoting strategy, we ran iterative refinement with all the
algorithms to achieve the same level of accuracy, for a fair performance com-
parison. Namely, for MKL, we used the MKL iterative refinement routine
DGERFS, while for the tile algorithms, we implemented a tiled iterative re-
finement with the same stopping criterion as that in DGERFS, that is, the
iteration terminates when one of the following three criteria is satisfied.

1 The componentwise backward error, max; |r;| /(| A||Z|+10]);, is less than
or equal to ((n + 1) * sfmin)/eps, where r = AZ — b is the residual
vector and T is the computed solution, eps is the relative machine
precision, and sfmin is the smallest value such that 1/sfmin does not
overflow.

2 The componentwise backward error is not reduced by half.

3 The number of iterations is equal to ten.

For all of our experiments, iterative refinement converged in less than ten
iterations. We observed that even with partial pivoting, it requires a couple
of iterations to satisfy this stopping criterion (see Section 4.2.3). Further-
more, in many cases, the MKL version of DGERFS did not scale as well as our
implementation. We suspect this is due to the need to compute |A||Z| + |b|
at each iteration.

The performance of our implementations is sensitive to the tile size ny.
Hence, for each matrix dimension n on a different number of cores, we
studied the performance of each algorithm with the tile sizes of n, = 80,
160, 240, 320, and 400. We observed that on 48 cores of our AMD machine,
the performance is especially sensitive to the tile size, and we tried the
additional tile sizes of n, = 340, 360, and 380. In addition, the performance
of our incremental pivoting is sensitive to the inner blocking size, and we
tried using the block sizes of i, = 10, 20, and 40 for both n; = 80 and 160;

ACCELERATED MULTICORE LINEAR ALGEBRA 39

55—
50+
451
40f

£ 35t

€35
S
& 301

o
& 30f

—&-partial —=—partial

251 ~%—incrementalf| 251 —%—incrementalf|
20l ~©-tournament || P —o-tournament ||
——PRBT 7/ ——PRBT

151 —A-no-pivoting | 151 —4—no-pivoting |
| —+MKL] —+MKL

0 2K 4K 6K 8K10K 14K 18K 22K 26K 30K 0 2K 4K 6K 8K10K 14K 18K 22K 26K 30K

Matrix dimension (n=m) Matrix dimension (n=m)

(a) factorization alone, using 6 cores (b) factorization and solve with iterative

refinement, using 6 cores

275 275
250F 2501 1
225¢ 225¢ S
200f 200f : i 1
175¢ 175¢ e
5.150¢ 5.150¢ - k]
%5 125¢ %5 125 =5 1
O] - S _— -
L —&-partial I L 4 |5 partial I
1007 ~%—incremental 100 %/ ~%—incremental
75¢ —e—tournament | 75¢ o —e—tournament |
501 ——PRBT i 50+ —<PRBT
| —-no-pivoting|| | /R —-no-pivoting ||
% S MKL 250 7 e MKL
0 2K4K 6K 8K10K 14K 18K 22K 26K 30K 0 2K4K 6K 8K10K 14K 18K 22K 26K 30K
Matrix dimension (n=m) Matrix dimension (n=m)

(c) factorization alone, using 48 cores (d) factorization and solve with iterative
refinement, using 48 cores

Figure 4.4. Asymptotic performance comparison of LU factorization algorithms on
AMD Opteron.

1p = 10, 20, 30, 40, 60, and 80 for n, = 240; and i, = 10, 20, 40, and 80 for
both np = 320 and 400. Figures 4.4 and 4.5 show the performance obtained
using the tile and block sizes that obtained the highest performance. For
all algorithms, we compute the effective Gflops using the flops for partial
pivoting, given in Table 4.1. For the solve with iterative refinement, we
also include a pair of forward and backward substitutions, 2n?. For the tile
algorithms, we included the data layout conversion time as a part of the
solution time. We summarize our findings below.

e PRBT with the default transformation depth of two added only a small
overhead over no-pivoting in all the test cases.

e In comparison to other pivoting strategies, incremental pivoting could
exploit a large number of cores more effectively. As a result, when the

40 A. ABDELFATTAH et al.
150 1501
140 140}
130 1301
120 1201
) 110) 1101
& 100 /)2 g100r £ 4
O g0t ~=-partial i © oot ‘ g —=-partial
80* —%—incremental || solk- /[/F —$—incremental||
’ ~e-tournament) —o-tournament
70r —~~PRBT || 700 /) . PRBT
60 —A—no-pivoting || 60- / —£-no-pivoting||
—MKL s ——MKL
50 2K4K 6K 8K10K 14K 18K 22K 26K 30K 50 2K4KBK 8K10K 14K 18K 22K 26K 30K
Matrix dimension (n=m) Matrix dimension (n=m)
(a) factorization alone, using 8 cores (b) factorization and solve with iterative

refinement, using 8 cores

280f
260
2401
220r
200
180
8 160r
& 140 1 & 140t
© 120} —=-partial Ll © 120f —=—partial
100} ——incremental|| 100} ——incremental |
sot —e-tournament || 8o —S-tournament ||
——PRBT ——PRBT
60r ~A&-no-pivoting| 60y / ~A-no-pivoting ||
40y —MKL I ‘2‘8’% —MKL I
20

()

Figur

2K4K 6K 8K10K 14K 18K 22K 26K 30K 2K 4K 6K BK1OK 14K 18K 22K 26K 30K
Matrix dimension (n=m) Matrix dimension (n=m)

factorization alone, using 16 cores (d) factorization and solve with iterative
refinement, using 16 cores

e 4.5. Asymptotic performance comparison of LU factorization algorithms on

Intel Sandy Bridge.

performance is not dominated by the trailing submatrix updates (e.g.
for a small matrix dimension on 48 cores), it obtained performance
that is close to that of no-pivoting. However, for a large matrix di-
mension, due to the extra computation and special kernels required by
incremental pivoting to update the trailing submatrix, its performance
was lower than that of the partial or tournament pivoting LU that uses
Level 3 BLAS DGEMM for their trailing submatrix updates.

In comparison to MKL, our partial pivoting and tournament pivot-
ing LU could effectively utilize a larger number of cores, as seen for
medium-sized matrices on multiple sockets. This is probably a result
of the extra parallelism attained by using a superscalar scheduler, as
well as parallel panel factorizations.

ACCELERATED MULTICORE LINEAR ALGEBRA 41

e In this shared memory environment, partial pivoting outperformed
tournament pivoting in all cases. However, this observation should not
be extrapolated to distributed memory machines, where the commu-
nication latency becomes a significant part of the performance. There,
the reduced communication in tournament pivoting may be more fa-
vourable.

e MKL performed well for large matrices, where the trailing submatrix
update dominates the performance. Note that the combined cost for
all the panels is O(nyn?), compared to O(n?) for the trailing submatrix
update. Moreover, on a single socket, MKL outperformed no-pivoting
for a sufficiently large matrix dimension. This could be because a tiled
implementation loses efficiency due to the smaller BLAS kernels used
during its trailing submatrix updates.

e For small matrices, iterative refinement incurred a significant over-
head, which diminishes for large matrices as the O(n3) factorization
cost dominates the O(n?) solve cost. The refinement overhead was
particularly large for MKL, which we suspect is due to |A||Z| + |b| not
being effectively parallelized in MKL.

4.2.8. Accuracy

To study the numerical behaviour of our implementations, we used the
synthetic matrices from two recent papers (Grigori et al. 2011, Baboulin
et al. 2013). We tested all these matrices, but here we present only a
representative subset that demonstrates the numerical performance of the
pivoting strategies. We also conducted the numerical experiments using all
the matrix dimensions used in Section 4.2.2, but here we show only the
results of n = 30000, which represent the numerical performance trends
of the pivoting strategies for all other matrix dimensions. Table 4.2 shows
some properties of these test matrices and the stability results of using
partial pivoting. In the table, the second to sixth test matrices are from
the paper by Grigori et al. (2011), where the first two have relatively small
condition numbers, while the rest are more ill-conditioned. The last three
matrices are from the paper by Baboulin et al. (2013), where the last test
matrix gfpp is one of the pathological matrices that exhibit an exponential
growth factor using partial pivoting. Since the condition number of the gfpp
matrix increases rapidly with the matrix dimension, we used the matrix
dimension of m = 1000 for our study. Finally, incremental and tournament
pivoting exhibit different numerical behaviour using different tile sizes. For
the numerical results presented here, we used the tile and block sizes that
obtain the best performance on the 16 core Intel Sandy Bridge. All the
results are in double real precision.

42 A. ABDELFATTAH et al.

Table 4.2. Properties of test matrices and stability results of using partial pivoting
(n =m = 30000).

Matrix Matrix origin Al || L1 max|U (¢, 7)| ||U]1
name or description cond(4,2) |7 max|U (i, 7)| cond(U, 1)
random dlarnv (2) 7.59%x10° 1.50x10* 1.54x10%* 2.96x10°

4.78x10° 8.60x10° 1.19x102 2.43x10°

circul gallery (‘circul’, 1:n) 2.43x10* 6.66x10® 5.08x10> 1.50x10°
6.97x10> 8.64x10%° 3.87x10®° 4.23x107

riemann gallery (‘riemann’,n) 1.42x10° 3.00x10* 3.00x10* 2.24x10°
3.15x10° 3.50x10° 3.00x10* 1.25x10%

ris gallery (‘ris’, n) 1.16x10* 2.09x10* 7.34x10° 3.46x 102
3.34x10'% 3.43x10® 3.30x10° 1.42x10*

compan compan (dlarnv (3)) 4.39%x10° 2.00x10° 3.39x10° 1.90x10*
1.98x10* 1.01x10' 1.85x10° 8.60x10!

fiedler gallery (‘fiedler’,1: n) 1.50x10* 1.50x10* 2.00x10° 2.71x10*
1.92x10° 1.37x10* 1.99x10° 9.33x10°

orthog gallery (‘orthog’, n) 1.56x10% 1.91x10* 1.57x10® 2.81x10°
1.00x10° 1.70x10®> 1.57x10®> 3.84x10%

{-1,1} ay=-lorl 3.00x10* 3.00x10* 5.47x10®° 1.00x10°
1.81x10° 8.67x10*° 3.78x10* 8.35x10°

gfppt gfpp (triu (rand (n)),107%) 1.00x10° 9.02x10% 4.98x10° 4.28 x10?
1.42x10"° 2.10x10* 2.55x10° 5.96x10%

1 For gfpp, n = 1000.

Figure 4.6(a) shows the componentwise backward errors,
max 7] /(| Al[Z] + [b]):,

at each step of iterative refinement. For these experiments, the right-hand
side b is chosen such that the entries of the exact solution = are uniformly
distributed random numbers in the range of [—0.5,0.5]. We summarize our
findings below.

e For all the test matrices, tournament pivoting obtained initial backward
errors comparable to those of partial pivoting.

e No-pivoting was unstable for five of the test matrices (ris, fiedler,
orthog, {-1,1}, and gfpp). For the rest of the test matrices, the initial
backward errors of no-pivoting were significantly greater than those of
partial pivoting, but were improved after a few refinement iterations.

Forward error
=
o

ACCELERATED MULTICORE LINEAR ALGEBRA 43

<
X

]

I

: —H— partital

‘ % —&—incremental
] - —G—tournament
I

I

) O 5 PRBT
9 | | —A—no-pivoting
22232,22222,22223]22212 11111, 1114F|21211,22221,FFF41

random circul riemann ris compan fiedler orthog {-1,1} gfpp

(a) componentwise relative backward error

1 I 1 I 1 I
| | 'y & | | A | |
! ! Wk ! Lo ! ~5- partial
| | Be | @ L | ~G—incremental
| I] | 1 | —G—tournament
| | | | ¥ | |
| | | NG x& A | X PRBT X
| | i %i B i | " —A—no-pivoting
1 | IO XA 1 [l | X
I I \D:D "© I %] %) I I
random circul riemann ris compan fiedler orthog {-1,1} gfpp

(b) normwise relative forward error

Figure 4.6. Numerical accuracy of LU factorization algorithms, showing error be-
fore refinement (top point of each line) and after each refinement iteration (sub-
sequent points). Number of iterations is given at the bottom of (a); ‘F’ indicates
failure (e.g. overflow).

Incremental pivoting failed for the fiedler, orthog, and gfpp matrices.
For other test matrices, its backward errors were greater than those of
partial pivoting, but were improved to be of the same order as those of
partial pivoting after a few refinement iterations. The only exception
was with the ris matrix, where the refinement stagnated before reach-
ing an accuracy similar to that of partial pivoting. In each column of
the ris matrix, entries with smaller magnitudes are closer to the di-
agonal (i.e. a;; = 0.5/(n —i—j +1.5)). As a result, the permutation
matrix P of partial pivoting has ones on the anti-diagonal.

When no-pivoting was successful, its backward errors were similar to
those of PRBT. On the other hand, PRBT was more stable than no-
pivoting, being able to obtain small backward errors for the fiedler,
{-1,1}, and gfpp matrices.

Partial pivoting was not stable for the pathological matrix gfpp. On
the other hand, PRBT randomizes the original structure of the matrix
and was able to compute the solution to reasonable accuracy. It is also
possible to construct pathological test matrices where partial pivoting
is unstable while tournament pivoting is stable, and vice versa (Grigori
et al. 2011).

Figure 4.6(b) shows the relative forward error norms of our implementa-
tions, which were computed as ||z — Z||oo/||%]co- In the convergence of the
forward error norms we observed similar trends to the backward errors.

44 A. ABDELFATTAH et al.

One difference was with the orthog test matrix, where iterative refinement
could not adequately improve the forward errors of incremental pivoting
and PRBT. Also, even though the backward errors of the ris test matrix
were of the order of machine epsilon with partial and tournament pivoting,
their relative forward errors were O(1) due to the large condition number.

5. QR factorization

QR factorization is the most robust of the simple factorizations, but it
comes at the cost of increased computational complexity of 4/3n® + O(n?)
and slightly more complicated coding to account for exceptional floating-
point behaviour that occurs for singular or numerically unbalanced matrices
with entries spanning multiple magnitudes. QR’s robustness cannot be
understated, however, as it is capable of handling singular and highly rank-
deficient cases while still delivering useful numerical information about the
input data; the only tool that could beat QR in that regard is SVD. A
version of QR factorization can reveal the numerical rank of the input matrix
if proper column pivoting is used, but this is beyond the scope of this paper.
The QR factorization of the matrix A is of the form

A=QR, (5.1)

where () is an m X m orthonormal matrix and R is an m X n upper trian-
gular matrix. LAPACK’s xGEQRF routine implements a right-looking QR
factorization algorithm, whose first step consists of the following two phases.
Here we use an obvious variant of the MATLAB colon notation.

1 Panel factorization. The first panel A. is transformed into an upper
triangular matrix.

(a) xGEQR2 computes an m x m Householder matrix H; such that

R
HfA:,l — < (]j’l>a

and Ry is an ny X ng upper triangular matrix.

(b) xLARFT computes a block representation of the transformation Hy,
that is,

Hy=1-VTV,

where V1 is an m X n, matrix and 77 is an n, X ny upper triangular
matrix.

2 Trailing submatriz update. xLARFB applies the transformation com-
puted by xLARFT to the submatrix A. 2.5,:

Rl,z:nt - e A1,2:nt
(A >'_ (Iiv'lTlVl) A2:mt725”i '

ACCELERATED MULTICORE LINEAR ALGEBRA 45

Then the QR factorization of A is computed by applying the same trans-
formation to the submatrix A. The transformations V; are stored in the
lower triangular part of A, while R is stored in the upper triangular part.
Additional m x ny, storage is required to store 7}.

A fine-grained algorithm for QR factorization (Buttari, Langou, Kurzak
and Dongarra 2008b) requires restructuring of the above algorithm. The
tiled QR factorization is constructed based on the following four elementary
operations.

1 xGEQT2 performs the unblocked factorization of a diagonal block Ay
of size ny x ny. This operation produces an upper triangular matrix
Ryi, a unit lower triangular matrix Vi, that contains b Householder
reflectors, and an upper triangular matrix Ty as defined by the ‘WY’
technique for accumulating the transformations (Bischof and Van Loan
1987, Schreiber and Van Loan 1989). Note that both Ry and Vi can
be written to the memory area that was used for Ay, and thus no
extra storage is needed; temporary workspace is needed to store Tj.
Further,

HiHy...Hy=1I-VTVT,

where V' is an n X n, matrix whose columns are the individual vectors
V1, V2, ..., Uy associated with the Householder matrices Hy, Ho, . .., Hp,
and T is an upper triangular matrix of order ny.

Thus, xGEQT2(Agk, Tkx) performs

Ak < Vi, R, Tt <+ T

2 xLARFB applies the transformation (Vjg, Tkr) computed by subroutine
xGEQT2 to a block Ay;.
Thus, xLARFB(Ag;, Vik, Tii) performs

3 xTSQT2 performs the unblocked QR factorization of a matrix that is
formed by coupling an upper triangular block Ry, with a square block
A;x. This subroutine will return an upper triangular matrix Ry, which
will overwrite Ry and ny, Householder reflectors, where ny is the block
size. Note that since Ry is upper triangular, the resulting Householder
reflectors can be represented as an identity block I on top of a square
block Vji. For this reason, no extra storage is needed for the House-
holder vectors since the identity block need not be stored, and Vj; can
overwrite A;;. Also, a matrix Tj; is produced for which storage space
has to be allocated.

Thus, xTSQT2(Rkk, Aik, Tir) performs

R I ~
(AI:;:) — (Vik>aRkk7 Ty, < Ty

46 A. ABDELFATTAH et al.

Algorithm 2 Right-looking tiled QR factorization with a fixed blocking
factor ny.

Input: A e RMXN _ symmetric positive definite
Input: n; — blocking factor

Output: Q € RM*M _ orthonormal

Output: R € RM*N _ ypper trapezoidal

1 for k=1,2,...,min(N/ny, M/np) do
2 XGEQTQ(Akk, Tkkz)

3 for j=k+1,k+2,...,N/n; do
4 xLARFB(Ag;j, Vik, Tkk)

5 end

6 fori=k+1,k+2,...,M/ny, do
7 xTSQT2(Rik, Aik, Tik)

8 for j=k+1,k+2,...,N/ny do
9 XSSRFB(Akj, Aij7 Vi, le)

10 end

11 end

12 end

4 xSSRFB applies the transformation computed by xTSQT2 to a matrix
formed by coupling two square blocks Aj; and A;;.

Thus, xSSRFB(A;, Aij, Vik, Tir) performs

() = (= (i) o) (32)

All of these elementary operations rely on BLAS subroutines to perform
internal computations. They form the tiled QR algorithm shown in Algo-
rithm 2.

The operation count for Algorithm 2 is 25% higher than that of the
LAPACK algorithm for QR factorization. More specifically, the tiled al-
gorithm requires 5/2n%(m —n/3) floating-point operations compared to the
4/2n2(m —n/3) for the LAPACK algorithm. Details of the operation count
of the parallel tiled algorithm are reported elsewhere (Buttari et al. 2008b).

Performance results demonstrate that it is worth paying this cost for the
sake of increased parallelism and better scaling.

Figure 5.1 illustrates the data access to the tiles of a matrix for a single
iteration (with £ = 1) of the outer loop of Algorithm 2 with p = ¢ = 3. The
thick borders indicate which blocks in the matrix are being read, and the
shading indicates which blocks are being written to in the iteration. The
Ty, matrices are omitted in the figure for clarity.

ACCELERATED MULTICORE LINEAR ALGEBRA 47

k=1 k=1, j=2 k=1, j=3
XGEQT2 XLARFB XLARFB

—> —
k=1, i=2 k=1, i=2 j=2 k=1, i=2, j=
XTSQT2 XSSRFB XSSRFB

.4
OE

, i=3 j=2 k=1, i=2, j=
XSSRFB XSSRFB

X

=

0=

0~

3

N b

[

- -)

Figure 5.1. Graphical representation of one iteration of the outer loop of the tiled
QR algorithm with a matrix with 3 x 3 tiles.

There is a significant decrease of parallel efficiency which directly relates
to the sequential nature of the panel factorization (Hadri, Ltaief, Agullo and
Dongarra 2010). Even though the panel itself (submatrices of width n; be-
low the diagonal) is tiled and executed in parallel with updates of the trailing
submatrices when compared with LAPACK’s algorithm, the opportunities
for parallelism across the panel are limited, which in turn generates load
imbalance — especially when processing small or tall and narrow matrices
whose size is M x N with M > N. For such matrices, a large portion of the
elapsed time is spent in those sequential panel factorizations (Hadri, Ltaief,
Agullo and Dongarra 2009). Furthermore, the two-sided factorizations, such
as SVD, that are based on bidiagonal reduction, require interleaved QR and
LQ factorizations that are hindered by sequential panel processing for heav-
ily off-square matrices (Ltaief, Luszczek, Haidar and Dongarra 2012).

48 A. ABDELFATTAH et al.

Algorithm 3 Right-looking blocked and tiled Cholesky factorization with
a fixed blocking factor np.

Input: A € RVXN gsymmetric positive definite
Input: ny — blocking factor
Output: L € RV*N — Jower triangular

1 for A;; € {A11,A22, 433, .. AN/ny N/, } dO

2 Am‘ € R xm

3 Lm‘ — XPUTFQ(AZ'J‘)

4 for Ajﬂ' S {Ai+1,ia Az‘+27z‘, Ai+3,i7 ... A*J} do

5 Ajﬂ‘ € R™>m

6 XTRSM(AZ'J', Ajﬂ') = Aj,i — L,:ZI X Ajﬂ'

7 end

8 for A;; where j, k > i do

9 Ajr € Rexm
10 if j # k then
11 XGEMM(L]'J',LZ',]% Aj,k) = Aj,k — Aj,k —Ljix L
12 end
13 else
14 XSYRK(Ljyi,LZ"k) = Ang < Ang — Ljﬂ; X Li,k
15 end
16 end
17 end

6. Cholesky factorization
6.1. Algorithm for Cholesky factorization

Cholesky factorization (see Algorithm 3) is the fastest way to obtain trian-
gular factors of a symmetric and/or Hermitian positive definitive matrix.
The factors are either transposes or Hermitian transposes of each other and
hence only one of them has to be stored: the choice of which determines
whether LLT or UTU formulation is used. For the most part, the factoriz-
ation is immune to numerical round-off errors except for matrices that are
close to being non-symmetric or indefinite, for which a slight perturbation
can cause the factorization to fail due to a negative diagonal entry. In such
cases, LDLT factorization will likely be more suitable.

The Cholesky factorization of a Hermitian positive definite matrix A is of
the form A = RRY, where R is an n x n lower triangular matrix with pos-
itive real diagonals. The LAPACK routine xPOTRF computes the Cholesky
factor R, whose jth step computes the jth block column Rj.,, ; of R in the
following two phases.

ACCELERATED MULTICORE LINEAR ALGEBRA 49

1 Panel update. The jth panel is updated using the previously computed
columns of R:

(a) xSYRK updates the diagonal block A; ;,
Ajj = Ajj = Rixg-ny Ry
(b) xGEMM updates the off-diagonal blocks,

- H
AGtmes = AGgmes = Birme G- 1-1):
2 Panel factorization. The jth panel is factorized:
(a) xPOTF2 computes the Cholesky factor R;; of A, ;,
H .
Ajj = RjiRjj;
(b) xTRSM computes the off-diagonal blocks R 1)me s
-1
R(j+1)nt7.7 = Rj,j A(]+1)nt7]'

This is known as a left-looking algorithm, since the panel is updated at each
step using the previous columns, which are on the left of the panel. If a
right-looking algorithm is used, at each jth step, the lower triangular part
of the trailing matrix A;.p, j.n, is updated using xSYRK. When using multiple
GPUs, xSYRK and xGEMM are called on each block column of Aj.p, j.n,. On
the other hand, the left-looking algorithm accumulates all the updates to
the panel into single calls to xSYRK and xGEMM, and exhibits more regular,
and hence efficient, data access. The above algorithm references only the
lower triangular part of A, which is overwritten by R. Alternatively, given
the upper triangular part of A, xPOTRF can compute R by block rows.

6.2. Supporting heterogeneous platforms

Ideally, our goal is a programming model that raises the level of abstraction
above the hardware and its accompanying software stack to offer a uni-
form approach for algorithmic development and exploration of algorithmic
variants. Below we describe the techniques we have developed in order to
achieve an effective use of multi-way heterogeneous devices. Our techniques
consider both the higher ratio of execution and the hierarchical memory
model of new emerging accelerators and coprocessors.

GPU compute cards and multicore coprocessors, collectively known as
hardware accelerators, have a very high computational peak compared to
CPUs. Also, different types of accelerators have different capabilities, which
makes it challenging to develop an algorithm that can achieve high per-
formance and reach good scalability uniformly across the targeted plat-
forms. From the hardware point of view, the accelerator communicates
with the CPU using PClexpress commands and DMA memory transfers,

50 A. ABDELFATTAH et al.

whereas from the software standpoint, the accelerator is a platform presen-
ted through a higher-level programming interface. The key features of our
model are the processing unit capability (CPUs, GPUs, Xeon Phi), the
memory access latency, and the communication cost. As with CPUs, the
access time to the device memory for accelerators is slow compared to their
peak performance. CPUs try to improve the effect of the long memory
latency and scarce bandwidth by using hierarchical caches. This does not
solve the slow memory problem completely, but is often effective for some
workloads, and should be effective for Cholesky factorization as well. On
the other hand, accelerators use massive multithreading operations to access
large data sets that would overflow the size of most levels of cache. The of-
ten implemented solution involves having one of the accelerator’s hardware
threads issue an access to the device memory, and then have that thread
stalled until the memory is able to return the requested value. In the mean-
time, the accelerator’s scheduler switches to another hardware thread and
continues executing that other thread. By doing this, the accelerator ex-
ploits parallelism inherent in the code in order to keep the functional units
busy while the memory fulfils incoming requests. Compared to CPUs, which
have limited memory channels and slower memory technology, the device
memory delivers higher absolute bandwidth, for example, around 180 GB/s
for a Xeon Phi and 160 GB/s for a Kepler K20c GPU, but also higher
latency. To overcome the memory issues, the strategy we have developed
prioritizes the data-intensive operations to be executed by the accelerator,
and keeps the memory-bound kernels for the CPUs since the hierarchical
caches with out-of-order superscalar scheduling are more appropriate for
handling latency-sensitive codes. Moreover, in order to keep the acceler-
ator busy, we have redesigned the kernels and proposed dynamically guided
data distribution to exploit enough parallelism to keep the accelerators and
CPUs busy.

From the point of view of the programming model, there has to be a
distinction between the two levels of parallelism. We thus convert each al-
gorithm into a host part and an accelerator part. Each routine that is to be
run on the accelerator must be extracted into a separate kernel function —
specific to the hardware. The kernel function itself may have to be carefully
optimized for the accelerator, which includes unrolling the loops, replacing
some memory-bound operations with compute-intensive ones, even if it in-
curs an extra cost. Also, arranging the tasks to use the device memory effi-
ciently should be included. The host code must manage the device memory
allocation, the CPU-accelerator data movement, and the kernel invocation.
We redesigned our QUARK runtime engine in order to present a much easier
programming environment and to simplify scheduling. This often allows us
to maintain a single source version that handles different types of accel-
erators either independently or even when mixed together. Our intention

ACCELERATED MULTICORE LINEAR ALGEBRA 51

Algorithm 4 Cholesky implementation for multiple devices on a tiled
matrix.

1 Task_Flags panel flags = Task_Flags_Initializer
2 Task_Flag Set(&panel_flags, PRIORITY, 10000)
/* memory-bound — locked to CPU * /
3 Task_Flag_Set(&panel_flags, BLAS2, 0)
4 for k€ {0,nb,2 x nb,...,n} do

/* Factorization of the panel A[k : n, k] * /
5 xPOTF2(Alk, k])

/* factorize the submatrix below the panel * /
6 xTRSM(A[k + nb : n, k])

/* DO THE UPDATE: xSYRK call has been split into a set
of smaller, but fully parallel, xGEMM that are calls
compute-intensive to increase parallelism and enhance
the performance. Note that the first xGEMM consists
of the update of the next panel, thus the scheduler
checks the dependency, and once finished it can start
the panel factorization of the next loop on the CPU.

*/

7 if panel_.m > panel k then
SYRK(A[m, m]])
9 end
10 for j € {k+nb,k+ 2nb,...,n} do
11 XGEMM(A[j : n, k], A[j, k]T, A[j : n, j])
12 end
13 end

is that our model simplifies most of the hardware details, but at the same
time gives the user finer levels of control. Algorithm 4 shows the pseudocode
for the Cholesky factorization, as an algorithm designer sees it, with much
more low-level language detail when compared with Algorithm 3. The code
consists of a sequential part that is simple to comprehend and independent
of the architecture. Each of these sequential calls represents a task that
is passed to the scheduler, which stores it for later execution, when all of
the task’s dependencies are satisfied. Each task consists of a call to a ker-
nel function that could either be a CPU or an accelerator code. For the
most part, we hid the differences between hardware and let the QUARK
scheduler handle the transfer of data on behalf of the user. In addition,
we developed low-level optimizations for the accelerators in order to accom-
modate hardware- and library-specific tuning and requirements. Moreover,
we implemented a set of directives that are evaluated at runtime in order
to fully map the algorithm to the hardware and execute at a rate that is

52 A. ABDELFATTAH et al.

close to the peak performance of the system. Using these strategies, we
can more easily develop simple and portable code that can run on different
heterogeneous architectures and let the scheduling and execution runtime
do the majority of the tedious bookkeeping.

6.3. Resource capability weights

To simplify expression of linear algebra algorithms, we would like to find
a simple way of accounting for the differences in the computing capability
of the user’s CPUs and accelerators. Clearly, it is not possible to balance
the load perfectly for every run in the presence of operating system over-
head. However, we could treat the computing devices as equivalent peers
and assign them an equivalent amount of work. Such a naive strategy would
obviously cause the accelerators to be under-utilized and would render them
mostly idle. As mentioned above, we propose, as our design principle, to as-
sign the latency-bound operations to the CPUs and the compute-intensive
operations to the accelerators. In order to support multi-way heterogen-
eous hardware, the QUARK scheduler was extended with a mechanism for
distributing tasks based on the individual capabilities of each device. For
each device i and each kernel type k£, QUARK maintains an o; j parameter
which corresponds to the effective performance rate that can be achieved
on that device. In the context of linear algebra algorithms, this means that
we need an estimation of performance for Level 1, 2, and 3 BLAS opera-
tions. This can be done by the developer during the implementation, where
the user gives directives to QUARK to indicate whether a given kernel is
a bandwidth-bound or a compute-bound function. This is shown in Algo-
rithm 4, with a call to Task_Flag_Set with a BLAS2 argument. Also, an
estimate of the volume of data and the elapsed time of the kernel is needed
for the QUARK scheduler.

We can improve this further by fully utilizing all of the available resources
— in particular, by exploiting the idle time of the CPUs that are often
fast enough to handle more work in addition to the latency-bound tasks.
Based on the parameters defined above, we can compute resource capability
weights for each of the tasks, and they will reflect the cost of executing them
on a specific device. This cost is primarily based on the communication cost
of moving the data and on the type of computation performed by the task —
either memory-bound or compute-bound. For a task that requires an n x n
data, we define its computation type to be from one of the levels of BLAS
(either 1, 2 or 3). Thus the two factors are fairly simply defined as

nxn
bandwidth’
computation = n® x o where k is Level k BLAS.

communication =

ACCELERATED MULTICORE LINEAR ALGEBRA 53

The resource capability weights for a task are then the ratio of the total
cost of executing the task on one resource versus the cost of doing it on an-
other resource. For example, the resource capability weights for the update
operation — a Level 3 BLAS — is around 1 : 10, which means that the GPU
can execute 10x as many update tasks as the CPU can.

Each task is created at runtime and presented to the scheduler, which
then assigns it to the resource with the largest remaining capability weight.
This greedy heuristic takes into account the weights of the resource, as well
as the current number of waiting tasks preferred to be executed by this
resource. For example, for the CPU, the panel tasks are memory-bound
and thus executing them on the CPU is always preferred. This heuristic
tries to maintain constant ratios of the capability weights across all the
resources.

When using multiple accelerators, the data is initially distributed over all
the accelerators in a one-dimensional block cyclic fashion, with an approx-
imately equal number of columns assigned to each. Note that the data are
allocated on each device as one contiguous memory block, with the data
being distributed as columns within the contiguous memory segment. This
contiguous data layout allows large update operations to take place over a
number of columns via a single Level 3 BLAS operation, which is far more
efficient than having multiple calls with block columns.

Experimentally, the standard and uniform one-dimensional block cyc-
lic data layout may hinder performance in heterogeneous multi-accelerator
environments (Haidar et al. 2014a). The execution flow becomes bound
by the performance of the slowest machine. What is needed is an adjust-
ment to the data distribution that takes into account the resource capability
weights thus resulting in hardware-guide data distribution (HGDD). Using
the QUARK runtime, the data is either distributed or redistributed in an
automatic fashion so that each device gets the appropriate volume of data
to match its capabilities.

Figures 6.1 and 6.2 show the performance scalability of the Cholesky fac-
torization in double precision on either six NVIDIA GPUs or three Intel
Xeon Phi accelerators, respectively. The curves show performance in terms
of Gflops, and we note that this also reflects the elapsed time (i.e., for a
matrix of a given size, performance that is 2x higher corresponds to an
elapsed time that is 2x shorter). Our heterogeneous multi-device imple-
mentation shows very good scalability on both systems. For a 60 x 103
matrix, the Cholesky factorization achieves over 5100 Gflops when using
the six NVIDIA Kepler K20c GPUs. We observe similar performance and
scalability trends when using the other system, and for a matrix of size
40 x 103, the Cholesky factorization reaches up to 2300 Gflops when using
the three Intel Xeon Phi coprocessors.

54 A. ABDELFATTAH et al.

5200

4800] —=— DPOTRF 6 K20c
a400] —*— DPOTRF 4 K20c
DPOTRF 3 K20c
4000/ —— DPOTRF 2 K20c
3600 —— DPOTRF 1 K20c| ¢
3200f -
2800
24001
2000
16001
12001
800/
400(

Gflop/s

0 sl . . .
2Kk 8k 12k16k20k24k28k32k36k40 50k 60k
Matrix size

Figure 6.1. Performance scalability of Cholesky factorization on multicore CPU
and multiple accelerators (up to six NVIDIA Kepler K20c GPUs).

2400

DPOTRF_3 XeonPhi
—4— DPOTRF_2 XeonPhi
2000 —e—DPOTRF_1 XeonPhi 1

1600

Gflop/s
N
o
o

800

400

0 v L L L L L L L L L L L
2k4k6k8k 12k 16k 20k 24k 28k 32k 36k 40k
Matrix size

Figure 6.2. Performance scalability of Cholesky factorization on multicore CPU
and multiple accelerators (up to three Xeon Phi accelerators).

ACCELERATED MULTICORE LINEAR ALGEBRA 55

7. LDLT decomposition

A symmetric matrix A is called indefinite when its quadratic form 27 Az
can take both positive and negative values. Dense linear systems of equa-
tions, Ax = b, with a symmetric indefinite coefficient matrix A, appear in
many studies of physics, including physics of structures, acoustics, and elec-
tromagnetism. For instance, such systems arise in the linear least-squares
problem for solving an augmented system (Bjorck 1996, p. 77), or in elec-
tromagnetism, where the discretization by the boundary element method
results in linear systems with dense complex symmetric (non-Hermitian)
matrices (Nédélec 2001). However, it is a challenge to develop an efficient or
scalable symmetric indefinite factorization algorithm that takes advantage
of the symmetry and has a provable numerical stability. The main reason
for this is that stable factorization requires pivoting, which is difficult to
implement and parallelize efficiently on current hardware architectures. In
this section, we discuss our efforts to overcome these challenges.

7.1. Implementation on multicore CPUs

7.1.1. LAPACK: Bunch-Kaufman algorithm

For solving a symmetric indefinite linear system, LAPACK implements a
partitioned LDLT factorization with the Bunch-Kaufman algorithm (Bunch
and Kaufman 1977, Anderson and Dongarra 1989) that computes

PAPT = LDLY, (7.1)

where D is a block-diagonal matrix with either 1 x 1 or 2 x 2 diagonal blocks.
This algorithm is backward stable, subject to growth factors (Ashcraft,
Grimes and Lewis 1998), and performs about in® + O(n?) flops; see Algo-
rithm 5.

To select the pivot at each step of the panel factorization, the algorithm
scans two columns of the trailing submatrix, and depending on the numerical
values of the scanned matrix entries, it uses either a 1 x1 or 2 x 2 pivot. This
results in synchronizations and irregular data access (due to the symmetric
matrix storage), which have become expensive on modern computers. As a
result, in many cases, the implementation of the algorithm cannot obtain
high performance or exploit parallelism.

7.1.2. PLASMA: random butterfly transformation

PLASMA provides a set of dense linear algebra routines based on tiled
algorithms that break a given algorithm into fine-grained computational
tasks that operate on small square submatrices called tiles. Since each tile
is stored contiguously in memory and fits in a local cache memory, this
algorithm can take advantage of the hierarchical memory architecture used

56 A. ABDELFATTAH et al.

Algorithm 5 Bunch-Kaufman.

1 a=01+VI7)/8, k=1

2 while k < n do

3 w1 = maxsy |agk| = |ak

4 if w; > 0 then

5 if |agk| > aw; then

6 s=1

7 Use agr as a 1 x 1 pivot.

8 else

9 Wr = MaXi>ksistr |Girl

10 if |agr|wr > aw? then

11 s=1

12 Use app as a 1 x 1 pivot.

13 else

14 if |a,r| > aw, then

15 s=1

16 Swap rows/columns (k,)
17 Use a,r as a 1 x 1 pivot.
18 else

19 s=2
20 Swap rows/columns (k + 1,7)
21 Use <akk aTk) as a 2 x 2 pivot.

Qrk Gpp

22 end if
23 end if
24 end if
25 else
26 s=1

27 end if
28 k=k+s
29 end while

in modern computing hardware. Furthermore, by dynamically scheduling
the tasks as soon as all of their dependencies are resolved, PLASMA can
exploit a fine-grained parallelism and utilize a large number of cores.
Randomized algorithms are gaining popularity in linear algebra since
they can often exploit more parallelism than corresponding deterministic
algorithms (Parker 1995a). To solve a symmetric indefinite linear system,

ACCELERATED MULTICORE LINEAR ALGEBRA 57

PLASMA extends a randomization technique developed for the LU fac-
torization (Baboulin et al. 2013) to symmetric indefinite systems (Becker,
Baboulin and Dongarra 2012, Baboulin, Becker and Dongarra 2012). That
is, it uses a multiplicative preconditioner by means of random matrices
called recursive butterfly matrices Uy:

(UTUL .. . UD) AU Us... Uy),

where
By

_) _ 1 (Ry Sk
Uk_ . ; Bk_\/§<Rk _Sk>7
B2k71

and Ry and Sy are random diagonal matrices. As a result, the original
matrix A is transformed into a matrix that is sufficiently random so that,
with probability close to one, pivoting is not needed.

This random butterfly transformation (RBT) requires only 2dn? + O(n)
flops compared to the %ng + O(n?) flops required for the factorization. In
practice, d = 2 achieves satisfying accuracy, and this is the default setup
used in PLASMA. Since A is factorized without pivoting after RBT, it
allows a scalable factorization of a dense symmetric indefinite matrix.

The main drawback of this method is reliability. There is no theory
demonstrating its deterministic stability. Though it may fail in certain
cases, numerical tests showed that with iterative refinement, it is reliable
for many test cases, including pathological ones (Becker et al. 2012). Fur-
thermore, since iterative refinement is required, the failure of the method
can be signalled without extra computation.

7.1.3. PLASMA: Aasen’s algorithm
To solve a symmetric indefinite linear system, Aasen’s algorithm (Aasen
1971) factorizes A into an LTLT decomposition of the form

PAPT = LTL”, (7.2)

where P is a permutation matrix, L is a unit lower triangular matrix, and
T is a symmetric tridiagonal matrix; see Algorithm 6. Aasen’s algorithm
takes advantage of the symmetry in A and performs %n3 + O(n?) flops,
which is a half of the flops needed for an LU factorization of A, and the
same as the number of the flops required by the Bunch—Kaufman algorithm.
Furthermore, it is backward stable and subject to a growth factor. Once
the factorization is computed, the solution z is computed by successively
solving the linear systems with the matrices L, T, and L.

To exploit the memory hierarchy on a modern computer, a partitioned
version of Aasen’s algorithm was proposed (Rozloznik, Shklarski and Toledo

58 A. ABDELFATTAH et al.

Algorithm 6 Communication-avoiding Aasen’s.

1 forj=1,2,...,n/n, do

2 fori=23,...,7—1do

3 X = E,i—lL}ji_l

4 Y =T;;L];

5 Z = T%,iJrlL?:H_l

6 Wi; =05Y + 2

7 Hi,j =X+Y+Z

8 end for

9 C=Ajj—Ljgj 1Waj 1 — Wi, 1 ;LTo,
10 Ty;=L;}CL;

11 if j < n then

12 if 5 > 1 then

13 Hjj=TjjLj; 1+ Ti;L7;

14 end if

15 E=A; 10— Ljtin2jHojj

16 [Ljt1mjt1; Hisrg, PY] = LU(E)
17 Ty = HivgLy)

18 Ljsinj = PYLjyin;

19 Aj+1;n,j+1;n = P(j)Aj+1:n,j+1:nP(j)T
20 Pji1n1m = P(j)PjJrl:n,l:n

21 end if
22 end for

2011). This algorithm first factorizes a panel in a left-looking fashion, and
then uses Level 3 BLAS operations to update the trailing submatrix in a
right-looking way. Compared to a standard column-wise algorithm, this
partitioned algorithm slightly increases the operation count, performing

;(1 + Tib>n3 + O(n*ny)

flops with a block size of n,. However, Level 3 BLAS can be used to perform

most of these flops; i.e.,
1 1
1+ = \pd
3 (+ nb>n

ACCELERATED MULTICORE LINEAR ALGEBRA 59

flops. Since the Level 3 BLAS operations have higher ratios of flop counts
over communication volumes than the Level 2 BLAS or Level 1 BLAS op-
erations do, this partitioned algorithm is shown to significantly shorten the
factorization time on modern computers, where data transfer is much more
expensive than floating-point operations (Rozloznik et al. 2011). A serial im-
plementation of the partitioned Aasen’s algorithm is shown to be as efficient
as the Bunch-Kaufman algorithm of LAPACK on a single core (Rozloznik
et al. 2011). However, the panel factorization is still based on Level 1 BLAS
and Level 2 BLAS operations. As a result, this panel factorization often ob-
tains only a small fraction of the peak performance on modern computers,
and could become the bottleneck, especially in a parallel implementation.

The blocked version of Aasen’s algorithm was proposed to avoid this
bottleneck at the panel factorization (Ballard et al. 2014). It computes
an LTLT factorization of A, where T is a banded matrix (instead of tridiag-
onal) with its half-bandwidth being equal to the block size ny, and then uses
a banded matrix solver to compute the solution. In this blocked algorithm,
each panel can be factorized using an existing LU factorization algorithm,
such as recursive LU (Castaldo and Whaley 2010, Gustavson 1997, Don-
garra, Faverge, Ltaief and Luszczek 2011, Toledo 1997) and communication-
avoiding LU (CALU) (Grigori et al. 2011, Demmel, Grigori, Hoemmen and
Langou 2012). In comparison with the panel factorization algorithm used in
the partitioned Aasen’s algorithm, these LU factorization algorithms reduce
communication, and hence are expected to speed up the whole factorization
process.

We implemented this blocked Aasen’s algorithm on multicore architec-
tures, and analysed its parallel performance (Ballard et al. 2013). Our im-
plementation follows the framework of PLASMA and uses a dynamic sched-
uler called QUARK. To efficiently utilize a large number of cores in parallel,
all the existing factorization routines in PLASMA update the trailing sub-
matrix in a right-looking fashion. Hence, our implementation was not only
the first parallel implementation of the blocked Aasen’s algorithm, but it
was also the first implementation of a left-looking algorithm in PLASMA.
In order to fully exploit the limited parallelism in this left-looking algo-
rithm, we studied several performance enhancing techniques (e.g. parallel
reduction to update the panel, recursive LU and CALU for panel factor-
ization, and parallel symmetric pivoting). Our performance results on up
to 48 AMD Opteron processors demonstrate that a left-looking algorithm
can be implemented efficiently on a multicore architecture. In addition, our
numerical results show that, in comparison with the widely used stable al-
gorithm (the Bunch-Kaufman algorithm of LAPACK), our implementation
loses only one or two digits in the computed residual norms when a recursive
LU is used on a panel: see Figure 7.1. Figure 7.2 compares the performance
of different algorithms.

60 A. ABDELFATTAH et al.

Random matrix

10 T T T T T T
—=-RBT
_e_Aasen(nb 0)
10" Aasen(nb =50) ||
Aasen(nb—100)
Aasen(n b_200)
0
10" & —>—LAPACK E

10 & 3

Relative residual norm

10 7

-3 I I L 1 1 I I

1
01000 1500 2000 2500 3000 3500 4000 4500 5000
Matrix dimension

(a) recursive LU

Random matrix

10 T T T T T T
—=-RBT
_e_Aasen(nb=10)
10'" Aasen(nb=50) i
c Aasen(n ID=100)
é . - Aasen(n _=200)
S 10 ——LAPACK
Re)
(2]
o
]
210
© 3
fo) v
2 : J
-3

1 L 1 1 L L L L
01 000 1500 2000 2500 3000 3500 4000 4500 5000
Matrix dimension

(b) CALU

Figure 7.1. Residual norms of blocked Aasen’s algorithm on a random matrix.

ACCELERATED MULTICORE LINEAR ALGEBRA 61

250— w
—&—RBT
—6— Aasen-rec
—— Aasen-CA
2007 LU-rec 1
—x—LAPACK
150+ J
»
Q.
o
Q)
1001 1
50F 1
0 L L L L
6 12 24 48
Number of threads
(a) parallel performance with N = 45000
0.14 w
—©6—48 threads
q —&—12 threads
0.12 3 threads ||

0.1

0.08;

0.06

0.04

Solution time / Factorization time

0.02

18000 15000 20000 25000 30000 35000 40000
Matrix size, n

(b) solution time versus factorization time

Figure 7.2. Parallel performance on random matrix with n, = 250 on up to eight
6-core 2.8 MHz AMD Opteron processors.

62 A. ABDELFATTAH et al.

7.2. Implementation on multicore CPUs with an accelerator

7.2.1. Bunch—-Kaufman algorithm

Our first implementation of the Bunch—Kaufman algorithm is based on a hy-
brid CPU/GPU programming paradigm where the block column (commonly
referred to as a panel) is factorized on the CPUs (e.g. using the threaded
MKL), while the trailing submatrix is updated on the GPU. This is often
an effective programming paradigm for many of the LAPACK subroutines
because the panel factorization is based on Level 1 BLAS or Level 2 BLAS,
which can be efficiently implemented on the CPUs, while Level 3 BLAS is
used for the submatrix updates, which exhibit high data parallelism and
can be efficiently implemented on the GPU. Unfortunately, at each step
of the panel factorization, the Bunch-Kaufman algorithm may select the
pivot from the trailing submatrix. Hence, although copying the panel from
the GPU to the CPU can be overlapped with the update of the rest of the
trailing submatrix on the GPU, the look-ahead — a standard optimization
technique to overlap the panel factorization on the CPUs with the trailing
submatrix update on the GPU — is prohibited. In addition, when the pivot
column is on the GPU, this leads to the expensive data transfer between
the GPU and the CPU at each step of the factorization. To avoid this
expensive data transfer, our second implementation performs the entire fac-
torization on the GPU. Though the CPUs may be more efficient performing
the Level 1 BLAS and Level 2 BLAS based panel factorization, this imple-
mentation often obtains higher performance by avoiding the expensive data
transfer.

When the entire factorization is implemented on the GPU, to select a
pivot at each step of the Bunch—Kaufman algorithm, up to two columns of
the trailing submatrix must be scanned — the current column and the one
with an index corresponding to the row index of the element with the max-
imum modulus in the first column. This not only leads to the expensive
global reduce on the GPU, but also to irregular data accesses since only
the lower or upper triangular part of the submatrix is stored. This makes
it difficult to obtain high performance on the GPU. In the next two sec-
tions, we describe two other algorithms (i.e. communication-avoiding and
randomization algorithms) that aim to reduce this bottleneck.

7.2.2. Random butterfly transformation

The application of a depth 1 butterfly matrix is performed using a CUDA
kernel where the computed part of the matrix A is split into blocks. For
each of these blocks, the corresponding part of the matrix U is stored in
the shared memory to improve the memory access performance. Matrix U
is small enough to fit into the shared memory due to its packed storage.

ACCELERATED MULTICORE LINEAR ALGEBRA 63

NVIDIA K40c + two 8-core Intel Sandy Bridge CPUs

1200
1100 ’W
1000 —— Nopiv
900 —v— RBT + Nopiv
—o—LU (hybrid)

—&— Aasen (hybrid, nb=256)

—A— Aasen (GPU, nb=256)
Bunch-Kaufman (GPU)

—A— Bunch-Kaufman (hybrid)

Gflop/s
[e2]
o
o

0 L L L L I}
5000 10000 15000 20000 25000 30000
Matrix Size (n)

Figure 7.3. Performance of symmetric factorization on two 8-core Intel Xeon X5680
CPUs with an NVIDIA Kepler K20 GPU (double precision).

To compute the LDLT factorization of the randomized matrix without
pivoting, we implemented a block variant of no-pivoting LDL factorization
on multicore CPUs with a GPU. In our implementation, the matrix is first
copied to the GPU, then the CPU is used to compute the LDLT factorization
of the diagonal block. Once the resulting LDL™T factors of the diagonal
block are copied back to the GPU, the corresponding off-diagonal blocks of
the L-factor are computed by the triangular solve on the GPU. Finally, we
update each block column of the trailing submatrix, calling a matrix—matrix
multiply on the GPU.

7.2.8. Aasen’s algorithm

Though the GPU has a greater memory bandwidth than the CPU, the
memory accesses are still expensive compared to the arithmetic operations.
Hence, our implementation is based on the CA Aasen’s algorithm. Though
this algorithm performs most of the flops using Level 3 BLAS, most of the
operations are on the submatrices of the block size ny. In order to exploit
parallelism between the small BLAS calls, we use GPU streams extensively.
In addition, for an efficient application of the symmetric pivots after the
panel factorization, we apply the pivots in two steps. The first step copies
all the columns of the trailing submatrix, which need to be swapped, into an
n x 2n, workspace. Here, because of the symmetry, the kth block column

64 A. ABDELFATTAH et al.

consists of the blocks in the kth block row and those in the kth block
column. Then, in the second step, we copy the columns of the workspace
back to a block column of the submatrix after the column pivoting is applied.
The same pivoting strategy is used to exploit the parallelism on multicore
CPUs (Ballard et al. 2013). We tested using the LU factorization with
partial pivoting as the panel factorization, either using the threaded MKL
on the CPUs or using its native GPU implementation of MAGMA on GPU.
Though the Level 1 BLAS and Level 2 BLAS based panel factorization may
be more efficient on the CPUs, the second approach avoids the expensive
data transfer to copy the panel from the GPU to the CPU. Figure 7.3
compares the performance of different factorization algorithms.

8. Eigenvalue and singular value problems

Solving eigenvalue and singular value problems has many applications across
various scientific disciplines; for example, facial recognition (Turk and Pent-
land 1991), vibrational analysis of mechanical structures (Cook, Malkus,
Plesha and Witt 2007), seismic reflection tomography (Farra and Madariaga
1988), and computing electron energy levels (Singh 1994) can all be ex-
pressed as eigenvalue problems. Also, the necessity of calculating the singu-
lar value decomposition (SVD) emerges from various computational science
and engineering areas such as in statistics, where it is directly related to
the principal component analysis method (Hotelling 1933, 1935), in signal
processing and pattern recognition as an essential filtering tool, and in ana-
lysis of control systems (Moore 1981)). Also, the SVD plays an important
role in linear algebra. It has applications in such areas as least-squares
problems (Golub and Reinsch 1971), computing the pseudoinverse (Golub
and Kahan 1965), and computing the Jordan canonical form (Golub and
Wilkinson 1976). In addition, the SVD is used in solving integral equations
(Hanson 1971), digital image processing (Andrews and Patterson 1976),
information retrieval (Jiang and Berry 1998), and optimization (Bartels,
Golub and Saunders 1971).

8.1. Background
The eigenvalue problem centres around finding an eigenvector x and eigen-
value \ that satisfy
Azx = Az,
where A is a symmetric or non-symmetric n X n matrix. When the entire

eigenvalue decomposition is computed we have A = XAX ™!, where A is a
diagonal matrix of eigenvalues and X is a matrix of eigenvectors.

ACCELERATED MULTICORE LINEAR ALGEBRA 65

The singular value decomposition (SVD) finds orthogonal matrices U and
V', and a diagonal matrix ¥ with non-negative elements, such that

A=UxvVT,

where A is an m x n matrix. The diagonal elements of ¥ are the singular
values of A, the columns of U are its left singular vectors, and the columns
of V' are its right singular vectors.

All these problems are solved by a similar three-phase process.

1 Reduction phase. Orthogonal matrices are applied on the left and right
side of A to reduce it to a condensed form matrix — hence these are
called ‘two-sided factorizations’. Note that the use of two-sided trans-
formations guarantees that the reduced matrix has the same eigenval-
ues or singular values as A, and the eigenvectors or singular vectors of
A can be easily derived from those of the reduced matrix in phase 3.

2 Solution phase. An iterative eigenvalue or singular value solver fur-
ther reduces the condensed form matrix to compute its eigenvalues or
singular values.

3 Eigenvector/singular vector computation phase. If desired, the eigen-
vectors Z or singular vectors U and V of the condensed form matrix are
computed. These are then back-transformed to eigenvectors X or sin-
gular vectors U and V of A by multiplying by the orthogonal matrices
used in the reduction phase (phase 1). Depending on the algorithm,
part or all of phase 3 may be done in conjunction with the solution
phase (phase 2).

For the non-symmetric eigenvalue problem, the reduction phase is to upper
Hessenberg form, H = QF{AQL For the second phase, QR iteration is
used to find the eigenvalues of the reduced Hessenberg matrix H by further
reducing it to upper triangular Schur form, S = QT HQs. Since S is in upper
triangular form, its eigenvalues are on its diagonal and its eigenvectors Z
can be easily derived. Thus, A can be expressed as

A=QHQT = Q1Q25Q7QT,

which reveals that the eigenvalues of A are those of S, and the eigenvectors
7 of S can be back-transformed to eigenvectors of A as X = Q1Q27.
When A is symmetric (or Hermitian in the complex case), the reduction
phase is to symmetric tridiagonal, T' = QT AQ), instead of upper Hessenberg
form. Since T is tridiagonal, computations with T" are very efficient. Several
eigensolvers are applicable to the symmetric case, such as divide and conquer
(D&C), multiple relatively robust representations (MRRR), bisection, and
QR iteration. These solvers compute the eigenvalues and eigenvectors of
T = ZAZ7T, yielding A to be the eigenvalues of A. Finally, if eigenvectors

66 A. ABDELFATTAH et al.

are desired, the eigenvectors Z of T' are back-transformed to eigenvectors of
Aas X =QZ.

For the singular value decomposition (SVD), two orthogonal matrices Q
and P are applied on the left and right side of A, respectively, to reduce
A to bidiagonal form, B = QT AP. Divide and conquer or QR iteration is
then used as a solver to find both the singular values and the left and right
singular vectors of B as B = U EVT yielding the singular values of A. If
desired, singular vectors of B are back transformed to singular vectors of A
as U= QU and VT = PTYT,

There are many ways to mathematically formulate and numerically solve
these problems, but in all cases, designing an efficient computation is chal-
lenging because of the nature of the algorithms. In particular, the ortho-
gonal transformations applied to the matrix are two-sided, that is, trans-
formations are applied on both the left and right side of the matrix. This
creates data dependencies that prevent the use of standard techniques to in-
crease the computational intensity, such as blocking and look-ahead, which
are used extensively in the one-sided LU, QR, and Cholesky factorizations.
Thus, the reduction phase can take a large portion of the overall time. Re-
cent research has investigated two-stage algorithms (Lang 1999, Bientinesi,
Igual, Kressner and Quintana-Orti 2010, Haidar, Ltaief and Dongarra 2011,
Haidar, Ltaief, Luszczek and Dongarra 2012, Ltaief et al. 2012), where the
first stage uses Level 3 BLAS operations to reduce A to band form, followed
by a second stage to reduce it to the final condensed form. Because it is often
the most time-consuming phase, it is very important to identify the bottle-
necks of the reduction phase, as implemented in the classical approaches
(Anderson et al. 1999).

The initial reduction to condensed form (Hessenberg, tridiagonal, or bidi-
agonal) and the eigenvector computation are particularly amenable to GPU
computation. The eigenvalue solver itself (QR iteration or divide and con-
quer) has significant control flow and limited parallelism, making it less
suited for accelerator computation.

8.2. Singular value decomposition

In this section we will describe, in detail, the three computational phases
involved in the singular value decomposition.

8.2.1. The classical reduction to bidiagonal condensed form

Due to its high computational complexity of O(%n‘g) (for square matrices)
and interdependent data access patterns, the bidiagonal reduction phase
is the most challenging stage to develop and optimize — both algorith-
mically and from the implementation standpoint. The classical approach
from LAPACK (Anderson et al. 1999) is denoted by ‘one-stage algorithm’,

ACCELERATED MULTICORE LINEAR ALGEBRA 67

whereby the Householder transformations are grouped and applied in a
blocked fashion to directly reduce the dense matrix to bidiagonal form.
The one-stage reduction to bidiagonal form suffers from lack of efficiency.
To understand it better, one has to focus on the two computational proced-
ures (panel and update) that are repeated until the matrix is reduced. The
reduction proceeds by steps of size n,. Below we give the detailed cost of
step 4, as a cost for the panel and a cost for the update.

e The panel factorization computes the similarity transformations
(Householder reflectors) to introduce zeros to the entries below the
subdiagonal within a single block of n; columns. The factorization of
every column is dominated primarily by two matrix—vector products
with the trailing matrix. Thus, this computation is critical as the en-
tire trailing submatrix needs to be loaded into memory, and very few
floating-point operations are executed on all of the transferred data.
As the memory bandwidth becomes more limited and does not scale
with the number of cores, the panel factorization step is not expected
to scale for large matrices that do not fit in cache. The cost of a panel
is 4 ny, 12 4+ O(n), where [is the size of the trailing matrix. For simpli-
city, we omit O(n) and round up the cost of the panel by the cost of
the matrix—vector product.

e The trailing submatrix update consists of applying the Householder re-
flectors, generated during the panel factorization, to the trailing matrix
from both the left and right side using compute-bound operations that
utilize Level 3 BLAS, which have a high data re-use ratio allowing
for highly tuned implementations. In addition, Level 3 BLAS lend
themselves to parallelization due to their inherent data locality prop-
erties, which can be exploited to achieve high performance rates for
large amounts of operations, with most of it completely independent
and thus perfectly suited to multicore processors. Unfortunately, each
panel factorization must be synchronized with the corresponding up-
date of the trailing submatrix, which prevents asynchronous execution
and overlap of memory-bound and compute-bound steps that could
potentially alleviate the effects of the former. The computational cost
of this procedure is

T T
Ai—i—nb:n,i—l—nb:n — Ai+nb:n,i+nb:n -VxY —XxU)

where V and Y are the Householder reflectors computed during the
panel phase, X and Y are two rectangular matrices needed for the
update, and also computed during the panel phase. This update
phase can be performed by two matrix—matrix products using the GEMM
routine, and its cost is 2 x 2 ny, k2, where k is the size of the trailing
matrix at step .

68 A. ABDELFATTAH et al.

“Reduction to bidiagonal ®Singular solver 'Compute U ®™Compute VT
100% -
90% -
80% -
70% -
60%
50% -

0% 1 — — — — — — — — — — — =
% — — -
0%+ — — — — — — — — — — — -

0% — — — — b e e

0% T T
= x4 [~
- e)

16K

MM M M M
L N T e
- N N NN

10K
12K
14K

Figure 8.1. The percentage of the time spent in each phase of the SVD solver using
the classical one-stage approach to compute the bidiagonal form.

For all steps (n/np), the trailing matrix size varies from n to n, by steps
of size np, where [varies from n to n, and k varies from (n — np) to 2 ny.
Thus the total cost for the n/ny steps is

n/np n;:b 4 4 8
ng 2ny,

Following the equations above, we derive the maximum performance Ppax
that can be reached by any of these reduction algorithms. In particular, for
large matrix sizes n,

number of operations
Pmax =

minimum time tmin
and thus P,y is expressed as

3N 2% Plevel3 * Poeny

43,1 4.3 1~ p P,
317 * P T 377 K P Level 3 1 LGEMY

~ 2PGEMV (82)

when Pevels > Peewv. Thus, equation (8.2) proves the well-known low-
performance behaviour of the classical bidiagonal reduction algorithm, and
for that it is considered the most time-consuming phase. Figure 8.1 shows

ACCELERATED MULTICORE LINEAR ALGEBRA 69

First stage Second stage

i o
| o
| “
0

) . =
Bulge chasing

=
—Kn
w

Figure 8.2. Two-stage technique for the reduction phase.

the percentage of the total time for each of the four components of the SVD
solver using the standard one-stage reduction approach when all the singular
vectors are computed. The figure makes it clear that the reduction to the
bidiagonal form requires more than 70% of the total time for the case when
all the singular vectors are computed. In addition, when only singular values
are needed, the reduction requires about 90% of the total computing time.
Because of the expense of the reduction step, renewed research has focused
on improving this step, resulting in a novel technique based on a ‘two-stage’
algorithm (Lang 1999, Bientinesi et al. 2010, Haidar et al. 2011, Haidar
et al. 2012, Ltaief et al. 2012, Haidar, Kurzak and Luszczek 2013a), where
a first stage uses Level 3 BLAS operations to reduce Ag to band form, and
a second stage further reduces the matrix to the proper bidiagonal form.
We developed our singular value solver based on the ‘two-stage’ techniques,
which allow us to exploit more parallelism and use recent hardware more
efficiently.

8.2.2. Two-stage reduction

The two-stage reduction is designed to overcome the limitations of the one-
stage approach, which relies heavily on memory-bound operations. It also
increases the use of compute-intensive operations that benefit from the in-
crease in CPU core count. Many algorithms have been studied extensively
in the context of the symmetric eigenvalue problems (Bischof, Lang and Sun
2000, Bischof and Van Loan 1987), and, more recently, tile algorithms have
achieved good performance (Luszczek, Ltaief and Dongarra 2011, Haidar
et al. 2011). The idea behind them is to split the original one-stage ap-
proach into a compute-intensive phase (first stage) and a memory-bound
phase (second or bulge chasing stage) as represented in Figure 8.2. The
first stage reduces the original general dense matrix to a band form (either
upper or lower), and the second stage reduces the band form to the canon-
ical bidiagonal form (again, either upper or lower). The two-stage approach
is used in our implementation, and exhibits some similarities to what has
been developed for the symmetric eigenvalue problem (Haidar et al. 2011).
To put our work into a proper perspective, we start by briefly describing

70 A. ABDELFATTAH et al.

the first stage (reduction from full dense to band), and then we explain in
more detail the reduction from band to bidiagonal form. We will also talk
about the scheduling techniques on which our implementation relies.

First stage: compute-intensive and efficient kernels. The first stage applies
a sequence of blocked Householder transformations to reduce the general
dense matrix to either an upper or a lower band matrix. This stage uses com-
pute-intensive matrix-multiply kernels that eliminate the memory-bound
matrix—vector product from the one-stage panel factorization. It also illus-
trates a beneficial data access pattern through the use of compute-intensive
operations based on Level 3 BLAS for large portions of the code (Bischof
et al. 2000, Dongarra, Sorensen and Hammarling 1989, Gansterer, Kvasnicka
and Ueberhuber 1999, Haidar et al. 2014). Moreover, this stage is made
highly parallel because of the tile algorithm formulation (Agullo, Hadri,
Ltaief and Dongarra 2009b), which brings the parallelism to the fore. Con-
ceptually and physically, the matrix is split into nt x nt tiles (nt = n/nb, nb
is the size of the tile and the resulting matrix bandwidth). The data within
a tile is stored contiguously in memory. The algorithm then proceeds as
a collection of interdependent tasks that operate on the tile data layout.
Figure 8.3 highlights the execution breakdown during the second step of
the first stage of the reduction. A QR factorization is computed for the tile
Ay o (the solid grey tile). After this QR is finished, a set of independent
tasks is released and they can all be executed in parallel. All tiles Ao (the
black tiles of Figure 8.3(a)) can be updated by applying the Householder
transformations that are generated by the QR factorization of Ago. Also,
all the tiles Aq2 (the grey diamond pattern tiles of Figure 8.3(a)) can also
be independently annihilated one after another with the R factor of As».
After each tile A; is annihilated (e.g. the black checkerboard pattern tile
of Figure 8.3(a)), a set of parallel tasks may be launched to update all the
tiles of the block row i (the stripe pattern tiles of Figure 8.3(a)). Moreover,
when Ay 3 is updated, then an LQ factorization is performed for this tile (the
solid grey tile of Figure 8.3(b)). Similarly to the QR process, after LQ, all
the tiles in the third column of tiles, Ag.ns3 (the grey diamond pattern tiles
of Figure 8.3(b)), can now be independently updated by the Householder
vectors from the LQ factorization, provided that they have been updated
with the transformation from the QR factorization. Similarly, all the tiles
A 4:nt (the black checkerboard pattern tiles of Figure 8.3(b)) can also be
annihilated. Likewise, each annihilation of A; ; (the black checkerboard pat-
tern tile of Figure 8.3(b)) enables a set of tasks to update the block column
i (the stripe pattern tiles of Figure 8.3(b)). We note that this requires im-
plementations of new computational kernels to be able to operate on the
new data structures. The details of the implementation of this stage are
provided elsewhere (Haidar et al. 2011, Luszczek et al. 2011). This process

ACCELERATED MULTICORE LINEAR ALGEBRA 71

(a) QR factorization of tile Ao (b) LQ factorization of tile Az 3

Figure 8.3. Kernel execution of the BRD algorithm during the first stage.

of interleaving the QR and the LQ factorizations at each step repeats until
the end, and, as a result, we obtain a band matrix with a bandwidth of size
nb. As we mentioned above, the tile formulation of the algorithm resulted in
the creation of a large number of parallel tasks. These tasks are organized
into a directed acyclic graph (DAG) (Buttari et al. 2006, Chan, Quintana-
Orti, Quintana-Orti and van de Geijn 2007), with the nodes representing the
computational tasks and the edges — the data dependencies between them.
Thus, restructuring the linear algebra algorithms as a sequence of tasks
that operate on tiles of data removes the fork—join bottleneck that befits
the LAPACK-style implementations. It also avoids idle time for individual
cores, while, at the same time, increasing the data locality for each core.
Moreover, in order to increase the efficiency of our algorithm, we improved
our dynamic scheduler by developing two main features that played an im-
portant role in targeting high-performance execution rates. Two auxiliary
options were added to the scheduler that allow us to label some of the tasks
PRIORITY and LOCALITY. For example, when the QR factorization of A1
and a sequence of QR updates ensues, it is better to increase the priority of
all the tasks that modify the tile A2, in such a way that the LQ process
of A; o starts as soon as possible. As a result, this technique will increase
the number of parallel tasks and will aid the interleaving of the tasks from
both the QR and the LQ update sequences. As described below, this has
a big impact on data locality. The second task label that we developed is
the LOCALITY flag. It is used for the update of any tile of Ag.; 2.,. It makes
it possible for A5 to be updated by the QR’s Householder process and by
the LQ Householder process. Hence, our scheduler has an opportunity to

72 A. ABDELFATTAH et al.

let the same core update As2 by the two transformations, one after the
other. This will result in the tile data being loaded from the main memory
only once.

Second stage: cache-friendly computational kernels. The band form is fur-
ther reduced to the final condensed form using the bulge chasing technique.
This procedure annihilates the extra off-diagonal elements by chasing the
created fill-in elements down to the bottom right side of the matrix using
successive orthogonal transformations at each sweep. This stage involves
memory-bound operations and requires the band matrix to be accessed
from multiple disjoint locations. In other words, there is an accumulation
of substantial latency overhead each time different portions of the matrix
are loaded into cache memory, which is not compensated for by the low
execution rate of the actual computations (the so-called surface-to-volume
effect). To overcome these critical limitations, we developed a bulge chasing
algorithm, very similar to the novel bulge chasing techniques for symmet-
ric eigenvalue problems (reduction from band to bidiagonal) developed in
Haidar et al. (2011), but we differ from it in using a column-wise elimina-
tion instead of an element-wise elimination. In addition, we also differ by
developing our kernels to deal with general matrices instead of symmetric
matrices. When the singular vectors need to be computed, the most prob-
lematic aspect of the standard procedure is the element-wise elimination
(Haidar et al. 2011). Such an implementation is very suitable when only
singular value is required, but is limited when singular vectors are required.
In particular, it generates element-wise Householder reflectors, and thus the
update of the singular vectors by these reflectors becomes the bottleneck
as it is based on Level 1 BLAS operations. Our modification adds a small
amount of extra work, but it allows the use of the Level 3 BLAS kernels to
compute the transformations or to apply them in the form of the orthogonal
matrix Uz and Va — the result of computation in this phase. Moreover, we
designed our algorithm to extensively use cache-friendly kernels combined
with fine-grained, memory-aware tasks in an out-of-order scheduling tech-
nique which considerably enhances data locality.

The bulge chasing algorithm consists of a succession of three new kernels
designed to increase cache re-use. The idea is to load a block of data in the
actual cache memory and to apply all the possible computation to it before
unloading it. The first kernel, called xGBCW1 and illustrated in Figure 8.4(a),
manipulates the black checkerboard pattern block of data. It triggers the
beginning of each sweep by annihilating the extra non-zero entries within
a single row, then applies the computed elementary Householder reflector
from the right within this block. Hence, it subsequently generates triangular
bulges as shown in Figure 8.4(a) (the black block). Note that this triangular

ACCELERATED MULTICORE LINEAR ALGEBRA 73

e

o o o o ofe

.
.

e e o o ofe oo

oo 00 .

o o o o ofe

ofe o o o

o ofe
oo ofe
oo o oo

o oo oo

(b) xGBCW2 (black stripe pattern)

E ------- \§ sweep 1
: : E;l)
e B
(S5 e
s e
.. o .E
e
(c) xGBCW3 (black checkerboard pattern) (d) bulge overlap

Figure 8.4. Kernel execution of the BRD algorithm during the second stage.

bulge must be annihilated eventually in order to avoid the excessive growth
of the fill-in structure. A classical implementation will eliminate the whole
triangular bulge. However, for an appropriate study of the bulge chasing
procedure, let us remark that the elimination of the row i + 1 (the sweep
i+ 1), at the next step, creates a triangular bulge which will overlap this
one-by-one column shift to the right and one row to the bottom, as shown
in Figure 8.4(d), where the reader can see that the lower triangular portion
of the grey checkerboard pattern block (the bulge created in sweep i + 1)

74 A. ABDELFATTAH et al.

overlaps with the lower triangular portion of the black checkerboard pattern
block (corresponding to the bulges created by the previous sweep 7). As a
result, we can reduce the computational cost, and instead of eliminating
the whole triangular bulge created for sweep 7, we only eliminate the non-
overlapped region of it — its first column. The remaining columns can be
delayed to the upcoming annihilation sweeps. In this way, we can avoid
the growth of the bulges and reduce the extra cost accrued when the whole
bulge is eliminated. Moreover, we designed a cache-friendly kernel that takes
advantage of the fact that the created bulge (the black checkerboard pattern
block) remains in the cache and therefore it directly eliminates its first
column and applies the corresponding left update to the remaining column
of the black checkerboard pattern block. The second kernel, xGBCW2, loads
the next block and it applies the necessary left updates derived from the
previous kernel. This will eventually generate triangular bulges as shown
in Figure 8.4(b). Hence, this kernel will also annihilate the first row of
the created bulge and update its black stripe pattern block from the right.
Finally, the third kernel, xGBCW3, loads the next block (the third black
checkerboard pattern block of Figure 8.4(c)) and it continues applying, from
the right, the transformations of the previous kernel 2. Like kernel 1, it also
creates a bulge which is removed, and the black checkerboard pattern block
is updated correspondingly from the left, similar to the process undertaken
by kernel 1. Accordingly, the annihilation of each sweep can be described
as a single call to kernel 1 followed by repetitive calls to a cycle of kernel 2
and kernel 3.

The implementation of this stage is done by using either a dynamic or
a static runtime environment, whose detailed implementation we developed
and discussed in Haidar et al. (2013a, 2014). This stage is, in our opin-
ion, one of the main challenges for algorithms as it is difficult to track the
data dependencies. The annihilation of the subsequent sweeps will generate
computational tasks, which will partially overlap within the data used by
the tasks of the previous sweeps (see Figure 8.4(d)) — the main challenge of
dependency tracking. We have used our data translation layer (DTL) and
functional dependencies (Luszczek et al. 2011, Haidar et al. 2011) to han-
dle the dependencies and to provide crucial information to the runtime to
achieve the correct scheduling. As mentioned above, the amount of data in-
volved with each task is of size nb x nb, but is handled efficiently because our
kernels increase cache re-use. We also developed our scheduling technique
to minimize the memory traffic and increase the efficiency of our algorithm
in such a way that the subsequent tasks that involve the same region of data
will be executed by the same thread. As an example, the first task Tl(z) of
the annihilation of sweep 2, which operates on the grey stripe pattern block
of Figure 8.4(d), overlaps the region of the data that has been used by the

first task T, 1(1) of the sweep 1 (black checkerboard pattern block). However,

ACCELERATED MULTICORE LINEAR ALGEBRA 75

it is obvious to execute task Tl(z) by the same thread that executed Tl(l). To
ensure maximum re-use, we force the scheduler to distribute the tasks ac-
cording to their data location. The main goal of our data-based scheduling
is to define fine-grained local tasks that increase cache re-use and minimize
communication. For small matrix sizes, we prefer the use of a subsequent set
of threads (the number of threads that fit the matrix into its fast memory)
while leaving the other threads working on different portions of the code
rather than using all the available resources. The implementation of this
phase has been well optimized. It has been observed that it takes between
5% and 10% of the global time of the reduction from dense to bidiagonal.

8.2.3. The bidiagonal singular solver
A bidiagonal singular solver computes the spectral decomposition of a bid-
iagonal matrix B such that

B=UxV" with UU” =T and VV¥ =1, (8.3)

where U and V¥ are the singular vectors and ¥ the singular values of B.
There are two main implementations of the singular solver, one based on
the QR algorithm (Golub and Kahan 1965), and one based on the divide
and conquer algorithm (Jessup and Sorensen 1989, Gu and Eisenstat 1995).

8.2.4. The singular vector computation

The classical one-stage approach reduces the dense matrix A to bidiagonal
B and computes its singular values and vectors. The singular values of A
are the same as the ¥ computed for the bidiagonal matrix B. The singular
vectors of A (U and VH) are computed from the left and right singular
vectors of B by applying the same orthogonal matrices @ and PY that were
used in the reduction to condensed form, respectively, that is,

U=QU =(I-vTVhU,
and VH =VHPH = VH(—wyTrfwl),

where (V1,71 and Wy, Tr,) represent the left and right Householder re-
flectors generated during the reduction to the bidiagonal form, respectively.
From this representation, either @ and P can be formed explicitly using
DORGBR; or we can multiply by @ P in an implicit fashion using DORMBR,
which is less expensive. In either case, applying Q and P becomes a series
of DGEMM operations. Algorithm 7 describes the back transformation of the
one-stage reduction to the left singular vectors. The same will be applied
to the right vectors. The cost of this phase is equal to 2n3 for each sin-
gular vector. Since all of its computation is based on Level 3 BLAS, the
performance upper bound of this phase is considered to be on a par with
the performance of the Level 3 BLAS, which is usually a large fraction of
the peak of the machine.

(8.4)

76 A. ABDELFATTAH et al.

Algorithm 7 One-stage algorithm: apply Householder reflectors DORMBR.

for step =n —ipn—2ip,to 1 do
// generate T; for the block (Astepmn, step:step+iy)
DLARFT(Astep:nt,stepzstep—i—ib)
// back transform U with V;
DLARFB(Astep:n,step:step—i—ib7 Ustep:n,:)

end for

S T W N

In the case of the two-stage approach, the first stage reduces the original
general dense matrix A to a general band matrix by applying a two-sided
transformation to A such that Q{{ APy = Apang. Similarly, the second stage
— bulge chasing — reduces the band matrix Ap.nq to the bidiagonal form by
applying the transformation from both the left and right side to Apang such
that leAbandPg = B. Let us now denote the SVD of A by A = ULVH,
where U and V¥ are, respectively, the left and right singular vectors of
A, and the diagonal entries of ¥ hold the singular values. These singular
vectors must be multiplied by both of @, and P, according to

U=Qi1Q:U = (I -V —WwhVihHu,

and VI =vVIPIPH — V(1 — Worrf Wi (1 — wiTr P Wi, (8:5)
where (V1,77 and Wy, Tr1) and (Va, Ty and Wa, T'rg) represent the left and
right Householder reflectors generated during the first and second stages of
the reduction to the bidiagonal form. It is clear that the two-stage approach
introduces a non-trivial amount of extra computation — the application of
Q2 and PQH — for the case when the singular vectors are needed. Thus,
one of the crucial procedures of the two-stage algorithm, when optimizing
for performance, is the update of the singular vectors by the Householder
transformations that were generated during the two stages of the reduction
to the bidiagonal form. Obviously, the implementation of this scheme is not
as straightforward as simply parallelizing a loop. In particular, because of
complications of the bulge chasing mechanism, the order of generated task
dependencies is quite intricate. Due to the geometric shape of non-zero
entries during the second stage of the reduction from Ay,,q to bidiagonal,
called bulge chasing, the application of Q2 and P> has to follow the order
mentioned in Figure 8.5, where each application consists of the diamond
shape of the V applied to U. Figure 8.5 shows the Householder reflectors
for both stages. More details of the optimized technique to apply 2 and
P, can be found in Haidar, Luszczek and Dongarra (20145). The algorithm
for the update of U using Q2 is described in Algorithm 8, and the cost of

ACCELERATED MULTICORE LINEAR ALGEBRA 77

Algorithm 8 Two-stage algorithm: apply Householder reflectors Va.

1 for step =n — iy n— 2ip, to 1 do

2 for £ = 1 to step/n, do

3 // back transform U with V2, g

4 DLARFB_OPTIMIZED(diamondy, sicp, Uy.:)
5 end for

6 end for

=

\

2

S

Iy

(a) (b)

Figure 8.5. (a) Tiling of V;. (b) Blocking used to apply V5.

this step can be summarized by a

2(1 4 ”’>n3
ny

operation using the Level 3 BLAS. Similarly, the cost of applying P can
be computed in the same manner.

The application of ()1 can be done easily and efficiently using our tile
algorithm (Haidar et al. 2014b) and is described in Algorithm 9. The paral-
lelism in this step comes from two sources: first, the singular vector matrix
is viewed as a set of independent tiles to be updated; second, the parallel-
ism can also be extracted by applying ()1 as a set of independent House-
holder reflectors, row-wise, meaning that the only constraint to follow is
their column-wise order (e.g., once the Householder reflector of block(i, j)
has been applied, that of block(i,j — 1) can be applied). As a result, the
design of the tile algorithm generates a large number of independent tasks
that can be applied in an asynchronous manner using either a static or a

78 A. ABDELFATTAH et al.

Algorithm 9 Two-stage algorithm: apply Householder reflectors V;.

1 for step =ntnt—1,to1

2 for k = 1tont—step+1

3 // back transform U, . with V1 sep
4 for g = 1tont

5 DLARFB(A% steps Uk,g)

6 end for

7 end for

8 end for

dynamic scheduler. The Vj are stored in a tile fashion, as shown in Fig-
ure 8.5, to increase data locality. The total cost of this step is approximately
2n3. Consequently, the total cost of updating the singular vectors when us-
ing the two-stage techniques is

i
2 (1 + b) 3 4 9n3
N
for the left singular vectors and the same for the right singular vectors.
Compared to the one-stage approach, we can observe that the two-stage
technique has an extra cost of the order of

2<1 + “’)n3
)

operations for the left singular vector and the same for the right singular
vector.

Hence, when only the singular values are computed, our new two-stage
implementation is expected to be largely advantageous when compared to
the classic algorithm (e.g., it can reach about 7x speedup). However, when
computing the left and right singular vectors, our two-stage approach has

an extra cost of
2 x 2 <1 + “’)n3
ng

operations from the back-transformation of the second stage. This will
clearly affect the roughly 8x observed speedup for the reduction to the bid-
iagonal form. However, since the extra cost is computed by the Level 3
BLAS operations, one can expect that we can still get speedup over the
classical approach — particularly for accelerated architectures. Our experi-
ments described in the next section show that we can reach still reach up
to 2x speedup on a multicore architecture when both the left and right
singular vectors are computed. Also, one can expect that if a percentage of
the singular vectors is needed, the extra cost is dramatically decreased, and
a speedup of about 5x was observed.

ACCELERATED MULTICORE LINEAR ALGEBRA 79

8.2.5. Experimental results
This section presents the performance comparisons of our tile algorithm for
two-stage SVD against state-of-the-art numerical linear algebra libraries.

Ezxperimental environment. We performed our experiments on two shared
memory systems. These systems are representative server-grade machines
and workstations commonly used for computationally intensive workloads.
The first system, named system A, is composed of four sockets of AMD
Opteron 6180 SE CPUs, 12 cores each (48 cores total), running at 2.5 GHz
with 128 GB of main memory; the total number of cores is evenly spread
between two physical motherboards. The Level 2 cache size per core is
512 KB. The theoretical peak for this architecture in double precision is
480 Gflops (10.1 Gflops per core). Our second system, named system B,
is composed of two sockets of Intel Xeon E5-2670 (Sandy Bridge) CPUs,
eight cores each (16 cores total), each running at 2.6 GHz with 52 GB of
main memory. Each socket has 24 MB of shared L3 cache, and each core
has a private 256 KB L2 and 64 KB L1 cache. The theoretical peak for this
architecture in double precision is 333 Gflops (20.8 Gflops per core).

There are a number of software packages that include a singular value de-
composition solver. For comparison, we used the latest MKL (Math Kernel
Library)?* version 13.1, which is a commercial library from Intel that is highly
optimized for Intel processors and competes with alternatives on AMD pro-
cessors. MKL includes a comprehensive set of mathematical routines imple-
mented to run well on most x86 multicore processors. In particular, MKL
includes LAPACK-equivalent® routines to compute the bidiagonal reduc-
tion DGEBRD, and routines to find the singular value decomposition such as
DGESDD (the divide and conquer (D&C) algorithm) and DGESVD (the implicit
zero-shift QR algorithm).

Performance results. The following experiments illustrate the superior effi-
ciency and the scalability of our proposed SVD solver with respect to the
state-of-the-art optimized vendor numerical linear algebra libraries. Each
graph below presents comparison curves that we will describe. We per-
formed an extensive study with a large number of experiments on two dif-
ferent machines (one with a large number of cores, system A, and another
with small number of cores, system B) in order to give the reader as much
information as possible. We computed the SVD decomposition, where we
either compute only the singular values, or both singular values and vec-
tors, with two different algorithms (DGESVD, DGESDD), varying the size of
the matrices from 2000 to 26 000 using our two systems described above.

“ http://software.intel.com /intel-mk
® We consider a routine to be LAPACK-equivalent if it provides the same behaviour in
terms of numerical error bounds and can handle the same input parameters.

80 A. ABDELFATTAH et al.

10

I I I I
—A— 2-stages / MKL (DGEBRD)
- B -2-stages / MKL (DGESDD no vectors)
—O— 2-stages / MKL (DGESDD 20% vectors)
—=-- 2-stages / MKL (DGESDD all vectors)

Speedup

| | | | | | | | | | | |
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k
Matrix size

Figure 8.6. The speedup obtained by our implementation of DGESDD versus its
counterpart from the Intel MKL library on 48 AMD cores of system A.

Since many applications only need a portion of the singular vectors, we
also present results using DGESDD (the divide and conquer SVD solver) to
compute 20% of the singular vectors. In addition, in order to make our
experiments self-contained, we report the result of the improvements that
our two-stage implementation brought to the reduction to bidiagonal form,
compared against the one-stage approach from the state-of-the-art numer-
ical linear algebra libraries.

In particular, Figures 8.6 and 8.7 show speedups and efficiencies for com-
puting the SVD using the divide and conquer technique. For each speedup
curve (representing a routine), we depict the ratio of the runtime between
the routine from Intel’s MKL library and its counterpart from our imple-
mentation within the same computing environment. These results show four
types of behaviour.

Let us first comment on the reduction to bidiagonal form (DGEBRD: tri-
angles) and on the SVD decomposition when only the singular values are
computed (DGESDD NO Vectors: squares). The speedups shown are remark-
able, our implementation asymptotically achieves more than 8x speedup
on the 48 cores of system A and more than 4x speedup on the 16 cores of
system B. This was not unexpected, and the results obtained here confirm

ACCELERATED MULTICORE LINEAR ALGEBRA 81

—A— 2-stages / MKL (DGEBRD)

55 | - @ -2-stages/MKL (DGESDD no vectors) -
—EO—2-stages / MKL (DGESDD 20% vectors)
—---2-stages / MKL (DGESDD all vectors)

-B--

_O---B--4r"
45

S

0.5 1 1 1 1 1 1 1 1
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k

Matrix size

Figure 8.7. The speedup obtained by our implementation of DGESDD versus its
counterpart from the Intel MKL library on 16 Sandy Bridge cores of system B.

the importance of the considerations discussed in our study when design-
ing high-performance libraries. The performance gain is due to the tile
algorithm that we developed and to its efficient implementation of the first
stage (reduction to band), which is the compute-intensive stage, and from
the design of both the second stage (bulge chasing) and the orthogonal
transformation update, which maps both the algorithm and the data to
the hardware using cache-friendly kernels and scheduling based on increas-
ing data locality. Our new algorithm scales as the matrix sizes increase
and asymptotically achieves a perfect speedup, despite the side effects of
running on a NUMA system.

In contrast to the standard approach where the reduction to bidiagonal
dominates the overall time (as described above in Figure 8.1), the two-stage
reduction to bidiagonal consists of less than 20% of the overall time. Thus,
when only singular values or a small portion of the vectors are needed, our
approach is particularly favourable. One of the most fruitful advantages
of our two-stage SVD algorithm is the attractive speedup shown when a
portion of the singular vectors is computed. The performance obtained by
DGESDD, when 20% of the singular vectors are required, shows more than a
4x increase when using the 48 cores of system A (circles in Figure 8.6), and
can get more than 2x speedup when using the 16 cores of system B (circles

82 A. ABDELFATTAH et al.

I I I I I
—A— 2-stages / MKL (DGEBRD)
oL |—B - 2-stages / MKL (DGESVD no vectors) a 4
—~--2-stages / MKL (DGESVD all vectors) Pic e -
-8~
8 - i
z--H
7= -
6 -
o
=]
o
Q
2 5+ i
7]
4+ i
3 -
2+ S -
gt + } —+ Ll +
R
1 — 4—""4‘_
Il 1 1 1 1 1 1 1 1 1 1 1 1

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k
Matrix size
Figure 8.8. The speedup obtained by our implementation of DGESVD versus its
counterpart from the Intel MKL library on 48 AMD cores of system A.

in Figure 8.7). The underlying results are straightforward. The computing
portion of the singular vectors significantly minimizes the overhead of the
extra cost (applying Q2 and P,) introduced by the two-stage approach, and
therefore the speedup observed here is relatively high.

Moreover, we also evaluated the performance and speedup of our algo-
rithm when all the singular vectors are computed (diamonds in Figures 8.6
and 8.7). We can observe that our algorithm performs consistently better
than the state-of-the-art optimized MKL routine DGESDD, with the excep-
tion of small matrices. Our implementation is around 3x faster when using
a large number of cores (48 cores of system A) and is around 1.5x faster on
a smaller number of cores (16 cores of system B).

Our fourth observation is related to the scalability of our implementation.
To explain it briefly, we performed experiments with only 12 cores of sys-
tem A, and compared it with the results from the full 48 cores. Our solver
accomplished very good scalability: the execution time on 48 cores is about
3.5x faster than the one obtained on 12 cores. It also appears from the spee-
dup illustrated in our figures that the scalability increases with respect to
the number of cores, and for that reason we believe that this implementation
is suitable for large distributed and shared memory machines.

ACCELERATED MULTICORE LINEAR ALGEBRA 83

—A— 2-stages / MKL (DGEBRD)
5.5 | — B -2-stages/ MKL (DGESVD no vectors) 4
—-4--- 2-stages / MKL (DGESVD all vectors)

4.5

| | | | | | | |
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k
Matrix size

0.5 | | | |

Figure 8.9. The speedup obtained by our implementation of DGESVD versus its
counterpart from the Intel MKL library on 16 Sandy Bridge cores of system B.

Since we prefer to cover all the available SVD solvers and not be lim-
ited by the divide and conquer technique, we also performed the same set
of experiments using the implicit zero-shift QR algorithm (DGESVD) as an-
other solver variant. The speedup results obtained on both of our machines,
system A and system B, are presented in Figures 8.8 and 8.9, respectively.
Here we note that we could not compute a set of the singular vectors because
the routine which computes the SVD decomposition of the bidiagonal mat-
rix (DBDSQR) does not provide this option, and requires the transformation
matrices @ and PH to be provided explicitly as input. However, experi-
ments with either all the singular vectors or none of the singular vectors
were reported. The speedup of the DGEBRD routine has been reported in
Figures 8.8 and 8.9, for the sake of completeness.

The performance shown in Figures 8.8 and 8.9 is very close to that of
the divide and conquer solver. The performance drops slightly compared to
Figures 8.6 and 8.7, because the DBDSQR solver used here requires the matrix
Q@ and P to be computed explicitly as input, and so it updates the singular
vectors Ls; and R, internally. Thus it does not benefit from all the optim-
izations we implemented. However, the explicit generation of the matrices
@ and P take advantage of all the techniques described in this section.

84 A. ABDELFATTAH et al.

As a consequence, the speedup curve trend in Figures 8.8 and 8.9 slightly
decreases compared to that of Figures 8.6 and 8.7. Therefore, reaching a
twofold speedup (Figure 8.8) is worth the effort.

Finally, we demonstrate that our algorithm is very efficient and can
achieve more than a twofold speedup over the well-known state-of-the-art
optimized libraries. It is especially suitable when only the singular values —
or when a portion of the singular vectors — are needed. Results show a 4x
to 10x speedup. We believe that this achievement makes our algorithm a
very good candidate for current and next generation computing hardware.

8.3. Symmetric eigenvalue problem

In a similar fashion to our discussion of singular value decomposition above,
we will now describe the three phases of the symmetric eigenvalue solver.

8.3.1. The classical reduction to tridiagonal condensed form

The classical approach (LAPACK algorithms) to reducing a matrix to tri-
diagonal form is to use a one-stage algorithm (Golub and Van Loan 1996).
Similar to the one-sided factorizations (Cholesky, LU, QR), the two-sided
factorizations are split into a panel factorization and a trailing matriz up-
date. Unlike the one-sided factorizations, however, the panel factorization
requires computing the Level 2 BLAS symmetric matrix—vector product
with the entire trailing matrix. This requires loading the entire trailing
matrix into memory, which incurs a significant amount of memory-bound
operations. It creates data dependencies and produces artificial synchron-
ization points between the panel factorization and the trailing submatrix
update steps. This prevents the use of standard techniques to increase the
computational intensity (e.g. look-ahead), which are used extensively in the
one-sided LU, QR, and Cholesky factorizations. Let us compute the cost of
the algorithm. The reduction proceeds by steps of size ny, where each step
consists of the cost of the panel and the cost of the update.

e The panel is of size nj columns. The factorization of every column
is dominated primarily by one symmetric matrix—vector product with
the trailing matrix. Thus the cost of a panel is

2 ny 12+ O(n),

where [is the size of the trailing matrix. For simplicity, we omit ©(n)
and round up the cost of the panel by the cost of the matrix—vector
product.

e The update of the trailing matrix consists of applying the Householder
reflectors generated during the panel factorization to the trailing mat-
rix from both the left and right side according to

T T
Ai+nb:n,i+nb:n — Ai+nb:n,i+nb:n —VxW —WxV 5

ACCELERATED MULTICORE LINEAR ALGEBRA 85

where V and W were computed during the panel phase. This Level 3
BLAS operation is computed by the SYR2K routine and its cost is
2 ny k2, where k = n — i ny is the size of the trailing matrix at step i.

For all steps (n/nyp), the trailing matrix size varies from n to np, by steps
of size np, where [varies from n to n, and k varies from (n — ny) to 2 ny.
Thus, the total cost for the n/ny steps is

_"b

n/np

2 4
flops = 2n,, Z 12 4 2ny Z K~ nSYMv + 3n§YR2K ~ —nd. (8.6)

21’Lb

w

According to the equations above, we derive the maximum performance
Prax that can be reached by such an algorithm. In particular, for large
matrix sizes n, Ppax is expressed as

number of operations

Prnax = minimum time tyiy
i b
N tmin(%n3 flops in SYMV) + tmin(%nS flops in SYR2K)
_ gng 2% Prevers * Psywy
B 2nd x Pvav + 2n3 « PLelve13 "~ Prevels + Py
< 2Psywy when Prevel3 > Psyuy- (8.7)

Thus, from equation (8.7) we can understand the well-known low-perform-
ance behaviour of the classical tridiagonal reduction algorithm. In practice,
it is the most time-consuming phase (about 70% of the time when all ei-
genvectors are requested, and about 90% of the time when only eigenvalues
are needed). Figure 8.10 depicts the percentage of the time spent in each
phase of the eigensolver using the classical one-stage approach to compute
the tridiagonal form and eigenvectors.

8.3.2. Two-stage reduction

Similarly to the singular value decomposition, we can take advantage of the
two-stage approach for the reduction to tridiagonal form. The two-stage
reduction is designed to increase the utilization of compute-intensive oper-
ations. Many algorithms have been investigated using this two-stage ap-
proach. The idea is to split the original one-stage approach into a compute-
intensive phase (first stage) and a memory-bound phase (second or ‘bulge
chasing’ stage). In this section we will cover the description for the sym-
metric case. The first stage reduces the original symmetric dense matrix
to a symmetric band form, while the second stage reduces from band to

86 A. ABDELFATTAH et al.

HReduction to tridiagonal OEigenvalue solver ®Compute Q

100%
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -

0% -

Figure 8.10. The percentage of the time spent in each phase of the eigensolver
using the classical one-stage approach for the tridiagonal reduction.

Second stage

First stage
Bulge chasing -

Figure 8.11. T'wo-stage technique for the reduction phase.

tridiagonal form, as depicted in Figure 8.11. The same algorithm used for
reducing the general matrix A to band form in the singular value decom-
position case (Section 8.2.2) can be adapted to the symmetric case, where
the symmetric matrix A is reduced to tridiagonal form.

First stage: compute-intensive and efficient kernels. The first stage applies
a sequence of block Householder transformations to reduce a symmetric
dense matrix to a symmetric band matrix A — Apanq- This stage uses
compute-intensive matrix-multiply kernels, eliminating the memory-bound
matrix—vector product in the one-stage panel factorization, and has been
shown to have a good data access pattern and large portion of Level 3 BLAS
operations (Dongarra et al. 1989, Gansterer et al. 1999, Haidar et al. 2014).
Given a dense n X n symmetric matrix A, the matrix is divided into nt = n/b
tiles of size nb.

ACCELERATED MULTICORE LINEAR ALGEBRA 87

Algorithm 10 First stage: reduction to symmetric band tridiagonal form
with Householder reflectors.
1 for step = 1, 2tont—1 do
2 DGEQRT(Astep+1,step)
3 // Left /right updates of a symmetric tile
4 DSYRFB(AStEp+1,StEp7 Astep-l—l,step-‘,—l)
5 for ¢ = step+ 2 tont do
6
7
8
9

// Right updates
DORMQR(Astep—I—l,stepa Ai,step+1)

end for
for k = step+ 2 to nt do
10 DTSQRT(Astep—I—I,stepu Ak,step)
11 for j = step+2tok—1do
12 // Left updates (transposed)
13 DTSMGR(A; srep1. Ak)
14 end for
15 for m = k+ 1 tont do
16 // Right updates
17 DTSMQR(A steps1, Akm)
18 end for
19 // Left/right updates on the diagonal symmetric structure
20 DTSMQRDIAG(Astep+1,step+1a Am,step+17 Am,m)
21 end for

22 end for

The algorithm proceeds tile by tile, performing a QR decomposition for
each tile to generate the Householder reflectors V' (i.e. the orthogonal trans-
formations) required to zero out elements below the bandwidth nb. Then
the generated block Householder reflectors are applied from the left and
right to the trailing symmetric matrix. The algorithm is described in Algo-
rithm 10.

Since the factorization consists of a QR factorization performed on a tile
of size nb x nb shifted by nb rows below the diagonal, this will remove
both the synchronization and the data dependency constraints seen using
the classical one-stage technique. In contrast to the classical approach, the
panel factorization by itself does not require any operation on the data of the
trailing matrix, making it an independent task. Moreover, we can factorize
the next panel once we have finished its update, without waiting for the
total trailing matrix update. As a result, this kind of technique removes the
bottlenecks of the classical approach: there are no Level 2 BLAS operations
concerning the trailing matrix and there is also no need to wait to finish the
update of the whole trailing matrix in order to start the next panel. Note

88 A. ABDELFATTAH et al.

sweep 1
IE.I E
lk.lk.l '
o
.lk.l. .
) l:p
"

Figure 8.12. T'wo-stage technique for the reduction phase.

that this technique is well suited for accelerators. Recent work can be found
in Haidar et al. (20135, 2014) and Solca et al. (2015).

Second stage: cache-friendly computational kernels. The band matrix Apang
is further reduced to the tridiagonal form 7" using the bulge chasing tech-
nique, similar to the one described in Section 8.2.2, but using kernels de-
signed for a symmetric case. This procedure annihilates the extra off-
diagonal elements by chasing the created fill-in elements down to the bottom
right side of the matrix using successive orthogonal similarity transforma-
tions. Each annihilation of the nj non-zero element below the off-diagonal
of the band matrix is called a sweep, as described in Figure 8.12. This
stage involves memory-bound operations and requires the band matrix to
be accessed from multiple disjoint locations. In other words, there is an
accumulation of substantial latency overhead each time different portions
of the matrix are loaded into cache memory, which is not compensated
for by the low execution rate of the actual computations (the so-called
surface-to-volume effect). To overcome these critical limitations, we used a
bulge chasing algorithm to use cache-friendly kernels, combined with fine-
grained memory-aware tasks, in an out-of-order scheduling technique, which
considerably enhances data locality. We refer the reader to Haidar et al.
(2011, 2014) for a detailed description of the technique.

8.3.8. The tridiagonal eigensolver
The tridiagonal eigensolver is used to compute eigenpairs of the tridiagonal
matrix:

T =2ZAZ7T, (8.8)

ACCELERATED MULTICORE LINEAR ALGEBRA 89

where Z is the matrix of orthogonal eigenvectors of T, and A is the diagonal
matrix encoding the eigenvalues. Four algorithms are available: QR itera-
tions, bisection and inverse iteration (BI), divide and conquer (D&C), and
multiple relatively robust representations (MRRR). The first two, QR and
BI, are presented in Demmel (1997), but a performance comparison made
by Demmel, Marques, Parlett and Vomel (2008b) compared LAPACK al-
gorithms and concluded that D&C and MRRR are the fastest available
solvers. However, while D&C requires a larger extra workspace, MRRR is
less accurate. Accuracy is a fundamental parameter, because the tridiag-
onal eigensolver is known to be the part of the overall symmetric eigensolver
where accuracy can be lost. D&C is more robust than MRRR, which can
fail to provide an accurate solution in some cases. In theory, MRRR is a
O(n?) algorithm, whereas D&C is between ©(n?) and ©(n?), depending on
the matrix properties. In many real-life applications, D&C is often less than
cubic, while MRRR seems to be slower than expected due to the number
of floating divisions and the cost of the iterative process. The main asset
of MRRR is that a subset computation is possible, reducing the complex-
ity to ©(nk) for computing k eigenpairs. Such an option was not included
within the classical D&C implementations, or it only reduced the cost of
the updating phase of the last step of the algorithm.

8.8.4. The eigenvector computation
After the reduction to condensed form, the eigensolver finds the eigenval-
ues A and eigenvectors Z of T. The eigenvalues are the same as for the
original matrix A. To find the eigenvectors of the original matrix A, the
eigenvectors Z of T need to be back-transformed by applying the same or-
thogonal matrices (e.g. @ for the one-stage approach or Q; and Q2 for the
two-stage approach) that were used in the reduction to condensed form. For
this purpose, the block Householder transformations @); = I — VZTZV;T are
used. For the one-stage approach, there is only one @ that has been used
in the reduction phase, and its multiplication by Z can be formed explicitly
using DORGTR; or we can multiply by @ in an implicit fashion using DLARFB
following the procedure described in Algorithm 7. In either case, apply-
ing (Q becomes a series of DGEMM operations. Since all of its computation
is based on Level 3 BLAS, the performance upper bound of this phase is
considered to be on a par with the performance of the Level 3 BLAS, which
is usually a large fraction of the machine’s peak, and — for this phase — is
considered to be a small percentage of the global time of the eigensolver.
Figure 8.10 illustrates the percentage of time occupied by the one-stage al-
gorithm’s three phases, and we can see that this phase consumes less than
10% of the total time.

Below, we discuss the application of the Householder reflectors generated
from the two stages of the reduction to tridiagonal form. The first stage

90 A. ABDELFATTAH et al.

-Q Time(MKL dsyevd) / Time(PLASMA dsyevd)

N
©
T
|

N DN
H O
T T
~
1
\
7’
7’
N
’
1

N
)
T
’
1
o
I

e 9o
o ®
T

|

0.4 =
0.2+ B

oLt I I I I I I I I I I I I I I
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k 32k

Matrix size

Figure 8.13. Speedup of our new two-stage implementation over the classic one-
stage approach when both eigenvalues and eigenvectors are computed on 28 Intel
Eb5-2697 cores.

reduces the original symmetric and/or Hermitian matrix A to a band mat-
rix by applying a two-sided transformation to A such that A = QA4,Q1.
Similarly, the second stage, called bulge chasing, reduces the band matrix B
to the tridiagonal form by applying the transformation from both the left
and right side of Ay such that A, = Q2TQ4. Thus, when the eigenvector
matrix X of A is requested, the eigenvector matrix Z that is produced by
the eigensolver needs to be updated from the left by the two Householder
reflectors generated during the reduction phase, according to the formula

X =0Q:1Q:Z =1 -\ - wmnviz, (8.9)

where (V1,T1) and (Va,Ts) represent the Householder reflectors generated
during the first and second reduction stages, respectively. The application
of the V5 reflectors is not straightforward, while the application of the V;
reflectors has to follow the tile fashion style. The same technique used for the
singular value decomposition is used here as well. Thus, Algorithms 8 and 9
describe the procedure of applying Q2 and @1, respectively. More details
of the optimized technique can be found elsewhere (Haidar et al. 2014b).
Both multiplications are based on Level 3 BLAS and are thus considered
to perform very well on recent hardware, which alleviates the extra cost of

ACCELERATED MULTICORE LINEAR ALGEBRA 91

8 T T T T T T T T T T T

7.5 -A - Time(MKL one-stage dsyevd novec) / Time(PLASMA two-stage dsyevd novec)

o
(3]
T

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k 32k

Matrix size
Figure 8.14. Speedup of our new two-stage implementation over the classic one-
stage approach when only eigenvalues are computed using 28 Intel Xeon E5-2697
cores.

the application of (2. The overall speedup and efficiency of this technique
is demonstrated in the experimental results section below.

8.3.5. Experimental results

This section presents the performance comparisons of our tile algorithm for
a two-stage symmetric eigenvalue solver against state-of-the-art numerical
linear algebra libraries. To verify our findings in practice, we have per-
formed the experiments on our two-socket multicore machine featuring a
14-core Intel Xeon E5-2697 processor in each socket running at 2.6 GHz,
with 128 GB of main memory and 35 MB Level 2 cache. Figure 8.13 il-
lustrates the speedup obtained by our two-stage approach over the classical
one-stage implementation. The speedup curve shows that our two-stage al-
gorithm outperforms the classical one-stage implementation by more than
2x when all eigenvalues and eigenvectors are needed.

When only the eigenvalues are needed, there is no extra cost related to
updating the vectors, and thus we can expect a large speedup similar to
that of the singular value decomposition. Figure 8.14 shows the obtained
speedup from our experiments for eigenvalues only. The speedup obtained
here is between 5.5x and 6x faster when using the two-stage approach. In

92 A. ABDELFATTAH et al.

other words, the speedup varies depending on the portion of eigenvectors
requested. For example, if 20% of the eigenvectors are needed, the last
merge of our implementation of the divide and conquer algorithm can be
modified to apply the update on only 20% of the vectors, thereby reducing
the cost of the eigensolver by about 50%. The back transformation cost will
be reduced by 80% for both the one-stage and two-stage approaches. The
observed speedup in our experiment is about 4x to 5x.

8.4. Non-symmetric eigenvalue problem

The non-symmetric eigenvalue problem revolves around finding scalar A
and vector x such that Ax = Az, where A is an n X n non-symmetric
matrix. In addition to this left eigenvector x, there is also the right eigen-
vector vy, such that y” A = \y”; in the symmetric case, these are identical.
As in the symmetric case, the solution proceeds in three phases (Golub and
Van Loan 1996). First, the matrix is reduced to upper Hessenberg form by
applying orthogonal @ matrices on the left and right, to form H = QT AQ;.
The second phase, QR iteration, is an iterative process that reduces the
Hessenberg matrix to upper triangular Schur form, S = QI HQ,. Being
based on similarity transformations, the eigenvalues of A are the same as
the eigenvalues of S, which are simply the diagonal elements of S. Fi-
nally, the third phase computes eigenvectors Z of the Schur form S and
back-transforms them to eigenvectors X of the original matrix A. The ei-
genvectors of A are related to the eigenvectors of S by multiplying with the
orthogonal matrices used in the Hessenberg reduction and QR iteration as
X =Q22.

It is helpful to analyse the performance and scalability of an existing im-
plementation in order to identify areas for improvement. A comparison of
the floating-point operations (flops) and time for the LAPACK implementa-
tion is presented in Figure 8.15. The first phase, Hessenberg reduction, takes
%n?’ flops, and is formulated (Bischof 1993, Bischof and Van Loan 1987) so
that %n?’ of these occur in efficient Level 3 BLAS matrix—matrix products
(GEMM), while the remaining %n?’ occur in memory-bound Level 2 BLAS
matrix—vector products (GEMV). Following the analysis in the symmetric
case, performance is limited by the Level 2 BLAS operations, with a max-
imum performance Pyax < 5FPgeny. There exists a two-stage implementation
that reduces the amount of GEMV operations (Karlsson and Kagstrém 2011).
However, a two-stage algorithm is more difficult than the symmetric prob-
lem. The first stage reduces to band Hessenberg, which still has O(n?)
entries, instead of a banded matrix with O(nyn) entries. This means that
the second stage reduction from band Hessenberg to Hessenberg still takes
O(n?) time, instead of O(nyn?) time as in the symmetric case. Here, we
concentrate on the classic one-stage algorithm. Asymptotically on 16 cores,

ACCELERATED MULTICORE LINEAR ALGEBRA 93

5000l back-transform
4500 || triangular solves
EES QR iteration
I Hessenberg

4000 [
3500
3000
2500
2000
1500
1000

500

Time (s)
operation count

1 2 4 816 1 2 4 816 1 2 4 816
Threads Threads Threads

n=12000 n=14000 n=16000

Figure 8.15. Execution time and operation count of LAPACK eigenvalue solver
(DGEEV), annotated with parallel speedup for 16 cores.

the Hessenberg reduction takes 20% of the total time. The Hessenberg
reduction is amenable to acceleration using a GPU or accelerator (Tomov,
Nath and Dongarra 2010a), achieving a 3x speedup over the 16-core CPU
version.

The second phase, QR iteration, takes O(n?) flops, but being an iterative
method, the exact count depends heavily on the convergence rate and tech-
niques such as aggressive early deflation (Braman, Byers and Mathias 2002a,
2002b). Estimates range up to 25n3 flops (Golub and Van Loan 1996), but
we found that the flops decreased as the matrix size increased, and have
measured it as low as L??ng flops for large matrices, making its operation
count similar to the Hessenberg reduction. QR iteration includes a mix-
ture of Level 1 BLAS for applying Givens rotations and Level 3 BLAS for
updating H and accumulating (2. Parallel versions also exist (Kagstrom,
Kressner and Shao 2012). While for small matrices the QR iteration can
take over 50% of the time, for large matrices this reduces to about 15% of
the time on 16 cores.

The third phase, eigenvalue computation, computes each eigenvector of
S by a triangular solve (LATRS), then back-transforms it to an eigenvector
of A with a matrix-vector product (GEMV). This phase takes 3n3 flops (3n?
in triangular solves, n® in back-transformation), which is the least number

94 A. ABDELFATTAH et al.

of operations of the three phases. However, due to a lack of parallelization
and involving only Level 2 BLAS operations, it has the lowest perform-
ance of the three phases in the LAPACK implementation. While the back-
transformation achieves up to 6x speedup with 16 cores, the specialized
LATRS solver is not parallelized at all, limiting the eigenvector computation
to 1.5x speedup, and the overall speedup to 3.7x on 16 cores, as seen in
Figure 8.15. Due to the smaller speedup compared to the Hessenberg and
QR iteration phases, its proportion increases to over 60% of the total time
for large matrices using 16 cores. Thus, despite having the fewest opera-
tions of the three phases, the computation of eigenvectors has become the
dominant cost and limited the overall parallel speedup of the solution of
the eigenvalue problem. A parallel version of the eigenvector computation
is available (Gates, Haidar and Dongarra 2014) that significantly improves
its performance.

Here we cover recent work on accelerating the Hessenberg reduction phase
using GPUs, improving the eigenvector computation phase by using Level 3
BLAS, and parallelizing the triangular solves with a task-based scheduler.
Combined, these improvements significantly increase the performance and
scalability of the overall eigenvalue problem.

8.4.1. Hessenberg reduction
Initially, the matrix A is reduced to an upper Hessenberg matrix H using an
orthogonal similarity transformation, H = Q{AQI. The similarity trans-
form preserves the eigenvalues, so A and H have the same eigenvalues, while
using orthogonal matrices ensures good stability. Using elementary trans-
formations based on an LU decomposition is also possible, which incurs half
the floating-point operations as orthogonal matrices, but at reduced stabil-
ity (Kabir, Haidar, Tomov and Dongarra 2015). The purpose of reducing
the matrix to Hessenberg form is to reduce the operations in the second
phase, QR iteration. From the Hessenberg form, only one sub-diagonal
needs to be eliminated via QR iteration to achieve triangular Schur form.

Algorithm 11 presents a high-level view of the Hessenberg reduction. The
reduction proceeds by introducing zeros below the sub-diagonal in each
column a; using a Householder transformation,

Hijy=1- Tj’l}jU]T.

As in the QR factorization in Section 5, instead of applying the Householder
updates one by one using inefficient Level 2 BLAS operations, a blocked
Householder transformation is used, where at step j,

T
Quyy =HuHep) - Hiy =1 -ViypT;V

ACCELERATED MULTICORE LINEAR ALGEBRA 95

Algorithm 11 Pseudocode for Hessenberg reduction. Input matrix A is
n x n, and ny columns are blocked together. Subscripts with parenthesis
refer to the matrix at that iteration; regular subscripts refer to the column
index or range of column indices.

1 fori=1,....,n—ny by ny do

2 // factor panel

3 for j=1,...,n do

4 (vj, 7j) = householder(a;4;_1)

5 yj = Avj

6 compute 7{;

7 if 7 < ny then

8 // update next column using (8.10)

9 airj = (I = Vip TV aiv; — Yin T AV Yies)
10 end if

11 end for

12 // update trailing matrix using (8.10)

13 Ajynym = ([= VTEVE) (A — YTV
14 end for

with

Wj) = [vl,...,vj},

7 - [Ti-n =TG- VG-
(4) 0 T '

The update to the trailing matrix of A is then

A H HyrH H
A= Q(AQy) = (I = Vi) T Vi) (A=Y T;)h Vi) (8.10)
where
Y = AVi).

While we delay updating the trailing matrix until accumulating a block
of np Householder transformations, we must immediately update the next
column of the panel with all previous transformations before we can compute
its Householder transformation. For column a1, this requires computing
column j + 1 of Qg)AQ(j). We can do this without computing the entire
product, but it does require computing y; = Av;.

This matrix—vector product Av; is a memory-bound, Level 2 BLAS oper-
ation that becomes a major bottleneck in the algorithm, limiting the max-
imum performance to Ppax < 5FPny. To achieve higher performance, we
utilize GPUs to accelerate both GEMV and GEMM operations. Because the
GEMV is memory-bound, it benefits from the increased memory bandwidth

96 A. ABDELFATTAH et al.

Algorithm 12 Pseudocode for GPU implementation of Hessenberg.

1 fori=1,...,n—ny by ny do

2 // factor panel

3 get panel A;;1y, from GPU

4 for j=1,...,n5 do

5 (vj, 7j) = householder(a;1 ;1)
6 send v; to GPU

7 y; = Av; on GPU

8 get y; from GPU

9 compute 7{;)

10 if 7 < ny then

11 // update next column using (8.10)

12 ai = (I = Vi TG Vi) aivs = Yo T AV dis)
13 end if

14 end for

15 // update trailing matrix using (8.10)

16 send T' to GPU

17 Ajnym = ([= VTEVE) (A — YTVH) on GPU
18 end for

available on the GPU, while the GEMM benefits from the high computational
rate of the GPU.

The GPU implementation is shown in Algorithm 12; differences from the
CPU-only algorithm occur in lines 3, 6, 7, 8, 16 and 17. The entire matrix is
stored on the GPU. The current panel is copied to the CPU to be factored
there. During the panel factorization, the vector v; is sent to the GPU,
where y; = Av; is computed, and the resulting y; sent back to the CPU.
After each panel factorization, the trailing matrix is updated on the GPU.

A multi-GPU implementation is also available. In this case, the matrix is
distributed in a one-dimensional block-cyclic fashion across the GPUs. The
GEMV is done independently on each GPU, with partial results sent to the
CPU where a final summation is done. For instance, to compute y = Av
using three GPUs,

U1
y= Av = [Al As Ag] v9 | = Ajvy + Asvg + Agvs.

U3

Each GPU computes its part, A;v;, which are then sent to the CPU to be
summed for the final result, y. After the panel factorization, the V., Y, and T
matrices are replicated on all the GPUs, then each GPU updates its portion
of the trailing matrix. Figure 8.16 shows the performance of the multi-GPU
version compared to Intel MKL running on two 8-core CPUs. A single

ACCELERATED MULTICORE LINEAR ALGEBRA 97

500
400 A— MAGMA, 3 GPUs
200 ¥—¥ MAGMA, 2 GPUs
g i - - GPUP,,, bound
g 500 B—8 MAGMA, 1 GPU
- = CPUP,, bound
Lool — MKL
0

5K 10K 15K 20K 25K 30K
Matrix size

Figure 8.16. Execution time of Hessenberg reduction (DGEHRD) using two 8-core
CPUs and up to three NVIDIA Kepler K40 GPUs. Dashed lines indicate perform-
ance bound, Ppax = 5FPgeny, for CPU and single GPU implementations.

GPU achieves a 3.3x speedup over the CPU-only version, while three GPUs
achieve up to a 9.2x speedup. This shows good parallel speedup, with three
GPUs being 2.8 faster than a single GPU. The Py < 5FPgmy bound is
also shown in Figure 8.16 for both CPU and GPU. The GPU GEMV achieves
45.6 Gflops, while the CPU GEMV achieves up to 14.7 Gflops. On the GPU,
the Hessenberg achieves 77% of the bound, while on the CPU, it achieves
72% of the bound.

8.4.2. Figenvector computation

When eigenvectors are desired, the third phase computes eigenvectors of the
triangular Schur form .5, then back-transforms them to eigenvectors of the
original matrix A. In LAPACK, this phase is implemented in the TREVC
(triangular eigenvector computation) routine. We will assume only right
eigenvectors are desired, but the computation of left eigenvectors is similar
and amenable to the same techniques as described here. After the Hessen-
berg and QR iteration phases, the diagonal entries of S are the eigenvalues
A of A. To determine the corresponding eigenvectors, we solve Szp = Agpzg
by considering the decomposition (Golub and Van Loan 1996)

S u Siz| |2 3
0 Mo o7 | 1] =X [1], (8.11)
0 0 Ss33) 10 0

which yields (S11 — \gl)2 = —u. Thus computing each eigenvector zp of

S involves a k — 1 x k — 1 triangular solve, for £ = 2,...,n. Each solve

98 A. ABDELFATTAH et al.

has a slightly different S matrix, with the diagonal modified by subtracting
Ax. The resulting eigenvector z; of S must then be back-transformed by
multiplying with the @ formed in the Hessenberg and QR iteration phases
to get the eigenvector x = Qz; of the original matrix A.

Note that if two eigenvalues, Ay and A; (k > j), are identical, then
S11 — Ak[is singular. More generally, S1; — Al can be badly conditioned.
Therefore, instead of using the standard BLAS triangular solver (TRSV), a
specialized triangular solver (LATRS) is used, which scales columns to pro-
tect against overflow, and can generate a consistent solution for a singular
matrix.

This method works in complex arithmetic, but the case in real arithmetic
is more complicated. For a real matrix A, the eigenvalues can still be com-
plex, coming in conjugate pairs, A and \,. The eigenvectors are likewise
conjugate pairs, z; and Zx. In real arithmetic, the closest that QR iteration
can come to triangular Schur form is quasi-triangular real Schur form, which
has a 2 x 2 diagonal block for each conjugate pair of eigenvalues. A special-
ized quasi-triangular solver is required, which factors each 2 x 2 diagonal
block, and protects against overflow and dealing with singular matrices. In
LAPACK this solver is implemented inline as part of the DTREVC routine.

8.4.8. Blocking back-transformation

Our first step to improve the eigenvector computation is to block the n GEMV
operations for the back-transformation into n/n;, GEMM operations, where n,
is the block size. This requires two n x n; workspaces: one for the vectors
2k, the second for the back-transformed vectors xj before copying to the
output V.

Pseudocode for the blocked back-transformation is shown in Algorithm 13
along with the parallel solver described in Section 8.4.4. For each block, we
loop over ny columns, performing a triangular solve for each column and
storing the resulting eigenvectors z; in workspace Z. After filling up ny
columns of Z, a single GEMM back-transforms all n; vectors, storing the
result in workspace Z. The vectors are then normalized and copied to V.
On input, the matrix V = @. Recall from equation (8.11) that the bottom
n — k rows of eigenvector zp are 0, so the last n — k columns of @ are not
needed for the GEMM. Therefore, we start from & = n and work down to
k = 1, writing each block of eigenvectors to V' over columns of @) after they
are no longer needed.

The real case is similar, but has the minor complication that complex
conjugate pairs of eigenvalues will generate conjugate pairs of eigenvectors,
zr = a + bi and zp = a — bi, which are stored as two columns, a and b, in
Z. When the first eigenvalue of each pair is encountered, both columns are
computed; then the next eigenvalue (its conjugate) is skipped. Once ny, — 1

ACCELERATED MULTICORE LINEAR ALGEBRA 99

Algorithm 13 Multithreaded complex eigenvector computation.

1 // Sisn xn upper triangular matrix.
2 // Vis n X n matrix; on input V' = @, on output V has eigenvectors.
3 // Z and Z are n x n; workspaces, n is column block size.
4 k=n
5 while k> 1 do
6 j=mnp
7 while j > 1 and £ > 1 do
8 Ak = Sk, k
9 enqueue LATRSD to solve
(Stk—1, 1h-1 — ML) Z1k—1, 5 = —S1k-1, &
10 Zen,;=11,0, ..., 0]%
11 j —=1 k —=1
12 end while
13 sync queue

14 m=k+mn,—j
15 for i =1 ton by [n/p] do

16 ip =min(i +ny — 1, n)

17 enqueue GEMM to multiply Zm'Q, j41iny = Vitig, 1im * Z1m, j+1im,
18 end for

19 sync queue

20 normalize vectors in Z and copy to Vi, k+1:k+n,,

21 end while

columns are processed, if the next eigenvector is complex it must be delayed
until the next block.

8.4.4. Multithreading triangular solver

After blocking the back-transform, the triangular solver remains a major
bottleneck because it is not parallelized. Recall that the triangular matrix
being solved is different for each eigenvector — the diagonal is modified by
subtracting A\;. This prevents blocking and solving multiple eigenvectors
together using a Level 3 BLAS DTRSM operation.

In the complex case, LAPACK’s ZTREVC uses a safe triangular solver,
ZLATRS. Unlike the standard ZTRSV BLAS routine, ZLATRS uses column scal-
ing to avoid numerical instability, and handles singular triangular matrices.
Therefore, to avoid jeopardizing the accuracy or stability of the eigensolver,
we continue to rely on ZLATRS instead of the optimized, multithreaded
ZTRSV. However, processing S column by column prevents parallelizing in-
dividual calls to ZLATRS, as is typically done for BLAS functions. Instead,
we observe that multiple triangular solves could occur in parallel. One
obstacle is that a different Ay is subtracted from the diagonal in each case,

100 A. ABDELFATTAH et al.

modifying S in memory. Our solution is to write a modified routine, ZLATRSD
(triangular solve with modified diagonal), which takes both the original un-
modified S1; and the A; to subtract from the diagonal. The subtraction is
done as the diagonal elements are used, without modifying S in memory.
This allows us to pass the same S to each ZLATRSD call and hence solve
multiple eigenvectors in parallel, one in each thread.

As previously mentioned, the real case requires a special quasi-triangular
solver to solve each 2 x 2 diagonal block. In the original LAPACK code,
this quasi-triangular solver is embedded in the DTREVC routine. To sup-
port multithreading, we refactor it into a new routine, DLAQTRSD, a quasi-
triangular solver with modified diagonal. Unlike the complex case, instead
of passing ;. separately, DLAQTRSD computes it directly from the diagonal
block of S. If Ay is real, DLAQTRSD computes a single real eigenvector. If Ay is
one of a complex conjugate pair, DLAQTRSD computes a complex eigenvector
as two real vectors.

To deal with multithreading, we use a thread pool design pattern. As
shown in Algorithm 13, the main thread inserts LATRSD tasks into a queue.
Worker threads pull tasks out of the queue and execute them. For this
application, there are no dependencies to be tracked between the triangular
solves. After a block of ny vectors has been computed, we back-transform
them with a GEMM. We could call a multithreaded GEMM, as available in MKL,
but to simplify thread management, we found it more suitable to use the
same thread pool for the GEMM as for LATRSD. For p threads, the GEMM is split
into p tasks, each task multiplying a single block row of) with Z. After
the GEMM, the next block of n; vectors is computed. Within each thread,
the BLAS calls are single-threaded.

8.4.5. Using accelerators

To further accelerate the eigenvector computation, we observe that the tri-
angular solves and the back-transformation GEMM can be done in parallel.
In particular, the GEMM can be done on a GPU while the CPU performs
the triangular solves. Data transfers can also be done asynchronously and
overlapped with the triangular solves. To facilitate this asynchronous com-
putation, we double-buffer the CPU workspace Z, using it to store results
from LATRSD, then swap with Z, which is used to send data to the GPU
while the next block of LATRSD solves are performed with Z. The difference
from Algorithm 13 is shown in Algorithm 14.

8.4.6. Results

We performed tests with two 8-core, 2.6 GHz Intel E5-2670 CPUs and
an 875 MHz NVIDIA K40 GPU, with Intel MKL 11.0.5 for optimized,
multithreaded BLAS. Matrices were double precision with uniform random
entries in (0,1). Inside our parallel TREVC, we launch p Pthreads and set

ACCELERATED MULTICORE LINEAR ALGEBRA 101

Algorithm 14 GPU accelerated back-transformation replaces lines 15—
20 of Algorithm 13. Also, V is sent asynchronously to dV at the start of
ZTREVC.

1 // dV is n x n workspace on GPU.

2 // dZ and dZ are n x n;, workspaces on GPU.
3 swap buffers Z and Z
4 async send Z to dZ on GPU
5 async GEMM le;Nn7 G+l = Cﬂ/vlzn7 1:m * le:m, j+1:n, ON GPU
6 async receive dZ to Vi.,, k41:k4n, on CPU
7 normalize vectors in V'
1 1 1 1 1 1 1 1 1 1 1 L
1600 - |EEE back-transform -
1400 -/|HE triangular solves B
1200 4 NI | QR iteration |
% 1000 - [Hesse;b;irg i
£ 800
" 600
400
200
0
n=12000 n=14000 n=16000
- O & @ O & @ - O & @
& & (;(g\ s & < é(;“ 8 & «F (;QQ\ s
N N N N N N
foc’ (@ \\6 (9(7 é(\ \\Q/ & ﬁé\ \\6
S O P N L
& ‘é'zf Q &K :éfo Q & &L Q
e o e
® i ®

Figure 8.17. Execution time of eigenvalue solver (DGEEV) using 16 cores, annotated
with cumulative speedup with each improvement.

MKL to be single-threaded; outside TREVC, MKL uses the same number of
threads, p.

Figure 8.17 shows the total eigenvalue problem (DGEEV) time, broken down
into four phases: Hessenberg reduction (lowest tier), QR iteration (second
tier), triangular solves (third tier), and back-transformation (top tier). The
triangular solves and back-transformation together form the eigenvector
computation. Columns are grouped by the matrix size. We compare results
to the LAPACK reference implementation in Intel MKL.

102 A. ABDELFATTAH et al.

14
12
V=—21Y% parallel triangular solves

Q 10 ¥= =¥ triangular solves (LAPACK)
K 8 - |B—@ block back-transform
Q0 6 & = = ﬁ B -l back-transform (LAPACK)
wo, S =# == = — ¢ =9 Hessenberg (LAPACK)

p) PR o ke KT T "f %= =% QR iteration (LAPACK)

E =¥ =¥ =y- - §- ¥~ ¥

2k 4k 6k 8k 10k 12k 14k 16k
Matrix size

Figure 8.18. Parallel speedup of individual phases, for p = 16 versus p = 1.

@—@ combined improvements
V=X parallel triangular solves
Bl block back-transform

—4@ GPU Hessenberg

Speedup over LAPACK

1 1 1 1 1 1 1

2k 4k 6k 8k 10k 12k 14k 16k
Matrix size

Figure 8.19. Overall improvement of eigenvalue solver (DGEEV) compared to
LAPACK, after various improvements, using p = 16 threads.

The improvement gained from accelerating the Hessenberg on a single
GPU is shown in the second column of each group in Figure 8.17. The
Hessenberg itself is up to 3.3 x faster, shown earlier in Figure 8.16. However,
it is only 20% of the total time, so the overall speedup of DGEEV is only 1.2x,
shown in Figure 8.17 and by the diamonds in Figure 8.19.

Blocking the back-transformation with a GEMM is shown in the third
column of each group in Figure 8.17. The GEMM itself is up to 14 x faster than
the non-blocked back-transformation using 16 threads. Further, the solid
line with squares in Figure 8.18 shows it has better parallel scaling, reach-
ing a speedup of 12x for 16 cores, compared to only 6x for the LAPACK
implementation. However, as the triangular solves are not yet parallelized,
the overall eigenvalue problem improvement is limited, being at most 1.6x
faster, as seen in Figure 8.17.

ACCELERATED MULTICORE LINEAR ALGEBRA 103

Parallelizing the triangular solves is the fourth column of each group in
Figure 8.17. With multiple threads, we see significant parallel speedup, up
to 12.8x for 16 threads, shown by the triangles in Figure 8.18. Combined
with the GPU-accelerated Hessenberg and the blocked back-transformation,
these three modifications significantly improve the solution of the overall
eigenvalue problem by up to 4x for 16 cores, shown by the circles in Fig-
ure 8.19, and annotated in Figure 8.17.

Thus, we see that different strategies are used to accelerate different por-
tions of the computation — a combination of GPU acceleration, blocking
into Level 3 BLAS operations, and parallelizing Level 2 BLAS operations.
Ignoring any one portion yields mediocre results, while addressing both the
Hessenberg reduction and the eigenvector computation phases yields sub-
stantial improvements. The bottleneck is now moved back to QR iteration,
which is natural as it has the most operations and its iterative nature makes
it the most complicated and difficult phase to parallelize.

9. Mixed precision algorithms

On modern architectures, single precision 32-bit floating-point arithmetic
(FP32) is usually twice as fast as double precision 64-bit floating-point arith-
metic (FP64). The reason for this is that the number of bytes moved through
the memory system is essentially halved. Indeed, on most current multicore
CPUs, high-end AMD GPUs (e.g. FirePro W9100), and Intel Xeon Phi,
the single precision peak is twice the double precision peak. On most high-
end NVIDIA GPUs (e.g. the GeForce GTX Titan Black) the ratio of single
precision peak versus double precision peak is 3x more, but can go up to
32x (e.g. on the Titan X) depending on the ratio of 32-bit to 64-bit CUDA
cores.

Single precision is not the best answer for all applications, however. For
example, several physics applications require 64-bit accuracy (double pre-
cision) to be maintained throughout the computation, and 32-bit accuracy
(single precision) is simply not an option. The obvious reason is that in
order for the application to give an accurate answer, it needs the highest
precision. Also, 64-bit accuracy enables most of the modern computational
methods to be more stable; therefore, in mission-critical applications, one
must use 64-bit accuracy to obtain an answer. However, as stated above,
the raw performance of 32-bit single precision is too tempting to ignore, and
here we present a methodology of how to perform the bulk of the operations
in 32-bit arithmetic, then postprocess the 32-bit solution by refining it into
a solution that is 64-bit accurate. We present this methodology in the con-
text of solving a system of linear equations, be it sparse or dense, symmetric
positive definite or non-symmetric, using either direct or iterative methods.

104 A. ABDELFATTAH et al.

We believe that the approach outlined below is quite general and should be
considered by application developers for their practical problems.

9.1. The idea behind mixed precision algorithms

Mixed precision algorithms stem from the observation that, in many cases,
a single precision solution of a problem can be refined to the point where
double precision accuracy is achieved. The refinement can be accomplished,
for instance, by means of the Newton’s algorithm (Ypma 1995) which com-
putes the zero of a function f(x) according to the iterative formula

Tn4+1 = Tn — f/(a:)
n

(9.1)

In general, we would compute a starting point and f’(x) in single preci-
sion arithmetic and the refinement process would be computed in double
precision arithmetic.

If the refinement process is cheaper than the initial computation of the
solution, then double precision accuracy can be achieved nearly at the same
speed as the single precision accuracy. The two following subsections de-
scribe how this concept can be applied to solvers of linear systems based on
direct and iterative methods, respectively.

9.1.1. Direct methods

A common approach to the solution of linear systems, either dense or sparse,
is to perform the LU factorization of the coefficient matrix using Gaussian
elimination. First, the coefficient matrix A is factored into the product of
a lower triangular matrix L and an upper triangular matrix U. Partial row
pivoting is, in general, used to improve numerical stability resulting in a
factorization PA = LU, where P is a permutation matrix. The solution for
the system is achieved by first solving Ly = Pb (forward substitution) and
then solving Uz = y (backward substitution). Due to round-off errors, the
computed solution x carries a numerical error magnified by the condition
number of the coefficient matrix A.

In order to improve the computed solution, we can apply an iterative pro-
cess which produces a correction to the computed solution at each iteration,
which then yields the method that is commonly known as the iterative re-
finement algorithm. As Demmel (1997) points out, the non-linearity of the
round-off errors makes iterative refinement equivalent to Newton’s method
applied to the function f(x) = b— Azx. Provided that the system is not too
ill-conditioned, the algorithm produces a solution correct for the working
precision. Iterative refinement in double-double precision is a fairly well-
understood concept and was analysed by Wilkinson (1963), Moler (1967)
and Stewart (1973).

ACCELERATED MULTICORE LINEAR ALGEBRA 105

Algorithm 15 Mixed precision, iterative refinement for direct solvers.

| LU« PA (c5)

2 solve Ly = Pb (es)

3 solve Uzg =y (€s)
dok=1,2,...

TE < b— Al‘k,1 (Ed

solve Ly = Pry (&5

solve Uz =y (s

Tp ¢ Tp—1 + 2k (Ed

check convergence
done

o — —

N O Ot

The algorithm can be modified to use a mixed precision approach. The
factorization PA = LU, the solution of the triangular systems Ly = Pb,
and Uz = y are computed using single precision arithmetic. The resid-
ual calculation and the update of the solution are computed using double
precision arithmetic and the original double precision coeficients: see Algo-
rithm 15. The most computationally expensive operation, the factorization
of the coefficient matrix A, is performed using single precision arithmetic
and takes advantage of its higher speed. The only operations that must be
executed in double precision are the residual calculation and the update of
the solution (denoted by e4 in Algorithm 15). We observe that the only
operation with computational complexity of O(n?) is handled in single pre-
cision, while all operations performed in double precision are of at most
O(n?) complexity. The coefficient matrix A is converted to single precision
for the LU factorization and the resulting factors are stored in single pre-
cision while the initial coefficient matrix A needs to be kept in memory.
Therefore, one drawback of the following approach is that it uses 50% more
memory than the standard double precision algorithm.

The method in Algorithm 15 can offer significant improvements for the
solution of a sparse linear system in many cases.

1 Single precision computation is significantly faster than double preci-
sion computation.

2 The iterative refinement procedure converges in a small number of
steps.

3 The cost of each iteration is small compared to the cost of the system
factorization. If the cost of each iteration is too high, then a low
number of iterations will result in a performance loss with respect to the
full double precision solver. In the sparse case, for a fixed matrix size,
both the cost of the system factorization and the cost of the iterative

106 A. ABDELFATTAH et al.

refinement step may vary substantially depending on the number of
non-zeros and the matrix sparsity structure. In the dense case, results
are more predictable.

Note that the choice of the stopping criterion in the iterative refinement
process is critical. Formulas for the error computed at each step of Algo-
rithm 15 can be obtained, for instance, in Oettli and Prager (1964) and
Demmel et al. (2006).

9.1.2. Iterative methods
Direct methods are usually a very robust tool for the solution of sparse lin-
ear systems. However, they suffer from fill-in, which results in high memory
requirements, long execution time, and non-optimal scalability in paral-
lel environments. To overcome these limitations, various pivot reorder-
ing techniques are commonly applied to minimize the amount of gener-
ated fill-in and to enable better exploitation of parallelism. Still, there
are cases where direct methods pose too high a memory requirement or
deliver poor performance. Iterative methods are a valid alternative even
though they are less robust and have less predictable behaviour. Iterat-
ive methods do not require more memory than is needed for the original
coefficient matrix. Furthermore, time to solution can be better than that of
direct methods if convergence is achieved in relatively few iterations (Barrett
et al. 1994a, Saad 2003).

In the context of iterative methods, the refinement method outlined in
Algorithm 15 can be represented as

Tit1 = T; + M(b - Awl), (92)

where M is (LU)~!P. Note that in this case M approximates A~!, which
makes it known, in the area of linear algebra and numerical analysis, as
a preconditioner of A. The preconditioner should approximate A~!, and
the quality of the approximation determines the convergence properties of
the iterative solver. In general, a preconditioner is intended to improve
the robustness and the efficiency of iterative methods. Note that (9.2) can
also be interpreted as a Richardson method’s iteration in solving M Az =
Mb, which is called left preconditioning. An alternative is to use right
preconditioning, whereby the original problem Ax = b is transformed into
a problem of solving

AMu=05b, x=Mu

iteratively. Later on, we will use right preconditioning for mixed precision
iterative methods.

M needs to be easy to compute, apply, and store to guarantee the overall
efficiency. Note that these requirements were addressed in the mixed pre-
cision direct methods above by replacing M (coming from LU factorization

ACCELERATED MULTICORE LINEAR ALGEBRA 107

of A followed by matrix inversion) with its single precision representation
so that arithmetic operations can be performed more efficiently on it. Here,
however, we go two steps further. We not only replace M with an inner loop,
which is an incomplete iterative solver working in single precision arithmetic
(Turner and Walker 1992), but we also replace the outer loop with a more
sophisticated iterative method (e.g. based on Krylov subspace).

Note that replacing M with an iterative method leads to nesting of two
iterative methods. Variations of this type of nesting, also known in the
literature as an inner—outer iteration, have been studied, both theoretically
and computationally (Golub and Ye 2000, Saad 1993, Simoncini and Szyld
2003, Axelsson and Vassilevski 1991, Notay 2000, Vuik 1995, van den Eshof,
Sleijpen and van Gijzen 2005). The general appeal of these methods is that
the computational speedup hinges on the inner solver’s ability to use an
approximation of the original matrix A that is fast to apply. In our case, we
use single precision matrix—vector products as a fast approximation of the
double precision operator in the inner iterative solver. Moreover, even if no
faster matrix—vector product is available, speedup can often be observed due
to improved convergence (see e.g. Simoncini and Szyld 2003, who explain
the possible benefits of FGMRES-GMRES over restarted GMRES).

To illustrate the above concepts, we demonstrate an inner—outer non-
symmetric iterative solver in mixed precision. The solver is based on re-
started generalized minimal residual (GMRES). In particular, consider Al-
gorithm 16, where the outer loop uses flexible GMRES (FGMRES: Saad
1993, 2003) and the inner loop uses GMRES in single precision arithmetic
(GMRESgp). FGMRES, being a minor modification of standard GMRES,
is meant to accommodate non-constant preconditioners. Note that in our
case this non-constant preconditioner is GMRESgp. The resulting method
is denoted by FGMRES (mou)-GMRESgp (miy), where my, is the restart for
the inner loop and mey for the outer FGMRES. Algorithm 16 checks for
convergence at every meyy outer iterations, but an actual implementation
can check for convergence at every inner iteration with simple tricks, for
almost no computational cost.

The potential benefits of FGMRES compared to GMRES are becom-
ing better understood (Simoncini and Szyld 2003). Numerical experiments
confirm improvements in speed, robustness, and sometimes memory require-
ments for these methods (Buttari et al. 2008a, Baboulin et al. 2009). The
memory requirements for the method are the matrix A in CRS format, the
non-zero matrix coefficients in single precision, 2 mgqy; number of vectors in
double precision, and m;, number of vectors in single precision.

The generalized conjugate residuals (GCR) method (Vuik 1995, van der
Vorst and Vuik 1994) is a possible replacement for FGMRES as the outer
iterative solver. It is not yet well understood whether one should choose
GCR or FGMRES.

108 A. ABDELFATTAH et al.

Algorithm 16 Mixed precision FGMRES (mgy;)-GMRESgp (miy).

1 fori=0,1,...do

2 r=>b— Ax; (€q)

3 B=hio=|rl2 (€a)

4 check convergence and exit if done

5 for k=1,...,moy do

6 v =7/ hp g1 (€a)

7 Perform one cycle of GMRESgp(m;y,) in order to
(approximately) solve Az = vy (initial guess 2z = 0) (es)

8 r=Az (eq)

9 for j=1,...,k do

10 thg = T‘ij (5(1)

11 r=1r—"hjLv; (€q)

12 end for

13 Pk = (|72 (€q)

14 end for

15 Define Zk = [21, ceey Zk], Hk = {hi,j}1§i§k+1,1§j§k (€d)

16 Find yg, the vector of size k, that minimizes ||Se; — Hy ykll2 (£4)

17 X1 =T+ Ly Yk (€a)

18 end for

As in the dense case, the choice of the stopping criterion in the iterative
refinement process is critical. In the sparse case, formulas for the errors can
be computed following the work of Arioli, Demmel and Duff (1989).

9.2. Performance results

Based on backward stability analysis, the solution x can be considered as
accurate as the double precision one when

1o = Azl < [lz]l2 - [[A]l2- € - V/m,

where || - ||2 is the spectral norm.

9.2.1. Direct methods

The mixed precision iterative refinement solvers for dense matrices are avail-
able in LAPACK (Anderson et al. 1999). For the non-symmetric case, step 1
in Algorithm 15 is implemented by means of the SGETRF subroutine, steps
2,3 and 5,6 with the SGETRS subroutine, step 4 with the DGEMM subroutine,
and step 7 with the DAXPY subroutine. For the symmetric case the SGETRF,
SGETRS, and DGEMM subroutines were replaced by the SPOTRF, SPOTRS, and
DSYMM subroutines, respectively. Further details of these implementations
can be found in Langou et al. (2006) and Buttari et al. (2007).

ACCELERATED MULTICORE LINEAR ALGEBRA 109

5000
4500
4000
-
3500 CPOSV
w -#ZCPOSV
g 3000 -=-ZPOSV
=
2500
O 26 x
2000
1 GPU TITAN X (3,072 CUDA cores @ 1.076 GHz)
500 ZIC GEMM peak ~ 190/ 5,600 Gflop/s; Maxwell
1000 CPU Intel Xeon X5660@2.80GHz (2 x 6 cores)
500
0 | 2—= i i L i il
2500 5000 7500 10000 12500 15000 17500 20000
Matrix size

Figure 9.1. Mixed precision, iterative refinement method from MAGMA 1.6.2 for
the solution of dense linear systems on the NVIDIA’s TITAN X GPU.

As already mentioned, iterative refinement solvers require 1.5x as much
memory as a regular double precision solver, because the mixed precision
iterative refinement solvers need to store both the single precision and the
double precision versions of the coefficient matrix at the same time. This
applies to both dense and sparse matrices.

Numerical results show that on older single-core architectures — such as
the AMD Opteron, Intel Woodcrest, or IBM PowerPC — the mixed precision
iterative solver could provide a speedup of up to 1.8 for the non-symmetric
solver and 1.5x for the symmetric solver for sufficiently large problem sizes
(Baboulin et al. 2009). For small problem sizes, the cost of even a few iter-
ative refinement iterations is high compared to the cost of the factorization,
and thus the mixed precision iterative solver is less efficient than the double
precision solver (Baboulin et al. 2009).

The mixed precision iterative refinement solvers were ported and optim-
ized for multicore architectures in the PLASMA library. On the STI Cell
BE architecture, for example, where the peak for single precision operations
was 14x higher than the peak for double precision operations, the mixed
precision solver performed up to 7x faster than the double precision peak
in the non-symmetric case and 11x faster for the symmetric positive defin-
ite case. Implementation details for this case can be found in Kurzak and
Dongarra (2007) and Kurzak, Buttari and Dongarra (2008).

Parallel implementations of Algorithm 15 have been available for GPUs
since MAGMA’s 0.2 release (Tomov, Nath, Du and Dongarra 2009). Fig-
ure 9.1 illustrates the performance of MAGMA 1.6.2 on a Titan X GPU.

110 A. ABDELFATTAH et al.

Table 9.1. Performance improvements for direct sparse methods when going from
a full double precision solve (reference time) to a mixed precision solve.

Matrix number

1 2 3 4) 6

AMD Opteron 246 1.827 1.783 1.580 1.858 1.846 1.611
IBM PowerPC 970 1.393 1.321 1.217 1.859 1.801 1.463
Intel Xeon 5100 1.799 1.630 1.554 1.768 1.728 1.524

Due to the 32x difference between the speed of FP32 and FP64 on this
GPU, the mixed precision solver performs up to 26 x faster than the double
precision peak. Implementation details can be obtained from the MAGMA
sources.® Results on older GPUs, including the use of multiple GPUs, can
be found in Tomov, Nath, Ltaief and Dongarra (20100).

For sparse matrices, the methodology can be applied using sparse dir-
ect methods: with either multifrontal (Duff and Reid 1983) or supernodal
(Ashcraft et al. 1987) factorization approaches. For results on supernodal
solvers see Buttari et al. (2008a). For multifrontal solvers, there are a num-
ber of freely available packages. The use of MUMPS (Amestoy, Duff and
L’Excellent 2000, Amestoy, Duff, L'Excellent and Koster 2001, Amestoy,
Guermouche, L’Excellent and Pralet 2006), for example, comprises three
separate steps.

1 System analysis. In this phase the system sparsity structure is analysed
in order to estimate the element fill-in, which provides an estimate of
the memory that will be allocated in the following steps. Also, pivoting
is performed based on the structure of A + AT, ignoring numerical
values. Only integer operations are performed at this step.

2 Matrixz factorization. In this phase the PA = LU factorization is
performed. Computationally, this is the most expensive step of the
system solution.

3 System solution. The system is solved in two steps, Ly = Pb and
Uz =y.

The first and second phases correspond to step 1 in Algorithm 15, while the
third phase corresponds to steps 2,3 and 5, 6.

Table 9.1 shows the speedup of the mixed precision iterative refinement
approach over the double precision approach for sparse direct methods,
using the matrices described in Table 9.2.

5 http://icl.cs.utk.edu/magma/

ACCELERATED MULTICORE LINEAR ALGEBRA 111

Table 9.2. Test matrices for sparse mixed precision, iterative refinement solution
methods.

No. Matrix Size Non-zeros Symm. Pos. def. Cond.
1 Si0 33401 1317655 yes no 0(10%)
2 Lin 25600 1766400 yes no 0(10%)
3 c-71 76638 859554 yes no 0(10)
4 cage-11 39082 559722 no no 0(1)

5 raefsky3 21200 1488768 no no 0(10)
6 poisson3Db 85623 2374949 no no 0(10%)

GMRES SP-DP/DP-DP

T T T T T T
o5l I |ntel Woodcrest 3.0 GHz)
. [AMD Opteron 246 2.0 GHz
[—11BM PowerPC 970 2.5 GHz
2r : : ST : : : §
a _
S5t — .
[0
[0 —
[oR —
%)
1
0.5 1
0

1 2 3 4 5 6
Matrix number

Figure 9.2. Mixed precision iterative refinement with FGMRES-GMRESgp from
Algorithm 16 versus FGMRES-GMRESpp.

9.2.2. Iterative methods
Similar to the case of sparse direct solvers, we demonstrate the numerical
performance of Algorithm 16 on the matrices from Table 9.2.

Figure 9.2 shows the performance ratio of the mixed precision inner—
outer FGMRES-GMRESgp versus the full double precision inner—outer
FGMRES-GMRESpp. In other words, we compare two inner—outer

112 A. ABDELFATTAH et al.

algorithms that are virtually the same. The only difference is that their
inner loop’s incomplete solvers are performed in single and double precision
arithmetic.

For further details see Baboulin et al. (2009), which includes an exper-
iment showing that inner—outer-type iterative methods may be very com-
petitive compared to their original counterparts.

9.3. Numerical remarks

Following the work of Skeel (1980), Higham (2002) gives error bounds for
the single and double precision iterative refinement algorithms when the
entire algorithm is implemented with the same precision (single or double,
respectively). Higham also gives error bounds in single precision arithmetic,
with refinement performed in double precision arithmetic (Higham 2002).
The error analysis in double precision, for our mixed precision algorithm
(Algorithm 15), is given by Langou et al. (2006). Arioli and Duff (2008)
gives the error analysis for a mixed precision algorithm based on a double
precision FGMRES preconditioned by a single precision LU factorization.
These error bounds show that mixed precision iterative refinement will work
as long as the condition number of the coefficient matrix is smaller than the
inverse of the lower precision used. For practical reasons, we need to resort
to the standard double precision solver in the cases when the condition
number of the coefficient matrix is larger than the inverse of the lower
precision used.

In Figure 9.3, we show the number of iterations needed for our mixed
precision method to converge to better accuracy than the associated double
precision solve. The number of iterations is shown as a function of the
condition number of the coefficient matrix (k) in the context of a direct
dense non-symmetric solve. For each condition number, we have taken 200
random matrices of size 200 x 200 with a prescribed condition number, and
we report the mean number of iterations until convergence. The maximum
number of iterations allowed was set to 30, so that 30 means failure to
converge (as opposed to convergence in 30 iterations). Datta (1995) has
conjectured that the number of iterations necessary for convergence was

given by

where €4 is the machine epsilon in double precision.
We can generalize this formula in the context of our mixed precision

approach:

ACCELERATED MULTICORE LINEAR ALGEBRA 113

35 T T T T

30

201

151

No. of iterations of iterative refinement

10° 10° 10 10° 10
Condition number of the coefficient matrix

10

Figure 9.3. Number of iterations needed for our mixed precision method (to con-
verge to an accuracy better than the associated double precision solve) as a function
of the condition number of the coefficient matrix, in the context of direct dense
non-symmetric solves.

where g, is the machine epsilon in single precision.

When ke, is above 1, the formula is no longer valid. This is characterized
in practice by an infinite number of iterations, that is, lack of convergence
of the method.

9.4. FExtension to quadruple precision

For applications where double precision arithmetic is not sufficient, the
mixed precision iterative refinement technique can be extended naturally
to quadruple precision. Quadruple precision is almost always implemen-
ted in software by a variety of techniques (e.g., through language support,
double—double arithmetic, or modelled through general arbitrary precision
arithmetic libraries).

To get a BLAS in quadruple precision, one solution is to use language
support (e.g. the quadruple precision REAL*16 defined in Fortran), and
compile a reference BLAS for REAL*16 values. Although this is a working
solution, since the quadruple precision is implemented in software, perform-
ance is much slower than the performance of FP32 computations. This
results in large speedups reported by the mixed precision iterative refine-

114 A. ABDELFATTAH et al.

ment solvers. For example, speedups can be between 10x for a matrix of
size 100 or close to 100x for a matrix of size 1000 (Baboulin et al. 2009).

Another common technique is to use double-double arithmetic, where a
double-double value d is represented as the sum of two double precision
values, each supplying half of the significant digits of d. Thus, arithmetic
using double—double representations can be reduced to double precision op-
erations, which is hardware-supported, leading to implementations that can
be substantially faster than language-supported or the more general arbit-
rary precision arithmetic techniques. A drawback is that the double-double
technique does not implement IEEE quadruple precision.

9.5. Extension to other algorithms

Mixed precision algorithms can easily provide substantial speedup for very
little code effort by mainly taking into account existing hardware properties.

We have shown how to derive mixed precision versions of a variety of
algorithms for solving general linear systems of equations. In the context of
overdetermined least-squares problems, the iterative refinement technique
can be applied to the augmented system (where both the solution and the
residual are refined, as described in Demmel, Hida, Li and Riedy 2007), to
the QR factorization, to the semi-normal equations, or to the normal equa-
tions (Bjorck 1996). Iterative refinement can also be applied for eigenvalue
computation (Dongarra, Moler and Wilkinson 1983) and for singular value
computation (Dongarra 1983).

Recently, we developed an innovative mixed precision QR for tall-and-
skinny matrices (Yamazaki, Tomov, Dong and Dongarra 2014) that uses
higher precision at critical parts of the algorithm, resulting in increased
numerical stability and several times speedup over the standard algorithms
(e.g. CGS, MGS, or Householder QR factorizations). In particular, the
algorithm starts from a Cholesky QR algorithm, which is known to be fast
(expressed as Level 3 BLAS) but numerically unstable, as the computation
goes through normal equations. However, computing the normal equations
and other critical parts of the algorithm in double—double precision is shown
to be stable, while preserving a performance characteristic of Level 3 BLAS
operations (Yamazaki, Tomov and Dongarra 2015).

We hope the work outlined here will encourage scientists to extend this
approach to their own applications.

10. Batched operations

Improved data re-use is what drives the design of algorithms to work well
on small problems, which, in the end, delivers higher performance. When
working on small problems it is possible to improve the re-use, since as the
input data gets loaded into fast memory, it can presumably be used many

ACCELERATED MULTICORE LINEAR ALGEBRA 115

times until completion of the task. Many numerical libraries and applica-
tions already use this functionality, but it needs to be further developed.
Examples of this trend include the tile algorithms from the area of dense
linear algebra (Agullo et al. 2009a), various register and cache blocking
techniques for sparse computations (Im, Yelick and Vuduc 2004), sparse
direct multifrontal solvers (Yeralan, Davis and Ranka 2013), high-order
FEM (Dong et al. 2014), and numerous applications including astrophysics
(Messer, Harris, Parete-Koon and Chertkow 2012), hydrodynamics (Dong
et al. 2014), image processing, and signal processing (Anderson, Sheffield
and Keutzer 2012).

The intention of batched routines is to solve a set of independent problems
in parallel. When the matrices are large enough to fully load the device with
work, there is no need for batched routines: the set of independent problems
can be solved in serial as a sequence of problems. Moreover, it is preferred
to solve it in serial, and not in batched fashion, to better enforce locality
of data and increase cache re-use. However, when matrices are small (e.g.
matrices of size less than or equal to 512), the amount of work needed to
perform the factorization cannot saturate the device (i.e. CPU or GPU),
and thus there is a need for batched routines.

The lack of linear algebra software for small problems is especially notice-
able for GPUs. The development for CPUs, as pointed out in Sections 10.1
and 10.3, can be done easily using existing software infrastructure. On the
other hand, GPUs, due to their throughput-oriented design, are efficient
for large data parallel computations, and have therefore often been used in
combination with CPUs, where the CPU handles tasks that are small and
difficult to parallelize. The need to overcome the challenges of solving small
problems on GPUs is also related to the GPU’s energy efficiency, which is
often 4x to 5x better than that of multicore CPUs. To take advantage
of this energy efficiency, codes ported to GPUs must also exhibit high ef-
ficiency. The main goal in this section is to develop GPU algorithms and
their implementations on small problems in order to outperform multicore
CPUs in raw performance and energy efficiency. In particular, we target the
main one-sided factorizations — LU, QR, and Cholesky — for a set of small
dense matrices of the same size.

Figure 10.1 gives a schematic view of the batched problem considered.
Basic block algorithms, like the ones in LAPACK (Anderson et al. 1999),
factorize a block of columns at step i, denoted by panel P;, and then apply
the transformations accumulated in the panel factorization to the trailing
submatrix A;.

Interleaved with the algorithmic work are questions on what programming
and execution model is best for small problems, how to offload work to the
GPUs, and what, if any, should be the interaction with the CPUs. The
offload-based execution model and the accompanying terms host and device

116 A. ABDELFATTAH et al.

Cholesky LU QR

DPOTRF(A(M) — LLT DGETRF(AM) — P~'LU DGEQRK(AM) — QR
DPOTRF(A®) — LLT DGETRF(A®) — P~'LU DGEQRK(A®) — QR

DPOTRF(A®) — LL”T DGETRF(A®) — P~'LU DGEQRK(A®)) — QR

Figure 10.1. Schematic view of a batched one-sided factorization problem for a set
of k dense matrices.

have been established by the directive-based programming standards: Open-
ACCT” and OpenMP 4.0.% While these specifications are host-centric, in the
context of dense linear algebra computation, we recognize three distinctly
different modes of operation: hybrid, native, and batched execution. The
first employs both the host CPU and the device accelerator, whether a
GPU or an Intel coprocessor, that cooperatively execute on a particular
algorithm. The second offloads the execution to the accelerator completely.
The third is the focus of this section, and involves execution of a multitude
of small problems on the accelerator while the host CPU only sends the
input data and receives the computed result in a pipeline fashion, which
alleviates the overheads of limited PCle bandwidth and comparatively long
transfer latency.

10.1. Euxisting solutions for batched factorizations

Small problems can be solved efficiently on a single CPU core (e.g., using
vendor-supplied libraries such as Intel’s Math Kernel Library? or AMD’s
Core Math Library!'?), because the CPU’s memory hierarchy would sup-
port ‘natural’ data re-use (sufficiently small problems can fit into small fast
memory). Aside from memory re-use, to speed up the computation further,
vectorization utilizing SIMD supplementary processor instructions can be
added either explicitly, as in Intel’s Pentium III Processor Small Matrix
Library,'! or implicitly through the vectorization in BLAS. Batched factor-
izations can then be efficiently computed for multicore CPUs by having a
single core factorize a single problem at a time (see Section 10.3). However,
as we show, the energy consumption is higher in this scenario than when
using the GPU-based factorizations.

7 OpenACC™ Application Programming Interface, version 1.0.

8 OpenMP Application Program Interface, version 4.0.

9 http://software.intel.com /intel-mkl/

10 http://developer.amd.com /tools-and-sdks/cpu-development /amd-core-math-library-acml
1 www.intel.com/design /pentiumiii /sml/

ACCELERATED MULTICORE LINEAR ALGEBRA 117

For GPU architectures, prior work has concentrated on achieving high
performance for large problems through hybrid algorithms (Tomov et al.
2010b). Motivation came from the fact that the GPU’s computing power
cannot be used on panel factorizations as efficiently as on trailing matrix
updates (Volkov and Demmel 2008). As a result, various hybrid algorithms
were developed where panels are factorized on the CPU while the GPU is
used for trailing matrix updates (mostly GEMMs: Agullo et al. 2010, Dongarra
et al. 2014). For sufficiently large problems, the panel factorizations and
associated CPU-GPU data transfers can be overlapped with GPU work.
For small problems, however, this is not possible, and our experience has
shown that hybrid algorithms would not be as efficient as they are for large
problems.

Indeed, targeting very small problems (up to 128), Villa et al. (Villa, Fat-
ica, Gawande and Tumeo 2013a, Villa, Gawande and Tumeo 2013b) obtained
good results for batched LU developed entirely for GPU execution, where a
single CUDA thread, or a single thread block, was used to solve one system
at a time. Similar techniques, including the use of a single CUDA thread
warp for single factorization, were investigated by Wainwright and Sweden
(2013) for LU with full pivoting on matrices of size up to 32. Although the
problems considered were often small enough to fit into the GPU’s shared
memory (e.g. 48 KB on a K40 GPU) and thus benefit from data re-use (n?
data for %n?’ flops for LU), the results showed that the performance in these
approaches, up to about 20 Gflops in double precision, did not exceed the
maximum performance due to memory-bound limitations (e.g. 46 Gflops
on a K40 GPU for DGEMV’s 2n? flops on n? data; see also the performance
analysis in Section 10.6.2).

This section introduces a different approach based on batched BLAS, plus
some batched-specific algorithmic improvements, that — performance-wise
— exceed the memory-bound limitations mentioned above. A batched LU
based on batched BLAS was also developed recently and released through
cuBLAS," but this batched LU achieves lower performance compared to
our approach when one factors in the algorithmic improvements.

10.2. Algorithmic background

We present a brief overview of the linear algebra aspects for development
of either Cholesky, Gauss, or the Householder QR factorizations based on
block outer-product updates of the trailing matrix. Conceptually, one-sided
factorization maps a matrix A into a product of matrices X and Y:

1A A X1 X2 Yii1 Yo
7 [Am A22} "~ [Xm X22:| X [Ym Y22}

12 https://developer.nvidia.com/cublas

118 A. ABDELFATTAH et al.

Table 10.1. Panel factorization and trailing matrix update routines.

Cholesky Householder Gauss

PanelFactorize xPOTF2 xGEQF2 xGETF2
xTRSM
xSYRK2 xLARFB xLASWP
TrailingMatrixUpdate xGEMM xTRSM
xGEMM

Algorithmically, this corresponds to a sequence of in-place transforma-
tions of A, whose storage is overwritten with the entries of matrices X and
Y (Pj; indicates currently factorized panels):

AD A9 AT [y AQ A
LI R P
A Al Ag] e AR Af)
XY Yo Y3 XY Y2 Y3

— X21 ASQ) Ag? — X21 P22 Aéé) —
Xo1 Al Ay Xo1 Pr Ay
X}/il }/i2 Y13 XY11 Ylg Y13

— | Xor XYoo Yoz | = | Xo1 Xoo Yo3| —
X31 X32 Ai(’>23) X31 X32 Ps3

XY Yo Yi3
— | Xo1 XYoo Y23 — [XY],
X311 X3 XVs3

where XYj; is a compact representation of both X;; and Y;; in the space
originally occupied by A;;.

There are two distinct phases in each step of the transformation from [A]
to [XY7]: panel factorization (P) and trailing matrix update A®) — AG+D,
Implementation of these two phases leads to a straightforward iterative
scheme shown in Algorithm 17.

Algorithm 17 is called a block algorithm since every panel P is of size nb,
which allows the trailing matrix update to use the Level 3 BLAS routines.
Note that if nb = 1, the algorithm falls back to the standard algorithm
introduced by LINPACK in the 1980s. The factorization of each panel is
accomplished by a non-blocked routine. Table 10.1 shows the BLAS and
LAPACK routines that should be substituted for the generic routines named
in the algorithm.

ACCELERATED MULTICORE LINEAR ALGEBRA 119

Algorithm 17 Two-phase implementation of a one-sided factorization.
for P, € {P,,P,,...,P,} do

PanelFactorize(P;)

TrailingMatrixUpdate(A®)
end

N R

Algorithm 18 Look-ahead of depth 1 for the two-phase factorization.

1 for P, e {P,P,,...,P,} do

2 CPU: PanelFactorize(F;)

3 GPU: TrailingMatrixUpdate of only next panel of (A®) which is P,)

4 CPU and GPU work in parallel: CPU goes to the next loop while
GPU continues the update

5 GPU: continue the TrailingMatrixUpdate of the remaining (A¢~1)
using the previous panel (P;_1)

6 end

Most of the current libraries focus on large matrices by using hybrid
(CPU-GPU) algorithms, e.g. Innovative Computing Lab’s MAGMA.'3 Be-
cause the panel factorization is considered a latency-bound workload, which
faces a number of inefficiencies on throughput-oriented GPUs, performing
its factorization on the CPU is preferred. Due to their high performance
rate exhibited on the update operation, and the fact that the update re-
quires the majority of floating-point operations, the GPU has to perform
the trailing matrix update. Note that a data transfer of the panel to and
from the CPU is required at each step of the loop. The classical implement-
ation as described in Algorithm 17 lacks efficiency because only either the
CPU or the GPU is working at one time. The MAGMA library modified
the algorithm further to overcome this issue, and to improve performance.
In fact, the ratio of the computational capability between the CPU and the
GPU is orders of magnitude, and thus look-ahead is the common technique
to alleviate this imbalance and keep the GPU loaded.

Algorithm 18 shows a very simple case of look-ahead of depth 1. The
update operation is split into an update of the next panel, and an update
of the rest of the trailing matrix. The splitting is done to overlap the
communication and the factorization of the panel with the update operation.
This technique allows us hide the memory-bound operation of the panel
factorization and also keep the GPU loaded by the trailing matrix update.

3 http://icl.cs.utk.edu/magma/

120 A. ABDELFATTAH et al.

In the batched implementation, however, we cannot afford such a memory
transfer at any step, since the trailing matrix is small and the amount of
computation is not sufficient to overlap it in time with the panel factoriza-
tion. Many small data transfers will take away any performance advantage
afforded by the GPU.

10.3. Batched factorizations for multicore CPUs

In broad terms, there are two main ways to approach batched factoriza-
tion on multicore CPUs. The first approach is to parallelize each small
factorization across all the cores, and the second approach is to execute
each factorization sequentially on a single core, with all the cores working
independently on their own input data. With these two extremes clearly
delineated, it is easy to see the third possibility: the in-between solution
where each matrix is partitioned among a handful of cores and multiple
matrices are worked on at a time as the total number of available cores
permits.

The tall-and-skinny matrix factorization scenarios have been studied in
the past (Dongarra, Faverge, Ltaief and Luszczek 2012, Luszczek and Don-
garra 2012), which has some relation to batched factorization on multicore
CPUs. The problem can be of reduced size, and be fully cache-contained
even for Level 1 cache, in which case the algorithm becomes compute-bound
because the cache can fully satisfy the issue rate of the floating-point units.
However, for our target matrix sizes, the cache containment condition does
not hold, and consequently, the most efficient scheme is to employ fixed
matrix partitioning schemes with communication based on cache coherency
protocols to achieve a nearly linear speedup over a purely sequential im-
plementation (Dongarra et al. 2012, Luszczek and Dongarra 2012). To our
knowledge, this work constitutes a nearly optimal implementation scenario
that far exceeds the currently available state-of-the-art vendor and open-
source implementations. Unfortunately, the bandwidth still remains the
ultimate barrier: the achieved performance could be multiple times better
than the next best solution, but it is still a fraction of the peak performance
of the processor.

For batched operations, the cache partitioning techniques did not work
well in our experience because of the small matrices, which are not the
intended target for this kind of optimization. We tested various levels of
nested parallelism to exhaust all possibilities of optimization available on
CPUs. The two extremes mentioned above get about 40 Gflops (one outer
task and all 16 cores working on a single problem at a time; 16-way parallel-
ism for each matrix) and 100 Gflops (16 outer tasks with only a single core
per task; sequential execution for each matrix), respectively. The scenarios
that fall between these extremes achieve somewhere in between in terms of

ACCELERATED MULTICORE LINEAR ALGEBRA 121

performance. For example, with eight outer tasks with two cores per task,
we achieve about 50 Gflops. Given these results, and to increase clarity of
the presentation, we only report the extreme setups in the results shown
below.

10.4. Batched factorizations for GPUs

One approach to the batched factorization problem for GPUs is to consider
that the matrices are small enough to factor them using the non-blocked
algorithm. The implementation in this case is simple, but the perform-
ance obtained turns out to be unacceptably low. Thus the implementation
of the batched factorization must also be blocked and follow the same it-
erative scheme (panel factorization and trailing matriz update) shown in
Algorithm 17. Note that the trailing matrix update consists of Level 3
BLAS operations (xSYRK for Cholesky, xGEMM for LU and xLARFB for QR)
which are compute-intensive and perform very well on the GPU. Thus, the
most difficult phase of the algorithm is the panel factorization.

A recommended way of writing efficient GPU kernels is to use the GPU’s
shared memory — load it with data and re-use those data in computations
as much as possible. The idea behind this is to do the maximum amount
of computation before writing the result back to the main memory. How-
ever, implementation of such a technique may be complicated for the small
problems considered here since it depends on the hardware, the precision,
and the algorithm. Moreover, our experience showed that this procedure
provides very good performance for simple GPU kernels but it is not that
appealing for a batched algorithm, for two main reasons. First, the shared
memory is 48 KB per streaming multiprocessor (SMX) for the NVIDIA K40
(Kepler) GPUs, which is a low limit on the size of batched problem data that
can fit simultaneously. Second, completely saturating the shared memory
per SMX can decrease the performance of memory-bound routines, since
only one thread block will be mapped to that SMX at a time. Indeed, due
to a limited parallelism in the factorization of a small panel, the number of
threads used in the thread block will be limited, resulting in low occupancy,
and subsequently poor core utilization. In our study and analysis we found
that redesigning the algorithm to use a small amount of shared memory per
kernel (less than 10 KB) not only provides an acceptable data re-use but
also allows many thread blocks to be executed by the same SMX in parallel,
and thus take better advantage of its resources. As a result, the perform-
ance obtained is more than 3x better than when the entire shared memory
is used. Since the CUDA warp consists of 32 threads, it is recommended to
develop CUDA kernels that use multiples of 32 threads per thread block.
For our batched algorithm, we discovered empirically that the best value
for nb is 32.

122 A. ABDELFATTAH et al.

Below is a description of batched GPU routines based on batched BLAS
kernels. All the relevant optimizations are also discussed. For convenience,
we focus only on double precision performance. The methodology and the
design ideas remain the same for any precision.

10.4.1. Methodology based on batched BLAS

In a batched problem solution methodology that is based on batched BLAS,
there are many small dense matrices that must be factorized simultaneously
(as illustrated in Figure 10.1). This means that all the matrices will be
processed simultaneously by the same kernel. However, each matrix problem
is still solved independently, identified by a unique batch ID. We follow this
model in our batched implementations and developed the following set of
new batched CUDA kernels.

e Cholesky panel. This provides the batched equivalent of LAPACK’s
DPOTF2 routine. At step j of a panel of size (m, nb), the column vector
A(j : m,j) must be computed. This requires a dot-product using
row A(j,1: j) to update element A(j,7), followed by a DGEMV A(j +
1,1) A(j,1 : j) = A(j+ 1 : m,j), and finally a DSCAL on column
A(j+1:m,j). This routine involves two Level 1 BLAS calls (dot and
scal), as well as a Level 2 BLAS DGEMV. Since there are nb steps, these
routines are called nb times, and thus one can expect the performance
to depend on the performances of Level 2 and Level 1 BLAS operations.
Hence, it is a slow, memory-bound algorithm. We used shared memory
to load both row A(j,1: j) and column A(j + 1 : m,j) to re-use them,
and wrote a customized batched DGEMV kernel to read and write these
vectors from/into the shared memory.

e LU panel. This provides the batched equivalent of LAPACK’s DGETF2
routine to factorize panels of size m xnb at each step of the batched LU
factorizations. It consists of three Level 1 BLAS calls (idamax, DSWAP
and DSCAL) and one Level 2 BLAS call (DGER). The DGETF2 procedure
proceeds as follows. Find the maximum element of the ith column,
then swap the ¢th row with the row owning the maximum, and scale
the ith column. To achieve higher performance and minimize the effect
on the Level 1 BLAS operation, we implemented a tree reduction to
find the maximum pivot where all the threads contribute to find the
pivot. Since it is the same column that is used to find the max, then
scaled, we load it into the shared memory. These are the only data
that we can re-use within one step.

e (QR panel. This provides the batched equivalent of LAPACK’s DGEQR2
routine to perform the Householder panel factorizations. It consists of
nb steps where each step calls a sequence of the DLARFG and the DLARF
routines. At every step (to compute one column), the DLARFG involves a

ACCELERATED MULTICORE LINEAR ALGEBRA 123

norm computation followed by a DSCAL that uses the results of the norm
computation in addition to some underflow/overflow checking. The
norm computation is a sum reduce and thus a synchronization step.
To accelerate it, we implemented a two-layer tree reduction where, for
sizes larger than 32, all 32 threads of a warp progress required to do a
tree reduction similar to the MPI_REDUCE operation — and the latest
32 element — are reduced by only one thread. Another optimization
is to allow more than one thread block to execute the DLARFG kernel,
which means that the kernel needs to be split in two — one for norm and
one for scaling — in order to guarantee the synchronization. Customized
batched implementations of both DLARFG and the DLARF have been
developed.

Trailing matrixz updates. Trailing matrix updates are mainly Level 3
BLAS operations. However, for small matrices, it might be difficult
to extract performance from very small Level 3 BLAS kernels. The
DGEMM is the best Level 3 BLAS kernel: it is GPU-friendly, highly op-
timized, and achieves the highest performance among BLAS. Thus,
high performance can be achieved if we redesign our update kernels
to be represented by DGEMMs. For Cholesky, the update consists of
the DSYRK routine. It performs a rank-nb update on either the lower
or upper portion of Asgs. Since cuBLAS does not provide a batched
implementation of this routine, we implemented our own. It is based
on a sequence of customized DGEMMs in order to extract the best pos-
sible performance. The trailing matrix update for Gaussian elimin-
ation (LU) is composed of three routines: the DLASWP, which swaps
the rows on the left and right of the panel in consideration, followed
by the DTRSM to update Ao + L1_11A12, and finally a DGEMM for the
update Aoy <+ Aoy — A21L1_11A12. The swap (or pivoting) is required
to improve the numerical stability of Gaussian elimination. However,
pivoting can be a performance Kkiller for matrices stored in column-
major format because rows in that case are not stored continuously
in memory, and thus cannot be read en masse. Indeed, a factoriza-
tion stored in column-major format can be 2x slower (depending on
hardware and problem sizes) than implementations that transpose the
matrix in order to use a row-major storage format internally (Volkov
and Demmel 2008). Nevertheless, experiments showed that this con-
version is too expensive for batched problems. Moreover, the swapping
operations are serial, that is row by row, which limits the parallelism.
To minimize this penalty, we propose a new implementation that em-
phasizes a parallel swap and allows coalescent read/write. We also
developed a batched DTRSM. It loads the small nb x nb Lq1 block into
shared memory, inverts it with the DTRTRI routine, and then the Aqs

124 A. ABDELFATTAH et al.

update is accomplished by a DGEMM. Generally, computing the inverse
of a matrix may compromise the numerical stability of the method,
but since Aj; results from numerically stable LU with partial pivoting,
and its size is just nb x nb, or in our case 32 x 32, we do not have this
problem (DuCroz, Dongarra and Higham 1992). For the Householder
QR decomposition the update operation is used by the DLARFB routine.
We implemented a batched DLARFB that is composed of three calls to
the batched DGEMM:

A22 <— (I — VTHVH)A22 = (I — A21THA£II)A22.

10.5. Other techniques for high-performance batched factorizations

10.5.1. Parallel swapping

Profiling the batched LU reveals that more than 60% of the time is spent in
the swapping routine. Figure 10.2 shows the execution trace of the batched
LU for 2000 matrices of size 512. We can observe on the top trace that
the classical DLASWP kernel is the most time-consuming part of the algo-
rithm. The swapping consists of nb successive interchanges of two rows of
the matrices. The main reason that this kernel is the most time-consuming
is because the nb row interchanges are performed in a sequential order,
and the data of a row are not coalescent, thus the thread warps do not
read/write it in parallel. It is clear that the main bottleneck here is the
memory access. Indeed, slow memory access compared to high computing
capability has been a persistent problem for both CPUs and GPUs. CPUs
alleviate the effect of long latency operations and bandwidth limitations by
using hierarchical caches.

Accelerators, on the other hand, in addition to hierarchical memories, use
thread level parallelism (TLP), where threads are grouped into warps and
multiple warps are assigned for execution on the same SMX unit. The idea
is that when a warp issues an access to the device memory, it stalls until
the memory returns a value, while the accelerator’s scheduler switches to
another warp. In this way, even if some warps stall, others can execute,
keeping functional units busy while resolving data dependencies, branch
penalties, and long latency memory requests. In order to overcome the
bottleneck of swapping, we propose to modify the kernel to apply all nb
row swaps in parallel. This modification will also allow the coalescent write
back of the top nb rows of the matrix. Note that the first nb rows are
those used by the DTRSM kernel that is applied right after the DLASWP, so
one optimization is to use shared memory to load a chunk of the nb rows,
and apply the DLASWP followed by the DTRSM. We changed the algorithm to
generate two pivot vectors. The first vector stores the indices of the final
destination (e.g. row indices) of the top nb rows of the panel. The second

ACCELERATED MULTICORE LINEAR ALGEBRA 125

Lo L

(a) classical swap

- GEMM kernel 30%

T —

(b) parallel swap

Figure 10.2. Execution trace of the batched LU factorization using either classical
swap (a) or our new parallel swap (b).

stores the row indices of the nb rows to swap out and bring into the top nb
rows of the panel. Figure 10.2 depicts the execution trace (bottom) when
using our parallel DLASWP kernel. The experiment shows that this reduces
the time spent in the kernel from 60% to around 10% of the total elapsed
time. Note that the colours between the top and the bottom traces do not
match each other; this is because the NVIDIA profiler automatically chooses
the tracing colour. As a result, the performance gain obtained is about 1.8x
as shown in Figure 10.3. We report each of the proposed optimizations for
the LU factorization in Figure 10.3, but we would like to mention that the
percentage of improvement obtained for the Cholesky and QR factorization
is similar, and to simplify we reported the LU factorization only. Note
that starting from this version we were able to be faster than the cuBLAS
implementation of the batched LU factorization.

10.5.2. Recursive nested blocking

The panel factorizations described in Section 10.4.1 factorize the nb columns
one after another, similarly to the LAPACK algorithm. At each of the
nb steps, either a rank-one update is required to update the vectors to
the right of the factorized column 4 (this operation is done by the DGER
kernel for LU and the DLARF kernel for QR), or a left-looking update of
column i by the columns on its left is required, before factorizing it (this
operation is done by DGEMV for the Cholesky factorization). Since we cannot
load the entire panel into the shared memory of the GPU, the columns
to the right (in the cases of LU and QR) or to the left (in the case of
Cholesky) are loaded back and forth from the main memory at every step.

126 A. ABDELFATTAH et al.

200 IBatched DGETI?F count = 2000

T T

T
=©—Magma w streamed/batched gemm
=1~ Magma w recursive blocking
180 H . B
==+ Magma w parallel swapping
=3¢~ Magma: classic blocked algorithm

160 |{ —6—cuBLAS i

140

120

60

40

20

1 1
0 100 200 300 400 500 600
Matrix size

Figure 10.3. Performance in Gflops of the different versions of our batched LU
factorizations compared to the cuBLAS implementation for different matrix sizes,
where m = n.

Thus, one can expect that this is the most time-consuming part of the
panel factorization. A detailed analysis using the profiler reveals that the
DGER kernel requires more than 80% of the panel time and around 40% of
the total LU factorization time. Similarly for the QR decomposition, the
DLARF kernel used inside the panel computation needs 65% of the panel time
and 33% of the total QR factorization time. Likewise, the DGEMV kernel used
within the Cholesky panel computation needs around 91% of the panel time
and 30% of the total Cholesky factorization time. These routines’ inefficient
behaviour is also due to the memory access. To overcome that bottleneck,
we propose to improve the efficiency of the panel and to reduce the memory
access by using a recursive level of blocking technique: see Figures 10.4
and 10.5. In principle, the panel can be blocked recursively until it is a
single element. However, in practice, 2-3 blocked levels are sufficient to
achieve high performance. The above routines must be optimized for each
blocked level, which complicates the implementation. More than a 30%
boost in performance is obtained with this optimization, as demonstrated
in Figure 10.3 for the LU factorization. The same trend has been observed
for both the Cholesky and the QR factorization.

ACCELERATED MULTICORE LINEAR ALGEBRA 127

NNB

U done
NB

\ —

L done

Figure 10.4. Recursive nested blocking.

’ panel: classical GETF2 ‘

{111 volbath g Vel 110 ® obat emm keI oidatch genm .. ||

(a) classical GETF2

’ panel: blocked GETF2 ‘

R

1 oidatchgenm kemell..] oidatcgenm ket~ © e genm. .| 1 [viditch g |

(b) recursive GETF2

Figure 10.5. Execution trace of the batched LU factorization using either classical
GETF2 (a) or our recursive GETF2 (b).

10.5.3. Trading extra computation for higher performance

The challenge discussed here is as follows. For batched problems there is
a need to minimize the use of low-performance kernels on the GPU even if
they are Level 3 BLAS. For the Cholesky factorization, this concerns the
DSYRK routine that is used to update the trailing matrix. The performance
of DSYRK is important to the overall performance, since it takes a big part of
the runtime. We implemented the batched DSYRK routine as a sequence of
DGEMM routines, each of size M = m, N = K = nb. In order to exclusively
utilize the DGEMM kernel, our implementation writes both the lower and
the upper portion of the nb x nb diagonal blocks of the trailing matrix.
This results in nb® extra operations for the diagonal block. However, since
nb is small (e.g. nb = 32), these extra operations can be considered free.

128 A. ABDELFATTAH et al.

In practice the extra operation allows us to use DGEMM and thus achieve
higher performance than the one that touches the lower/upper portion of
the nb x nb diagonal blocks. Tests show that our implementation of DSYRK
is 2x faster than the DGEMM kernel for the same matrix size. This shows that
our DSYRK is very well optimized for it to reach the performance of DGEMM
(which is 2x slower since it computes twice as many flops).

We applied the same technique in the DLARFB routine used by the QR
decomposition. The QR trailing matrix update uses the DLARFB routine to
perform

Agy = (I = VTHVT) Agy = (I — AnT™ AL) Ass.

The upper triangle of V is zero with ones on the diagonal. Asy, which
stores V' in its lower triangular part and R (part of the upper A) in its
upper triangular part, is available in the classical DLARFB. Therefore, the
above is computed using DTRMM for the upper part of As; and DGEMM for
the lower part. Also, the T' matrix is an upper triangular and therefore the
classical DLARFB implementation uses DTRMM to perform the multiplication
with 7. Thus, if one can guarantee that the lower portion of T is filled with
zeros and the upper portion of V is filled zeros and ones on the diagonal,
the DTRMM can be replaced by DGEMM. With that in mind, we implemented
a batched DLARFB that uses three DGEMM kernels by initializing the lower
portion of T" with zeros, and filling up the upper portion of V with zeros
and ones on the diagonal. Note that this brings 3nb® extra operations, but
again, the overall time spent in the new DLARFB update using the extra
computation is around 10% less than DTRMM.

Similarly to DSYRK and DLARFB, we implemented the batched DTRSM (that
solves AX = B) by inverting the small nb x nb block A and using DGEMM to
get the final result X = A~!'B.

10.5.4. Block recursive DLARFT algorithm

The DLARFT is used to compute the upper triangular matrix 7" that is needed
by the QR factorization in order to update either the trailing matrix or the
right-hand side of the recursive portion of the QR panel. The classical
LAPACK approach computes T column by column in a loop over the nb
columns as described in Algorithm 19. Such an implementation takes up
to 50% of the total QR factorization time. This is due to the fact that the
kernels needed — DGEMV and DTRMV — require implementations where threads
go through the matrix in different directions (horizontal versus vertical,
respectively). An analysis of the mathematical formula of computing T
allowed us to redesign the algorithm to use Level 3 BLAS and to increase
the data re-use by putting the column of 7" in shared memory. One can
observe that the loop can be split into two loops — one for DGEMV and one
for DTRMV. The DGEMV loop that computes each column of T can be replaced

ACCELERATED MULTICORE LINEAR ALGEBRA 129

Algorithm 19 Classical implementation of the DLARFT routine.
1 for j €{1,2,...,nb} do
2 DGEMV to compute Tlijflvj = Agm,l:jfl X Aj:m,j

J
3 DTRMV to compute lej_lvj = lej_171;j_1 X lej_lnj
4 T(j,j) = tau(j)
5 end

Algorithm 20 Block recursive DLARFT routine.

DGEMM to compute b, vnb = AfT, 1.0y X ALan b
load T\lznb,lznb to shared memory.
for j € {1,2,...,nb} do
DTRMV to compute Tl:j—l,j = Tl:j—l,l:j—l X j_\vlzj—l,j
T(j,3) = tau(j)
end
write back 7' to main memory.

N O Ut W N

with one DGEMM to compute all the columns of T if the triangular upper
portion of A is zero and the diagonal is made of ones. This is already needed
for our implementation’s trailing matrix update in order to use DGEMM in the
DLARFB, and thus can be exploited here as well. For the DTRMV phase, we load
the T matrix into shared memory as this allows all threads to read/write
from/into shared memory during the nb steps of the loop. The redesign of
this routine is depicted in Algorithm 20. Since we developed a recursive
blocking algorithm, we have to compute the T" matrix for every level of the
recursion. Nevertheless, the analysis of Algorithm 20 lets us conclude that
the portion of the T's computed in the lower recursion level is the same as
the diagonal blocks of the T' of the upper level (white triangular blocks in
Figure 10.6), and thus we can avoid their (re-)computation. For that, we
modified Algorithm 20 in order to compute either the whole T or the upper
rectangular portion that is missed (dark/pale grey portions in Figure 10.6).

10.5.5. Streamed DGEMM

As our main goal is to achieve higher performance, we performed deep
analysis of every kernel of the algorithm. We discovered that 70% of the
time is spent in the batched DGEMM kernel after the previously described
optimizations were applied. An evaluation of the performance of the DGEMM
kernel, using either batched or streamed DGEMV, is illustrated in Figure 10.7.
The curves let us conclude that the streamed DGEMM is performing better
than the batched one for some cases (e.g. for k = 32 when the matrix
size is of order m > 200 and n > 200). We note that the performance
of the batched DGEMM is stable and does not depend on k, in the sense

130 A. ABDELFATTAH et al.

level 3

.

—~J
T [°A9]

Figure 10.6. The shape of the matrix T for different levels of the recursion during
the QR decomposition.

that the difference in performance between k& = 32 and k = 128 is minor.
However, it is bound by 300 Gflops. For that we propose to use the streamed
DGEMM whenever it is faster, and to roll back to the batched one otherwise.
Figure 10.8 shows the trace of the batched LU factorization of 2000 matrices
of size 512 using either the batched DGEMM (top trace) or the combined
streamed /batched DGEMM (bottom trace). We can see that the use of the
streamed DGEMM (when the size allows it) can speed up the factorization by
about 20%.

10.6. Performance results

10.6.1. Hardware description and setup

We conducted our experiments on a system with two sockets of 8-core Intel
Xeon E5-2670 (Sandy Bridge) processors, each running at 2.6 GHz. Each
socket had 20 MB of shared L3 cache, and each core had a private 256 KB
L2 and 64 KB L1 cache. The system is equipped with 52 GB of memory
and the theoretical peak in double precision is 20.8 Gflops per core, (i.e.
332.8 Gflops in total for the two sockets). It is also equipped with NVIDIA
K40c GPUs with 11.6 GB of GDDR memory per card, running at 825 MHz.
The theoretical peak in double precision is 1689.6 Gflops. The cards are
connected to the host via two PCle I/O hubs with 6 GB/s bandwidth.

A number of software packages were used for the experiments. On the
CPU side, we used Intel’s MKL (Math Kernel Library) with the ICC com-
piler (version 2013.sp1.2.144), and on the GPU accelerators we used CUDA
version 6.0.37.

Regarding energy, we note that in this particular setup the CPU and
the GPU have about the same theoretical power draw. In particular, the
Thermal Design Power (TDP) of the Intel Sandy Bridge is 115 W per socket,
or 230 W in total, while the TDP of the K40c GPU is 235 W. Therefore

ACCELERATED MULTICORE LINEAR ALGEBRA 131

900 — — ; ; ; ;
—B—streamed DGEMM K=128
- batched DGEMM K=128
800 | —7—streamed DGEMM K= 64 B 3| -
- batched DGEMM K= 64
700 —&—streamed DGEMM K= 32 i
-G batched DGEMM K= 32
2 v —V
600 —
500 —
2
S
& a00 - " .
300 - H--------- B----3----0O 7
--------- V-------v
————————— e----6----0
200 —
100 —
0 Il Il Il Il Il Il Il
0 32 64 128 160 192 256 384 448 512

Matrix size m=n

Figure 10.7. Performance comparison between streamed and batched DGEMM kernels
for different K and different matrix sizes when m = n.

Batched GEMM

=i Streams

BLECT T void e men | dfc. S0 1 WERRUTENNY 111 FRN 1| VU |1 WY || VW VO N7 W WAL DT

= Streams

ceat N DN B =3
Il B | c
- stream 20 I | =
csema | B - 3
Stream 22 - . | @
cswn | N | o
ssenzs |] Q
sremzs | - o
Stream 26 I [Z

=<

(b) streamed/batched DGEMM

Figure 10.8. Execution trace of the batched LU factorization using either batched
DGEMM (a) or streamed/batched DGEMM (D).

132 A. ABDELFATTAH et al.

we expect that a GPU would have a rough power consumption advantage
if it outperforms (in terms of time to solution) the 16 Sandy Bridge cores.
Note that, based on the theoretical peaks, the GPU’s advantage should
be about 4x to 5x. This is observed in practice as well, especially for
regular workloads on large data-parallel problems that can be efficiently
implemented for GPUs.

10.6.2. Performance analysis

The performance of the non-blocked versions can be bounded by the per-
formance of the rank-one update. Its flops/bytes ratio for double preci-
sion is 3n/(16 + 16n) (for m = n). Therefore, a top performance for
n = 500 and read/write achievable bandwidth of 160 Gflops would be
160 x (3 x 500)/(16 + 16 x 500) = 29.9 Gflops. This shows for example
that our non-blocking LU from Figure 10.3 achieves this theoretically best
performance. This is the limit for the other non-blocking one-sided factor-
izations as well.

A similar analysis for a best expected performance can also be done for
the block algorithms. Their upper performances are bounded in general
by the rank-nb performance (e.g., illustrated in Figure 10.7 for nb = 32
and 64). As can be seen, we do not reach the asymptotic performance
of 400 Gflops even at n = 500. However, the performance grows steadily
with n, which indicates that the operations contributing O(n?) flops are too
slow to saturate the computational capacity of the hardware. The rank-nb
update, which contributes O(n?) flops, is thus overshadowed by the O(n?)
contribution. If, however, we let n grow further, the rank-nb update will
eventually dominate the influence of the O(n?) part.

10.6.3. Comparison with cuBLAS on a K/0c
Achieving high performance across accelerators remains a challenging prob-
lem that we address with the algorithmic and programming techniques de-
scribed in this section. The efficient strategies we use exploit parallelism
and increase the use of Level 3 BLAS operations across the GPU. We high-
lighted this through a set of experiments that we performed on our sys-
tem. We compare our batched implementations with the cuBLAS library!*
whenever possible (cuBLAS features only a DGETRFBatched routine). Our
experiments were performed on batches of 2000 matrices of different sizes
going from 32 x 32 to 512 x 512.

Figure 10.9 shows the performance of LU. The DGETRFBatched version,
labelled ‘cuBLAS’, reaches a performance of around 70 Gflops for matrices
of size 512 x 512. We first compare to a naive implementation that is based

' https://developer.nvidia.com/cublas

ACCELERATED MULTICORE LINEAR ALGEBRA 133

220 Batched DGETRF count = 2000

—B8— GPU: Magma
200 - —%— GPU: cuBLAS .
- & - CPU v2: 16 parallel facto using sequential MKL
180 |-| —-©-— CPU v1: each matrix uses MKL multithread_16 .

T T

Gflop/s

600

300
Matrix size

Figure 10.9. Performance in Gflops of our different versions of the batched LU
factorization compared to the cuBLAS implementation for different matrix sizes
where m = n.

on the assumption that matrices of size < 512 are very small for block
algorithms and therefore uses the non-blocked version. For example, for the
case of LU this is the DGETF2 routine. The routine is very slow and the
performance obtained reaches less than 30 Gflops, as shown in Figure 10.3.
Note that although low, this is also the optimal performance achievable by
this type of algorithm, as explained in Section 10.6.2.

Our second comparison is to the classic LU factorization (i.e., the one that
follows LAPACK'’s two-phase implementation described in Algorithm 17).
This algorithm achieves 63 Gflops as shown in Figure 10.3.

To reach beyond 100 Gflops we used the technique that optimizes pivoting
with parallel swap. The next step in performance improvement was the use
of two-level blocking of the panel, which enables performance levels that go
slightly above 130 Gflops. The last two improvements are streamed /batched
GEMM, which moves the performance beyond 160 Gflops, and finally the
two-level blocking update (also called recursive blocking), which completes
the set of optimizations and takes the performance beyond 180 Gflops. Thus
our batched LU achieves up to 2.5x speedup compared to its counterpart
from the cuBLAS library.

134 A. ABDELFATTAH et al.

350 Batched DPOTRF count = 2000

—8— GPU: Magma
- & - CPU v2: 16 parallel facto using sequential MKL
300 —-A-- CPU v1: each matrix uses MKL multithread_16

T T

200 -

Gflop/s

150

100 -

50

0

0 100 200 300 400 500 600
Matrix size

Figure 10.10. Performance of the GPU versus CPU versions of our batched

Cholesky factorizations for different matrix sizes, where m = n.

10.6.4. Comparison to multicore CPU solutions

Here we compare our batched LU to the two CPU implementations pro-
posed in Section 10.3. The simple CPU implementation is to go in a loop
style to factorize matrix after matrix, where each factorization is using the
multithread version of the MKL library. This implementation is limited in
terms of performance and does not achieve more than 50 Gflops. The main
reason for this low performance is the fact that the matrix is small — it does
not exhibit parallelism and so the multithreaded code is not able to feed all
16 active threads with work. For that we proposed another version of the
CPU implementation. Since the matrices are small (< 512) and at least 16
of them fit into the L3 cache, one of the best techniques is to use each thread
to independently factorize a matrix. In this way 16 factorizations are con-
ducted independently, in parallel. We think that this implementation is one
of the best optimized implementations for the CPU. This later implement-
ation is 2x faster than the simple implementation, and it reaches around
100 Gflops in factorizing 2000 matrices of size 512 x 512. Experiments show
that our GPU batched LU factorization is able to achieve a speedup of 1.8x
versus the best CPU implementation using 16 Sandy Bridge cores, and 4x
versus the simple one.

ACCELERATED MULTICORE LINEAR ALGEBRA 135

Batched DGEQRF count = 2000
180 I T T T

—&— GPU: Magma
— € - CPU v2: 16 parallel facto using sequential MKL

160 H - h T
—-A-- CPU v1: each matrix uses MKL multithread_16

140 -

120

Gflop/s

60 -

40

0 100 200 300 400 500 600
Matrix size

Figure 10.11. Performance of the GPU versus CPU versions of our batched QR
decomposition for different matrix sizes, where m = n.

The performance obtained for the Cholesky and QR factorizations are
similar to the results for LU. A comparison with the two CPU implementa-
tions for Cholesky and QR are given in Figures 10.10 and 10.11, respectively.

As for the LU, our first GPU implementation of the batched Cholesky
factorization follows the classical LAPACK implementation. Compared to
the non-blocking algorithm this version increases the use of shared memory
and attains, at n = 500, an upper bound of 60 Gflops. The different optim-
ization techniques from Section 10.5 drive the performance of the Cholesky
factorization up to 200 Gflops. The two CPU implementations behave sim-
ilarly to those for LU. The simple CPU implementation achieves around
60 Gflops while the optimized one reaches 100 Gflops. This yields a spee-
dup of 2x against the best CPU implementation using 16 Sandy Bridge
cores.

The progress of our batched QR implementation over the different op-
timizations shows the same behaviour. The classical block implementation
does not attain more than 50 Gflops. The recursive blocking improves per-
formance up to 105 Gflops, and the optimized computation of T draws it
up to 127 Gflops. The other optimizations (replacing DTRMM with DGEMM
in both DLARFT and DLARFB), combined with the streamed/batched DGEMM,
bring the GPU implementation to around 167 Gflops. The simple CPU im-
plementation of the QR decomposition does not attain more than 50 Gflops

136 A. ABDELFATTAH et al.

while the optimized one gets 100 Gflops. Despite the CPU’s hierarchical
memory advantage, our GPU batched implementation is about 1.7x faster.

10.6.5. Energy efficiency

For our energy efficiency measurements we use power and energy estimators
built into the modern hardware platforms. In particular, on the CPU tested,
the Intel Xeon E5-2690, we use RAPL (runtime average power limiting)
hardware counters (Intel 2014, Rotem et al. 2012). By the vendor’s own
admission, the reported power/energy numbers are based on a model which
is tuned to match the actual measurements for various workloads. Given this
caveat, we can report that the tested Sandy Bridge CPU on idle, running at
a fixed frequency of 2600 MHz, consumes about 20 W of power per socket.
Batched operations raise the consumption to above 125-140 W per socket,
and the large dense matrix operations, which attain the highest fraction of
peak performance, raise the power draw to about 160 W per socket.

For the GPU measurements we use the NVIDIA Management Library
(NVML).'> NVML provides a C-based program interface for monitoring
and managing various states within NVIDIA Tesla GPUs. On Fermi and
Kepler GPUs (like the K40c used here) the readings are reported to be
accurate to within 4+/—5% of current power draw. The idle state of the K40c
GPU consumes about 20 W. Batched factorizations raise the consumption
to about 150-180 W, while large dense matrix operations raise the power
draw to about 200 W.

Figure 10.12 depicts a comparison of the power consumption required
by the three implementations of the batched QR decomposition: the best
GPU and the two CPU implementations. The problem solved here is about
4000 matrices of size 512 x 512 each. The dashed curve shows the power
required by the simple CPU implementation. In this case the batched QR
proceeds as a loop over the 4000 matrices, where each matrix is factorized
using the multithreaded DGEQRF routine from the Intel MKL library on the
16 Sandy Bridge cores. The dot-dashed curve shows the power required by
the optimized CPU implementation. Here, the code proceeds by a sweep
of 16 parallel factorizations, each using the sequential DGEQRF routine from
the Intel MKL library. The solid curve shows the power consumption of
our GPU implementation of the batched QR decomposition. One can ob-
serve that the GPU implementation is attractive because it is around 2x
faster than the optimized CPU implementation, and moreover, because it
consumes 3 X less energy.

According to our experiments, we found that the GPU implementations
of all of the batched one-sided factorizations reach around 2x speedup over
their best CPU counterpart and are 3x less expensive in terms of energy.

5 https://developer.nvidia.com/nvidia-management-library-nvml

ACCELERATED MULTICORE LINEAR ALGEBRA 137

300 DGEQRF 4000 batched matrices of size 512x512
T T T T T T

'—\.v\--—’./\, PN AN = NS T Lo 2]

\ CPU: 1587 joules

L]
1
k rd 4 >
250 I | R N IN-”‘H\-—ik‘v~ﬁlvv'\V\“\\\h,/-l i
| : CPU: 3505 joules !
le ! 1
2000 | ! T
[~ I 1 -
| ' '
i
g || i \
s1s50f | i 4
s - '
a ! 1
! 1
100 { GPU: 643 I | -
joules 1 |
1
! |
sof! L y
— -CPU v1: each matrix uses MKL multithread_16
—--CPU v2: 16 parallel facto using sequential MKL
—GPU Magma
0 1 1 I I I I I
0 2000 4000 6000 8000 10000 12000 14000 16000
Time (ms)

Figure 10.12. Comparison of the power consumption for the QR decomposition of
4000 matrices of size 512 x 512.

10.7. Future directions

As the development of efficient small problem solvers becomes more in-
tricate on new architectures, we envision that users will further demand
their availability in high-performance numerical libraries, and that batched
solvers will actually become a standard feature in those libraries for new
architectures. Our plans are to release and maintain this new functionality
through the MAGMA libraries for NVIDIA GPU accelerators, Intel Xeon
Phi coprocessors, and OpenCL with optimizations for AMD GPUs.

The batched algorithms and techniques can be used and extended to de-
velop GPU-only implementations for stand-alone linear algebra problems.
These would be useful, for example, to replace the hybrid CPU-GPU algo-
rithms in cases where energy consumption, instead of higher-performance
through use of all available hardware resources, is the top priority. Moreover,
GPU-only implementations can have a performance advantage as well, when
the host CPU becomes slower compared to the accelerator in future systems.
For example, in mobile devices featuring ARM processors enhanced with
GPUs, like the Jetson TK1, we have already observed that the GPU-only
implementations have a significant advantage in both energy consumption
and performance. This has motivated another future work direction — the

138 A. ABDELFATTAH et al.

development and release of a MAGMA Embedded library that would incor-
porate entirely GPU /coprocessor implementations for stand-alone applica-
tions, as well as batched, dense linear algebra problems.

11. Sparse linear algebra
11.1. Approximate ILU preconditioning

Matrix factorizations also play an important role in sparse linear algebra,
but in a slightly modified form than for dense systems. For matrices where
most entries are zero, it is efficient to explicitly store only the non-zero
elements using data layouts specifically designed for these cases (Barrett
et al. 1994a). In this way, only the non-zero entries are considered in the
arithmetic computations, while all other entries are implicitly assumed to be
zero. If an LU factorization is computed for a (non-singular) sparse matrix,
the factors can be much less sparse than the original matrix. Although there
exist matrix reordering techniques such as reverse Cuthill-McKee ordering
(RCM: Cuthill and McKee 1969) that aim at reduced fill-in, the memory
requirements for storing the LU factors can become a bottleneck. With
more non-zero entries, the computational cost of the factorization and the
forward—backward triangular solves can also become a challenge. This often
makes direct solvers based on exact matrix factorizations unattractive for
sparse linear problems.

More interesting for those cases is to find an approximate factorization
A =~ LU with the factors preserving a low number of non-zeros. These
‘incomplete LU factorizations’ (ILU: Saad 2003) typically do not provide
factors accurate enough to obtain a good solution approximation for Ax = b
via solving the triangular systems Ly = b and Uz = y. Instead, one uses the
matrix M = LU as a preconditioner in another iterative solver, for example
a Krylov subspace method (Saad 2003).

To ensure a high degree of sparsity in the factors, an ILU factoriza-
tion truncates the fill-in computed by a Gaussian elimination process to
a sparsity pattern, S. This sparsity pattern defines a set of matrix locations
(1,7) where non-zeros are allowed in the factors (i.e., (i,) € S implies that
entry l;; in matrix L is permitted to be non-zero (i > j), or that entry
u;; in matrix U is permitted to be non-zero (i < j)). The set S always
includes the diagonal of the L and U factors so that these factors are non-
singular. In the basic algorithm, called ILU(0), the exact LU factors are
approximated by allowing only non-zero elements in L and U that are non-
zero in A (Saad 2003). The approximation accuracy of the factorization
can be enhanced by allowing for additional fill-in in the incomplete factors.
The fill-in sparsity pattern S can either be defined before the factorization
or generated dynamically during the Gaussian elimination process. In the

ACCELERATED MULTICORE LINEAR ALGEBRA 139

latter, the choice of including a location in the sparsity pattern is usually
made based on the size of the fill-in element.

As for dense matrices, the inherently sequential nature of Gaussian elimin-
ation also poses a computational challenge to the incomplete factorization.
The situation can be considered even ‘worse’, as sparse matrices do not,
in the general case, contain blocks of adjacent non-zero elements that al-
low for efficient implementation of block algorithms. Some parallelism may
exist, however, as it is possible to handle rows in parallel that are pair-
wise independent and only depend on rows that have already been elimin-
ated. However, this natural parallelism is reduced when allowing for more
fill-in. Details about this level scheduling strategy can be found in Saad
(2003). There exist multicolouring and domain decomposition reordering
techniques that can be used to enhance the available parallelism (Poole and
Ortega 1987, Lukarski 2012, Benzi, Joubert and Mateescu 1999, Doi 1991).
However, all these approaches typically result in a less accurate precondi-
tioner, and also have only limited scalability. In particular, they are unable
to exploit the computing performance of thousands of light-weight cores
that are expected to form future HPC architectures (Bergman et al. 2008).

More recently, a different strategy was proposed for iterative computa-
tion of incomplete factorization (Chow and Patel 2015). This algorithm is
fundamentally different from the traditional techniques, as it does not aim
at parallelizing the Gaussian elimination process but rather generates the
ILU factors by using a fixed-point iteration providing fine-grained parallel-
ism. It is based on the property of an ILU factorization being exact for the
components included in the sparsity pattern S (Saad 2003), that is,

(LU)Z']' = G5, (2,]) € S, (11.1)

where (LU);; denotes the (i, j) entry of the product of the computed factors
L and U, and aj is the corresponding entry in matrix A. Exploiting this
property, the iterative ILU algorithm computes the unknowns

lija Z>]a (iaj)esa
uig, i<j, (i,5) €5,
using the constraints
min (i,5)
likugj = agj, (i,7) €5, (11.2)
k=1
which corresponds to enforcing the property (11.1). A common convention
for ILU factorizations is to fix the diagonal of the lower triangular L to one.

For this convention, the generation of the incomplete factors is equivalent
to solving a system of |S| equations in |S| unknowns.

140 A. ABDELFATTAH et al.

The formulation (Chow and Patel 2015)

i—1
1 j . .
lij = —\ aij — Zlikukj , 1>, (11.3)
Ujj 1
i1
Uij = Qij — Zlikukj; 1<J (11.4)
k=1
allows us to derive a fixed-point iteration of the form z = G(z), where z is

a vector containing the unknowns /;; and w;; for (i, j) € S. The equations
are then solved by iterating the matrix entries in the form

2P =GP, p=0,1,..., (11.5)

starting with some initial 2(°) (Chow and Patel 2015). As for traditional
Gaussian elimination, it is also possible for the iterative algorithm generat-
ing the incomplete factors to exploit the symmetry of the system matrix.
The iterative approach to a Cholesky factorization (IC) iterates the com-
ponents according to

1 ‘]71 . .
lij = _— (%‘ -3 likljk:> , LFE (11.6)
I k=1

i—1
Qj5 — Zlikljkn 1= j (11.7)
k=1

For a suitable initial guess, it can be proved that the fixed-point iteration is
locally convergent in the asymptotic sense (Chow and Patel 2015). This in
particular includes convergence for iteration schemes updating the distinct
components in an asynchronous fashion (Frommer and Szyld 2000), which is
an essential aspect when parallelizing fixed-point iteration methods. In gen-
eral, an iteration based on z®+1) = @ (m(p)) can be parallelized by assigning
each processor to compute a subset of the components of 2@+ using values
of (), such that each component is updated by exactly one processor. As
all values of z(P) must generally be available before the computation of z:(P*+1)
can start, this is called a synchronous iteration (Frommer and Szyld 2000).
In an asynchronous iteration, the computation of components of Pt g
started without ensuring that all values of () are available, but the it-
eration uses, respectively, the latest value for the components of x that
are available. Convergence may be faster than the synchronous iteration
because more updated values are used (e.g., Gauss—Seidel-type iteration
compared to Jacobi-type) or may be slower than a synchronous iteration
in the case when some components are rarely updated (Chow, Anzt and
Dongarra 2015). In general, there may be a trade-off between parallelism
and convergence: with fewer parallel resources, the asynchronous iterations

ACCELERATED MULTICORE LINEAR ALGEBRA 141

tend to use ‘fresher’ data when computing updates; with more parallel re-
sources, the iterations tend to use older data and thus converge more slowly.
The advantage of iteration methods converging in the asynchronous sense
is that it removes the need for performance-detrimental synchronizations
in the implementations (Anzt, Tomov, Dongarra and Heuveline 2013). It
turns out that the iterative algorithm for computing incomplete LU factor-
izations carries a number of properties that make the algorithm attractive
for high-performance computing (Chow et al. 2015).

e The algorithm is fine-grained, allowing for scaling to very large core
counts, limited only by the number of non-zero elements in the factor-
ization.

e The algorithm does not need to use reordering to enhance parallelism,
and thus reorderings can be used that either enhance the accuracy of
the incomplete factorization or the data locality in hardware.

e The bilinear equations do not need to be solved very accurately since
the ILU factorization itself is only an approximation.

e The algorithm can use an initial guess for the ILU factorization, which
cannot be exploited by conventional ILU factorization algorithms.

e The algorithm may be able to tolerate communication latencies and
certain types of computation and communication errors due to its asyn-
chronous nature.

Furthermore, the simplicity of the algorithm realizing the fixed-point it-
eration allows for efficient implementation on many-core accelerators: see
Algorithm 21. In particular, it is possible to exploit the sparsity of the LU
factors by storing the factors L and U in CSR and CSC format, respect-
ively, and the matrix A in coordinate (COO) format (Chow et al. 2015).
This matrix can also be regarded as a ‘task list’ as it determines in which
order the components of L and U are updated. Changing the order of ele-
ments in this COO array controls the order of the updates, but the matrix
ordering is preserved.

An implementation on Intel’s Xeon Phi architecture is evaluated in Chow
and Patel (2015). In Chow et al. (2015), an implementation, which is now
part of the MAGMA-sparse open source software library,'¢ is used to show
how the algorithm succeeds in exploiting the computing power of a state-
of-the-art NVIDIA GPU.

The parallelization concept used is based on assigning subsets of the com-
ponents of x to GPU thread blocks. Each thread block updates the com-
ponents of z assigned to it (Chow et al. 2015). Within each thread block,
the components of x are updated simultaneously (in Jacobi-like fashion).

16 http://icl.cs.utk.edu/magma/

142 A. ABDELFATTAH et al.

Algorithm 21 Fine-grained parallel incomplete factorization.

1 Set unknowns /;; and u;; to initial values
2 for sweep = 1,2, ... until convergence do
3 parallel for (i,j) € S do

4 if ¢ > j then

5 iy = (aij — Y4y liwurg) /g

6 else

7 uij = agj — Yy likurj

8 end

9 end

10 end

As there are generally more thread blocks than the multiprocessors can ex-
ecute in parallel, some thread blocks are processed before others, and thus
update their components of x before others. Thus some thread blocks within
one fixed-point sweep may use newer data than others (in Gauss—Seidel-like
fashion). Since there exists no fixed order in which the distinct blocks
are updated, the iteration is considered to be ‘block-asynchronous’ (Anzt
et al. 2013). In traditional GPU computations, there is no defined ordering
in which thread blocks are executed by the multiprocessors. However, on
NVIDIA’s Kepler GPU generation the preferred scheduling order is consist-
ent with the thread block numbering (Chow et al. 2015). Together with the
fact that the matrix entries of A are stored in COO format, this allows us
assign how the elements are gathered into the thread blocks, and to control
the order in which the elements are iterated. For fast convergence, the up-
dates should be scheduled in dependency order. Different aspects play a role
if optimizing for efficient hardware use. As the algorithm is memory-bound,
one performance-critical goal is to maximize cache re-use. A first step to
enhance cache re-use is to gather components that have similar dependen-
cies in the same thread block. In the parallel GPU implementation, each
thread updates one element (7,j) € S. Each thread thus computes either /;;
or u;; in equation (11.3) (Chow et al. 2015). For updating a component l;;,
i > j (respectively u;;, ¢ < j), as well as the matrix element a;;, all elements
lir, of L with k < min(¢, j), and all elements u; of U with k& < min(s, j) are
required. Hence, this computation requires reading row ¢ of L and column
j of U (up to an upper limit) into local memory. This row and column may
be re-used to compute other elements in 5. Optimizing cache re-use is thus
equivalent to partitioning the (i,7) € S among a given number of thread
blocks such that threads in the thread block require, in aggregate, as few
rows of L or columns of U as possible. Another way to view this problem
is to maximize the number of times each row of L and each column of U is
re-used by a thread block. In Chow et al. (2015) this optimization problem

ACCELERATED MULTICORE LINEAR ALGEBRA 143

(a) (b) (c)

Figure 11.1. (a) A 6 x 6 mesh using a five-point stencil partitioned into nine
subdomains of size 2 x 2. The corresponding matrix (b) orders rows and columns
subdomain by subdomain. The bold edges in the mesh correspond to the non-
zeros in the matrix marked with squares, and identify the elements assigned to
one of the thread blocks. (¢) The partitioning of the matrix after applying reverse
Cuthill-McKee (RCM) and using 12 partitions.

is tackled by defining a ‘re-use factor’ fieuse(l) for a thread block [as

fre—use(l) = 1<|Sl’ + ’Sl‘>7

2 my ng

where |S)| is the number of elements of S assigned to thread block [, and
where m; and n; are the number of rows of L and columns of U, respectively,
required by thread block [. The first term in the brackets is the average
number of times that the rows are re-used, while the second is the average
number of times that the columns are re-used (Chow et al. 2015). If the
elements of S are assigned arbitrarily to the thread blocks, then the re-use
factor is 1 in the worst case (Chow et al. 2015). For problems arising from
finite difference discretizations of partial differential equations, Chow et al.
(2015) derive the theoretical upper bound for the re-use factor freuse(l) < s
if an s-point stencil were used for discretizing a two- or three-dimensional
problem. This indicates that larger re-use is possible for stencils of larger
order (Chow et al. 2015).

For those finite difference discretizations, re-use factors close to the upper
bound can be achieved when using a domain decomposition into blocks with
low anisotropy, and numbering the unknowns block by block. This results in
a vector of unknowns where the adjacency of the components in the problem
is preserved. Consequently, this blocking strategy helps in generating a task
list order for updating the components in L and U where components in the
same thread block share dependencies (i.e., they are adjacent to the same

144 A. ABDELFATTAH et al.

vertices). Figure 11.1 visualizes this concept of blocking for the case of a
five-point stencil discretization in two dimensions (Chow et al. 2015).

In practical GPU implementations, the cache re-use is larger than the
theoretical bound. This is possible because cache can be shared between
thread blocks (i.e., one thread block uses data brought into the L2 cache
by another thread block: Chow et al. 2015), although this is not implied
by the traditional GPU computing paradigms. Against this background it
is beneficial to account for dependency similarities not only when assigning
components to a thread block but also when ordering the thread blocks
for the preferred execution order. When using a reverse Cuthill-McKee
(RCM) ordering for the system matrix A, which is usually beneficial to
the approximation accuracy of incomplete factorizations (Duff and Meurant
1989), this can be achieved by forming blocks containing several rows and
numbering the thread blocks from top to bottom: see Figure 11.1(c). From
this figure it can be observed that each partition requires different rows
of L that are re-used within a thread block but not across thread blocks.
Furthermore, partitions numbered nearby use a very similar set of columns
of U, which may result in cache re-use of U across thread blocks.

A different implementation aspect relevant for performance on streaming
processors such as GPUs is the fact that significant thread divergence can
occur if the partial sum (lines 5 and 7 of Algorithm 21) contains a different
number of addends for components handled by the same warp. Minimizing
warp divergence, however, conflicts with optimizing component assignment
for cache re-use, and for a memory-bound algorithm data locality is more
important (Chow et al. 2015).

A comprehensive analysis in Chow et al. (2015) reveals that using RCM
ordering of the matrix in combination with left—right and top-down ordering
of the matrix entries in the task list and a top-down scheduling of the thread
blocks is the preferred setup. In particular, it results in high intra- and inter-
cache re-use, and succeeds in updating components in dependency order,
which is key to good performance and fast convergence, respectively.

For the convergence analysis, the fixed-point iterations were started tak-
ing the upper and lower triangular factors of the matrix A as an initial
guess, where A is the system matrix A symmetrically scaled to a unit diag-
onal. This initial guess has been shown to allow for good convergence if no
natural initial guess, such as a previous factorization to a similar system, is
available (Chow and Patel 2015).

For a set of test matrices taken from the University of Florida Matrix
Collection (UFMC: Davis and Hu 1994), Chow et al. (2015) compare the
fixed-point based ILU generation to NVIDIA’s cuPARSE library!'” in ver-
sion 6.0, which uses level scheduling to exploit the hardware parallelism.

7 https://developer.nvidia.com/cusparse

ACCELERATED MULTICORE LINEAR ALGEBRA 145

Table 11.1. PCG solver iteration counts using preconditioners constructed with
up to five sweeps, and timings for five sweeps. IC denotes the exact factorization
computed using NVIDIA’s cuSPARSE library. The speedup shown is that of five
sweeps relative to IC.

Iteration counts versus sweeps Timings (ms)
1C 0 1 2 3 4 5 IC 5 sweeps speedup
APA 958 1430 1363 1038 965 960 958 61. 8.8 6.9
ECO 1705 2014 1765 1719 1708 1707 1706 107. 6.7 16.0
G3 997 1254 961 968 993 997 997 110. 12.1 9.1
OFF 330 428 556 373 396 357 332 219. 25.1 8.7
PAR 393 763 636 541 494 454 435 131. 6.1 21.6
THM 1398 1913 1613 1483 1341 1411 1403 454. 15.7 28.9
L2D 550 653 703 664 621 554 551 112. 7.4 15.2
L3D 35 43 37 35 35 35 35 94. 47.5 2.0

A good metric for evaluating the approximation accuracy of a precondi-
tioner is the convergence of a top-level iterative solver using the generated
preconditioner (Chow and Patel 2015). The left side of Table 11.1 (taken
from Chow et al. 2015) reveals that for a few sweeps of the fixed-point iter-
ation, the PCG solver iteration count is reduced to values similar to using
conventionally generated ILU. For details of the test matrices see Chow
et al. (2015). The right side of Table 11.1 shows the timings for IC com-
puted using NVIDIA’s cuSPARSE library, and for five fixed-point iteration
sweeps using an NVIDIA Kepler K40 GPU. Five sweeps have proved to be
sufficient for accurate preconditioner generation, and their execution time is
typically only a fraction of the runtime needed by the traditional approach.

11.2. Approximate triangular solves

Besides the derivation of the incomplete factors, the application of an in-
complete factorization preconditioner via forward and backward triangular
solves also poses a computational challenge (Park, Smelyanskiy, Sundaram
and Dubey 2014). As in the factorization case, the dependencies result in an
inherently sequential algorithm that makes it difficult to exploit the parallel
computing power available in today’s architectures. As the preconditioner
applications impact the performance of every iteration of a top-level iter-
ative solver, the acceleration of sparse triangular solves may be considered
even more important, and is the subject of significant research efforts. Sim-
ilarly to the factorization problem, it is possible to get some parallelism
from level scheduling components that are independent (Saad 2003). How-
ever, depending on the sparse matrix, there may be a very large number
of levels or not enough work within a level to efficiently use highly parallel

146 A. ABDELFATTAH et al.

architectures such as GPUs. Different groups have tried to increase the
parallelism obtained from level scheduling at the cost of a less accurate pre-
conditioner (Anderson and Saad 1989, Saltz 1990, Hammond and Schreiber
1992). Nevertheless, efficient implementations on state-of-the-art hard-
ware still pose a challenge (Mayer 2009, Wolf, Heroux and Boman 2011,
Naumov 2011). A different approach to parallelizing sparse triangular solves
is to use partitioned inverses (Alvarado and Schreiber 1993, Pothen and
Alvarado 1992). The idea is to write the matrix as the product of sparse
triangular factors; each triangular solve is then a sequence of sparse matrix
vector multiplications. Similar to this, the use of a sparse approximate in-
verse for a triangular matrix has also been considered (van Duin 1996, Tuma
and Benzi 1998), as well as the idea of approximating the inverse ILU factors
via a truncated Neumann series (Tuma and Benzi 1998, van der Vorst 1982).
Finally, there exists the idea of using relaxation methods for approximate
triangular solves. Chow and Patel (2015) investigated the use of Jacobi
sweeps for approximate sparse triangular solves on the Intel MIC architec-
ture. The Jacobi iteration for solving Az = b can be written as

2"t = Db — (A — D)z"),

11.8
2 = D7 4+ Mt ()

where D is the diagonal part of A (Anzt 2012). For the triangular systems
that arise in the context of incomplete factorization preconditioning, the
iteration matrices My, and My for the lower and upper triangular, respect-
ively, can be derived as (Anzt, Chow and Dongarra 2015)

Mp=D;Y (D, -L)=1-1,

L B (11.9)
My = DY (Dy —U) = I — D;;'U,

where Dy and Dy denote the diagonal parts of the triangular factors L
and U, and [is the identity matrix. Obviously, My, is strictly lower trian-
gular and My is strictly upper triangular, which implies that the spectral
radius of both iteration matrices is zero (Golub and Van Loan 1996). This
is a sufficient condition for an asynchronous iteration method to converge
in the asymptotic sense (Frommer and Szyld 2000). Anzt et al. (2015)
compared approximate triangular solves based on Jacobi with triangular
solves based on block-asynchronous Jacobi. As previously mentioned, block-
asynchronous fixed-point iterations can provide faster convergence if the de-
pendency order is reflected in Gauss—Seidel-type updates (Anzt et al. 2013).
In the GPU implementation considered, the set of unknowns is partitioned
into blocks, components in a block are updated in synchronous Jacobi-like
fashion, and the distinct blocks are scheduled onto the multiprocessors. The
idea is to adapt the preferred scheduling order to the system characterist-
ics. That is, schedule the blocks top-down for the lower triangular system

ACCELERATED MULTICORE LINEAR ALGEBRA 147

10° 108 T
——Jacobi ——Jacobi
—»—BA Jacobi forward 4 ——BA Jacobi forward
—o—BA Jacobi backward —o—BA Jacobi backward
—+—Jacobi cuSPARSE
102} 10%
£ £
o o
j= c
T ©
=] =3
=) =]
0 [
¢ €
10 107
¥
1 0 1 1 1 1 0 L L L L)
0 0 2 4 6 8 10 10 0 2 4 6 8 10 12
Number of sweeps Runtime [ms]
(a) Lz = b, convergence (b) Lx = b, runtime
10° - - - - 10°

—#—Jacobi —#—Jacobi
—*—BA Jacobi forward —»—BA Jacobi forward
—o—BA Jacobi backward —o—BA Jacobi backward

—+—Jacobi CUSPARSE

102 L

Residual norm
=
o
2
Residual norm
=
o
%

100 L

10»1 1 1 1 1 -1 L L L L L
0 2 4 6 8 0 Mo 2 4 6 8 10 12
Number of sweeps Runtime [ms]
(¢c) Ux = b, convergence (d) Uz = b, runtime

Figure 11.2. Solving the sparse triangular systems for the lower and upper trian-
gular ILU(0) factors of the Laplace problem in three dimensions using a 27-point
stencil discretization on a 64 x 64 x 64 grid. Convergence (a,c) and runtime (b, d)
of synchronous Jacobi and block-asynchronous Jacobi (averaged results).

Ly = b and bottom-up for the upper triangular system Uz = y. For the
incomplete triangular factors (ILU(0)) of a finite difference discretization of
the Laplace problem in three dimensions discretized using a 27-point stencil
on a 64 x 64 x 64 grid, Figure 11.2(b, d) visualizes the effect of dependency-
aware thread block scheduling (Anzt et al. 2015). As expected, scheduling
the thread blocks top-down for the lower triangular system and bottom-up
for the upper triangular system results in faster convergence. Scheduling
against the dependency order, no convergence-relevant Gauss—Seidel up-
dates are scheduled, and the convergence rate is comparable to the Jacobi
method (Anzt et al. 2015). Figure 11.2(b,d) relates the relative residual
norm to the runtime when executing the different approximate triangular
solvers, all part of the MAGMA-sparse library, on an NVIDIA Kepler K40
GPU. Although dependency-aware block-asynchronous Jacobi achieves a

148 A. ABDELFATTAH et al.

higher convergence rate, the time-to-solution winner is cuSPARSE-based
Jacobi. The reason stems from the high optimization level of the sparse
matrix vector product that this implementation is based on. However, from
comparing the convergence rates for synchronous and block-asynchronous
Jacobi, it can be deduced that applying the same level of optimization to
the kernel for block-asynchronous Jacobi would also make it superior with
respect to the performance metric (Anzt et al. 2015).

Compared to the level scheduling sparse triangular solves of NVIDIA’s
cuSPARSE library, one sweep of the approximate triangular solves based
on Jacobi or block-asynchronous Jacobi is typically between one and two
orders of magnitude faster (Anzt et al. 2015). In contrast to a determin-
istic Jacobi method, using block-asynchronous Jacobi for the approximate
triangular solves requires the top-level iterative method to be tolerant to a
changing preconditioner. The reason is that, despite the preferred schedul-
ing order, a fixed execution order of the thread blocks cannot be guaranteed.
An example for a Krylov iterative method capable of handling a changing
preconditioner is the flexible GMRES (FGMRES: Saad 1993). Chow and
Patel (2015) show that a few sweeps are sufficient to provide preconditioner
accuracy comparable to exact triangular solves based on level scheduling.
As expected from the convergence analysis in Figure 11.2, this is no different
for the block-asynchronous Jacobi: see Anzt et al. (2015). Finally, replacing
the exact triangular solves with approximate triangular solves succeeds in
accelerating the complete solution process of the top-level iterative solver
(Anzt et al. 2015).

12. Conclusion

The past decade has been marked by significant innovation in linear al-
gebra algorithms and software, stimulated by the proliferation of multicore
processors and hardware accelerators, and the overall increase in the level
of parallelism required to achieve high performance. New or improved al-
gorithms have been developed for the solution of basic problems in linear
algebra, including linear systems of equations, least-squares problems, sin-
gular value problems and eigenvalue problems. These algorithms utilize
memory hierarchies better than their predecessors, expose higher levels of
parallelism, are more suitable for dataflow scheduling, consume less network
bandwidth, and tolerate larger network latencies. Most importantly, these
innovations have resulted in high-quality implementations provided in the
form of robust software packages for multicore systems, hybrid (multicore
+ accelerator) systems, and distributed memory systems (with multicore
processors and accelerators). As the numerical computing community con-
tinues to ramp up for exascale computing, there is no reason to believe this
pace will slow — even in the face of the great challenges that lie ahead.

ACCELERATED MULTICORE LINEAR ALGEBRA 149

REFERENCES'

J.

E.

M

18

Aasen (1971), ‘On the reduction of a symmetric matrix to tridiagonal form’,
BIT 11, 233-242.

Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault and S. To-
mov (2010), Faster, cheaper, better: A hybridization methodology to develop
linear algebra software for GPUs. In GPU Computing Gems (W. Mei and
W. Hwu, ed.), Vol. 2, Morgan Kaufmann.

. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,

P. Luszczek and S. Tomov (2009a), ‘Numerical linear algebra on emerging
architectures: The PLASMA and MAGMA projects’, J. Phys. Conf. Ser.
180, #1.

. Agullo, B. Hadri, H. Ltaief and J. Dongarra (2009b), Comparative study of one-

sided factorizations with multiple software packages on multi-core hardware.
In SC ’09: Proc. Conference on High Performance Computing Networking,
Storage and Analysis, ACM, #20.

. L. Alvarado and R. Schreiber (1993), ‘Optimal parallel solution of sparse trian-

gular systems’, STAM J. Sci. Comput. 14, 446-460.

. R. Amestoy, I. S. Duff and J.-Y. L’Excellent (2000), ‘Multifrontal parallel dis-

tributed symmetric and unsymmetric solvers’, Comput. Methods Appl. Mech.
Eng. 184, 501-520.

. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and J. Koster (2001), ‘A fully asyn-

chronous multifrontal solver using distributed dynamic scheduling’, STAM J.
Matriz Anal. Appl. 23, 15-41.

. R. Amestoy, A. Guermouche, J.-Y. L’Excellent and S. Pralet (2006), ‘Hy-

brid scheduling for the parallel solution of linear systems’, Parallel Comput.
32, 136-156.

. Anderson and J. Dongarra (1989), Evaluating block algorithm variants in

LAPACK. In Proc. 4th Conference on Parallel Processing for Scientific Com-
puting, pp. 3-8.

. Anderson and J. Dongarra (1990a), Implementation guide for LAPACK. Tech-

nical report UT-CS-90-101, Computer Science Department, University of Ten-
nessee. LAPACK Working Note 18.

. Anderson and J. Dongarra (1990b), Evaluating block algorithm variants in

LAPACK. Technical report UT-CS-90-103, Computer Science Department,
University of Tennessee. LAPACK Working Note 19.

. Anderson and Y. Saad (1989), ‘Solving sparse triangular systems on parallel

computers’, Int. J. High Speed Comput. 1, 73-96.

. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. DuCroz,

A. Greenbaum, S. Hammarling, A. McKenney and D. Sorensen (1999),
LAPACK Users’ Guide, third edition, STAM.

. Anderson, D. Sheffield and K. Keutzer (2012), A predictive model for solving
small linear algebra problems in GPU registers. In Proc. IEEE 26th Interna-
tional Parallel and Distributed Processing Symposium: IPDPS 2012, pp. 2-13.

The URLs cited in this work were correct at the time of going to press, but the publisher
and the authors make no undertaking that the citations remain live or are accurate or
appropriate.

150 A. ABDELFATTAH et al.

H.

H.

C. Andrews and C. L. Patterson (1976), ‘Singular value decompositions and
digital image processing’, IEEE Trans. Acoust. Speech Signal Process. 24,
26-53.

Anzt (2012), Asynchronous and multiprecision linear solvers: Scalable and
fault-tolerant numerics for energy efficient high performance computing. PhD
thesis, Institute for Applied and Numerical Mathematics, Karlsruhe Institute
of Technology.

. Anzt, E. Chow and J. Dongarra (2015), Iterative sparse triangular solves for

preconditioning. In Euro-Par 2015: Parallel Processing (J. L. Traff, S. Hun-
old and F. Versaci, eds), Vol. 9233 of Lecture Notes in Computer Science,
Springer, pp. 650-661.

. Anzt, S. Tomov, J. Dongarra and V. Heuveline (2013), ‘A block-asynchronous

relaxation method for graphics processing units’, J. Parallel Distrib. Comput.
73, 1613-1626.

. Arioli and I. S. Duff (2008), Using FGMRES to obtain backward stability in

mixed precision. Technical report RAL-TR-2008-006, Rutherford Appleton
Laboratory.

. Arioli, J. W. Demmel and I. S. Duff (1989), ‘Solving sparse linear systems with

sparse backward error’, STAM J. Matriz Anal. Appl. 10, 165-190.

. Ashcraft, R. Grimes and J. Lewis (1998), ‘Accurate symmetric indefinite linear

equation solvers’, SIAM J. Matriz Anal. Appl. 20, 513-561.

. Ashcraft, R. Grimes, J. Lewis, B. W. Peyton and H. Simon (1987), ‘Progress

in sparse matrix methods in large sparse linear systems on vector supercom-
puters’; Int. J. Supercomput. Appl. 1, 10-30.

. Axelsson and P. S. Vassilevski (1991), ‘A black box generalized conjugate gradi-

ent solver with inner iterations and variable-step preconditioning’, SIAM J.
Matrixz Anal. Appl. 12, 625-644.

. Baboulin, D. Becker and J. Dongarra (2012), A parallel tiled solver for dense

symmetric indefinite systems on multicore architectures. In Proc. IEEE 26th
International Parallel and Distributed Processing Symposium: IPDPS 2012,
pp. 14-24. LAPACK Working Note 261.

. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek

and S. Tomov (2009), ‘Accelerating scientific computations with mixed pre-
cision algorithms’, Comput. Phys. Comm. 180, 2526-2533.

. Baboulin, J. Dongarra, J. Herrmann and S. Tomov (2013), ‘Accelerating linear

system solutions using randomization techniques’, ACM Trans. Math. Softw.
39, #8.

. Ballard, D. Becker, J. Demmel, J. Dongarra, A. Druinsky, I. Peled, O. Schwartz,

S. Toledo and I. Yamazaki (2013), Implementing a blocked Aasen’s algorithm
with a dynamic scheduler on multicore architectures. In Proc. IEEE 27th
International Parallel and Distributed Processing Symposium: IPDPS 2013,
pp- 895-907.

. Ballard, D. Becker, J. Demmel, J. Dongarra, A. Druinsky, I. Peled, O. Schwartz,

S. Toledo and I. Yamazaki (2014), ‘Communication-avoiding symmetric-
indefinite factorization’, SIAM J. Matriz Anal. Appl. 35, 1364—1406.

. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine and H. van der Vorst (1994), Templates for the Solution

ACCELERATED MULTICORE LINEAR ALGEBRA 151

of Linear Systems: Building Blocks for Iterative Methods, second edition,
STAM. Postscript file available at www.netlib.org/templates/Templates.html

R. F. Barrett, T. H. F. Chan, E. F. D’Azevedo, E. F. Jaeger, K. Wong and R. Y.
Wong (2010), ‘Complex version of high performance computing LINPACK
benchmark (HPL)’, Concurrency Computat. Pract. Exper. 22, 573-587.

R. H. Bartels, G. H. Golub and M. Saunders (1971), Numerical techniques in math-
ematical programming. In Nonlinear Programming, Academic Press, pp. 123—
176.

D. Becker, M. Baboulin and J. Dongarra (2012), Reducing the amount of pivoting
in symmetric indefinite systems. In 9th International Conference on Parallel
Processing and Applied Mathematics: PPAM 2011 (R. Wyrzykowski, J. Don-
garra, K. Karczewski and J. Wasniewski, eds), Vol. 7203 of Lecture Notes in
Computer Science, Springer, pp. 133-142.

A. Bendali, Y. Boubendir and M. Fares (2007), ‘A FETI-like domain decomposi-
tion method for coupling finite elements and boundary elements in large-size
problems of acoustic scattering’, Comput. Struct. 85, 526-535.

M. Benzi, W. Joubert and G. Mateescu (1999), ‘Numerical experiments with par-
allel orderings for ILU preconditioners’, Electron. Trans. Numer. Anal. 8, 88—
114.

K. Bergman et al. (2008), Exascale computing study: Technology challenges in
achieving exascale systems. DARPA IPTO ExaScale Computing Study.

P. Bientinesi, F. D. Igual, D. Kressner and E. S. Quintana-Ort{ (2010), Reduction
to condensed forms for symmetric eigenvalue problems on multi-core archi-
tectures. In Proc. 8th international Conference on Parallel Processing and
Applied Mathematics: PPAM 2009, Part 1, Springer, pp. 387-395.

C. Bischof (1993), A summary of block schemes for reducing a general matrix
to Hessenberg form. Technical report ANL/MCS-TM-175, Argonne National
Laboratory.

C. Bischof and C. Van Loan (1987), ‘The WY representation for products of House-
holder matrices’, STAM J. Sci. Statist. Comput. 8, s2—s13.

C. H. Bischof, B. Lang and X. Sun (2000), ‘Algorithm 807: The SBR Toolbox —
software for successive band reduction’, ACM Trans. Math. Softw. 26, 602—
616.

A. Bjorck (1996), Numerical Methods for Least Squares Problems, STAM.

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, 1. Dhillon, J. J.
Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker and
R. C. Whaley (1997), ScaLAPACK Users’ Guide, STAM.
www.netlib.org/scalapack/slug/

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall
and Y. Zhou (1995), Cilk: An efficient multithreaded runtime system. In
Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming: PPOPP ’95, ACM, pp. 207-216.

K. Braman, R. Byers and R. Mathias (2002a), ‘The multishift QR algorithm I:
Maintaining well-focused shifts and level 3 performance’, SIAM J. Matrix
Anal. Appl. 23, 929-947.

K. Braman, R. Byers and R. Mathias (2002b), ‘The multishift QR algorithm II:
Aggressive early deflation’, SIAM J. Matriz Anal. Appl. 23, 948-973.

152 A. ABDELFATTAH et al.

F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,
S. Thibault and R. Namyst (2010), hwloc: a generic framework for managing
hardware affinities in HPC applications. In Proc. IEEE 18th Euromicro Inter-
national Conference on Parallel, Distributed and Network-Based Computing:
PDP 2010, pp. 180-186.

J. Bunch and L. Kaufman (1977), ‘Some stable methods for calculating inertia and
solving symmetric linear systems’, Math. Comp. 31, 163-179.

A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek and S. Tomov (2006),
The impact of multicore on math software. In Applied Parallel Computing:
State of the Art in Scientific Computing, PARA 2006 (B. Kagstrom, E. Elm-
roth, J. Dongarra and J. Wasniewski, eds), Vol. 4699 of Lecture Notes in
Computer Science, Springer, pp. 1-10.

A. Buttari, J. Dongarra, J. Kurzak, P. Luszczek and S. Tomov (2008a), ‘Using
mixed precision for sparse matrix computations to enhance the performance
while achieving 64-bit accuracy’, ACM Trans. Math. Softw. 34, #17.

A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek and J. Kurzak (2007),
‘Mixed precision iterative refinement techniques for the solution of dense lin-
ear systems’, Int. J. High Performance Comput. Appl. 21, 457-466.

A. Buttari, J. Langou, J. Kurzak and J. Dongarra (2008b), ‘Parallel tiled QR fac-
torization for multicore architectures’, Concurrency Computat. Pract. Exper.
20, 1573-1590.

A. Buttari, J. Langou, J. Kurzak and J. Dongarra (2009), ‘A class of parallel tiled
linear algebra algorithms for multicore architectures’, Parallel Comput. Syst.
Appl. 35, 38-53.

A. Castaldo and R. Whaley (2010), Scaling LAPACK panel operations using paral-
lel cache assignment. In Proc. 15th AGM SIGPLAN Symposium on Principle
and Practice of Parallel Programming, pp. 223-232.

E. Chan, E. S. Quintana-Orti, G. Quintana-Orti and R. van de Geijn (2007),
Supermatrix out-of-order scheduling of matrix operations for SMP and multi-
core architectures. In SPAA ’07: Proc. 19th Annual ACM Symposium on
Parallel Algorithms and Architectures, ACM, pp. 116-125.

J. Choi (1995), A proposal for a set of parallel basic linear algebra subprograms.
Technical report UT-CS-95-292, University of Tennessee, Knoxville. LAPACK
Working Note 100.

E. Chow and A. Patel (2015), ‘Fine-grained parallel incomplete LU factorization’,
SIAM J. Sci. Comput. 37, C169-C193.

E. Chow, H. Anzt and J. Dongarra (2015), Asynchronous iterative algorithm for
computing incomplete factorizations on GPUs. In High Performance Com-
puting, Vol. 9137 of Lecture Notes in Computer Science, pp. 1-16.

R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt (2007), Concepts and
Applications of Finite Element Analysis, Wiley.

E. Cuthill and J. McKee (1969), Reducing the bandwidth of sparse symmetric
matrices. In Proc. 1969 24th National Conference: ACM 69, ACM, pp. 157—
172.

B. D. Datta (1995), Numerical Linear Algebra and Applications, Brooks Cole.

T. A. Davis and Y. Hu (1994), ‘The University of Florida sparse matrix collection’,
ACM Trans. Math. Softw. 38, #1.

ACCELERATED MULTICORE LINEAR ALGEBRA 153

J. W. Demmel (1997), Applied Numerical Linear Algebra, STAM.

Demmel, L. Grigori, M. Hoemmen and J. Langou (2008a), Implementing
communication-optimal parallel and sequential QR factorizations.
arXiv:0809.2407

J. Demmel, L. Grigori, M. Hoemmen and J. Langou (2012), ‘Communication-
optimal parallel and sequential QR and LU factorizations’, SIAM J. Sci.
Comput. 34, A206—A239. Also available as technical report UCB/EECS-2008-
89, EECS Department, University of California, Berkeley.

J. Demmel, Y. Hida, W. Kahan, X. S. Li, S. Mukherjee and E. J. Riedy (2006),
‘Error bounds from extra-precise iterative refinement’;, ACM Trans. Math.
Softw. 32, 325-351.

J. Demmel, Y. Hida, X. S. Li and E. J. Riedy (2007), Extra-precise iterative re-
finement for overdetermined least squares problems. Technical report EECS-
2007-77, UC Berkeley. LAPACK Working Note 188.

J. Demmel, O. Marques, B. N. Parlett and C. Vomel (2008b), ‘Performance and
accuracy of LAPACK’s symmetric tridiagonal eigensolvers’, SIAM J. Sci.
Comput. 30, 1508-1526.

. Doi (1991), ‘On parallelism and convergence of incomplete LU factorizations’,
Appl. Numer. Math. 7, 417-436.

T. Dong, V. Dobrev, T. Kolev, R. Rieben, S. Tomov and J. Dongarra (2014), A step
towards energy efficient computing: Redesigning a hydrodynamic application
on CPU-GPU. In Proc. IEEE 28th International Parallel and Distributed
Processing Symposium: IPDPS 2014, pp. 972-981.

. J. Dongarra (1983), ‘Improving the accuracy of computed singular values’, SIAM
J. Sci. Statist. Comput. 4, 712-719.

. Dongarra and R. C. Whaley (1995), A user’s guide to the BLACS v1.1, Technical
report UT-CS-95-281, University of Tennessee, Knoxville. LAPACK Working
Note 94, updated 5 May 1997 (version 1.1).

J. J. Dongarra, J. R. Bunch, C. B. Moler and G. W. Stewart (1979), LINPACK

Users’ Guide, STAM.

J. J. Dongarra, J. Du Croz, S. Hammarling and I. S. Duff (1990), ‘A set of Level 3
Basic Linear Algebra Subprograms’, ACM Trans. Math. Softw. 16, 1-17.

. Dongarra, M. Faverge, H. Ltaief and P. Luszczek (2011), Achieving numerical
accuracy and high performance using recursive tile LU factorization. Tech-
nical report ICL-UT-11-08, Computer Science Department, University of Ten-
nessee, Knoxville.

. Dongarra, M. Faverge, H. Ltaief and P. Luszczek (2012), ‘Exploiting fine-grain
parallelism in recursive LU factorization’, Advances in Parallel Computing,
Special Issue 22, 429-436.

J. J. Dongarra, F. G. Gustavson and A. Karp (1984), ‘Implementing linear algebra
algorithms for dense matrices on a vector pipeline machine’, SIAM Review

26, 91-112.

Dongarra, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov and A. YarKhan (2014),
‘Model-driven one-sided factorizations on multicore accelerated systems’, Int.
J. Supercomputing Frontiers and Innovations 1, #1.

J. J. Dongarra, C. B. Moler and J. H. Wilkinson (1983), ‘Improving the accuracy

of computed eigenvalues and eigenvectors’, SIAM J. Numer. Anal. 20, 23-45.

~

w2

—

—

[

[

~

154 A. ABDELFATTAH et al.

J. J. Dongarra, D. C. Sorensen and S. J. Hammarling (1989), ‘Block reduction of
matrices to condensed forms for eigenvalue computations’, J. Comput. Appl.
Math. 27, 215-227.

J. DuCroz, J. J. Dongarra and N. J. Higham (1992), ‘Stability of methods for
matrix inversion’, IMA J. Numer. Anal. 12, 1-19.

I. S. Duff and G. A. Meurant (1989), ‘The effect of ordering on preconditioned
conjugate gradients’, BIT 29, 635-657.

I. S. Duff and J. K. Reid (1983), ‘The multifrontal solution of indefinite sparse
symmetric linear equations’, ACM Trans. Math. Softw. 9, 302-325.

A. Edelman (1993), ‘Large dense numerical linear algebra in 1993: the parallel
computing influence’; Int. J. High Performance Comput. Appl. 7, 113-128.

V. Farra and R. Madariaga (1988), ‘Non-linear reflection tomography’, Geophys.
J. Int. 95, 135-147.

A. Frommer and D. B. Szyld (2000), ‘On asynchronous iterations’, J. Comput.
Appl. Math. 123, 201-216.

W. N. Gansterer, D. F. Kvasnicka and C. W. Ueberhuber (1999), Multi-sweep al-
gorithms for the symmetric eigenproblem. In Vector and Parallel Processing:
VECPAR’98, Vol. 1573 of Lecture Notes in Computer Science, Springer,
pp. 20-28.

M. Gates, A. Haidar and J. Dongarra (2014), Accelerating computation of eigen-
vectors in the dense nonsymmetric eigenvalue problem. In High Performance
Computing for Computational Science: VECPAR 2014, Springer, pp. 182—
191.

G. H. Golub and W. Kahan (1965), ‘Calculating the singular values and pseudo-
inverse of a matrix’, STAM J. Numer. Anal. 2, 205-224.

G. H. Golub and C. Reinsch (1971), Singular value decomposition and least
squares solutions. In Handbook for Automatic Computation II: Linear Algebra
(J. Wilkinson and C. Reinsch, eds), Springer, pp. 403-420.

G. H. Golub and C. Van Loan (1996), Matriz Computations, third edition, Johns
Hopkins University Press.

G. H. Golub and J. H. Wilkinson (1976), ‘Ill-conditioned eigensystems and the
computation of the Jordan canonical form’, SIAM Rev. 18, 578—619.

G. H. Golub and Q. Ye (2000), ‘Inexact preconditioned conjugate gradient method
with inner—outer iteration’, SIAM J. Sci. Comput. 21, 1305-1320.

J. F. Grear (2011), ‘Mathematicians of Gaussian elimination’, Notices Amer. Math.
Soc. 58, 782-792.

L. Grigori, J. Demmel and H. Xiang (2011), ‘CALU: a communication optimal LU
factorization algorithm’, SIAM. J. Matriz Anal. Appl. 32, 1317-1350.

M. Gu and S. C. Eisenstat (1995), ‘A divide-and-conquer algorithm for the bidi-
agonal SVD’, SIAM J. Matrix Anal. Appl. 16, 79-92.

F. Gustavson (1997), ‘Recursive leads to automatic variable blocking for dense
linear-algebra algorithms’, IBM J. Research and Development 41, 737-755.

B. Hadri, H. Ltaief, E. Agullo and J. Dongarra (2009), Enhancing parallelism of tile
QR factorization for multicore architectures. LAPACK Working Note 222.

B. Hadri, H. Ltaief, E. Agullo and J. Dongarra (2010), Tile QR factorization with
parallel panel processing for multicore architectures. In Proc. 24th IEEFE In-
ternational Parallel and Distributed Processing Symposium: IPDPS 2010. IN-
RIA HAL Technical report inria-00548899: https://hal.inria.fr/inria-00548899

- = o=o®

omoEm 2

ACCELERATED MULTICORE LINEAR ALGEBRA 155

. Haidar, C. Cao, A. YarKhan, P. Luszczek, S. Tomov, K. Kabir and J. Dongarra

(2014a), Unified development for mixed multi-GPU and multi-coprocessor
environments using a lightweight runtime environment. In Proc. IEEE 28th
International Parallel and Distributed Processing Symposium: IPDPS 2014,
pp- 491-500.

. Haidar, J. Kurzak and P. Luszczek (2013a), An improved parallel singular value

algorithm and its implementation for multicore hardware. In Proc. SC ’13: In-
ternational Conference for High Performance Computing, Networking, Stor-
age and Analysis, #90.

. Haidar, H. Ltaief and J. Dongarra (2011), Parallel reduction to condensed

forms for symmetric eigenvalue problems using aggregated fine-grained and
memory-aware kernels. In Proc. SC ’11: International Conference for High
Performance Computing, Networking, Storage and Analysis, ACM, #8.

. Haidar, H. Ltaief, P. Luszczek and J. Dongarra (2012), A comprehensive study

of task coalescing for selecting parallelism granularity in a two-stage bidi-
agonal reduction. In Proc. IEEE 26th International Parallel and Distributed
Processing Symposium: IPDPS 2012, pp. 25-35.

. Haidar, P. Luszczek and J. Dongarra (2014b), New algorithm for computing

eigenvectors of the symmetric eigenvalue problem. In 15th IEEFE International
Workshop on Parallel and Distributed Scientific and Engineering Computing:
PDSEC 2014 (Best Paper), pp. 1150-1159.

. Haidar, R. Solca, M. Gates, S. Tomov, T. C. Schulthess and J. Dongarra (2013b),

Leading edge hybrid multi-GPU algorithms for generalized eigenproblems in
electronic structure calculations. In Supercomputing (J. M. Kunkel, T. Ludwig
and H. W. Meuer, eds), Vol. 7905 of Lecture Notes in Computer Science,
Springer, pp. 67-80

. Haidar, S. Tomov, J. Dongarra, R. Solca and T. Schulthess (2014), ‘A novel hy-

brid CPU-GPU generalized eigensolver for electronic structure calculations
based on fine-grained memory aware tasks’, Int. J. High Performance Com-
put. Appl. 28, 196-209.

. Hammarling, J. Dongarra, J. Du Croz and R. Hanson (1988), ‘An extended

set of Fortran Basic Linear Algebra Subprograms’, ACM Trans. Math. Softw.
14, 1-32.

. W. Hammond and R. Schreiber (1992), ‘Efficient ICCG on a shared memory

multiprocessor’, Int. J. High Speed Comput. 4, 1-21.

. J. Hanson (1971), ‘A numerical method for solving Fredholm integral equations

of the first kind using singular values’, STAM J. Numer. Anal. 8, 616-626.

. Harrington (1990), ‘Origin and development of the method of moments for field

computation’, IEEE Antennas Propag. 32, 31-35.
L. Hess (1990), ‘Panel methods in computational fluid dynamics’, Annu. Rev.
Fluid Mech. 22, 255-274.

. J. Higham (2002), Accuracy and Stability of Numerical Algorithms, second edi-

tion, STAM.

. Hotelling (1933), ‘Analysis of a complex of statistical variables into principal

components’, J. Educ. Psych. 24, 417-441, 498-520.

. Hotelling (1935), ‘Simplified calculation of principal components’, Psychomet-

rica 1, 27-35.

156 A. ABDELFATTAH et al.

E.-J. Im, K. Yelick and R. Vuduc (2004), ‘Sparsity: Optimization framework for
sparse matrix kernels’, Int. J. High Perform. Comput. Appl. 18, 135-158.

Intel (2014), Intel® 64 and IA-32 architectures software developer’s manual.
http://download.intel.com/products/processor/manual /

E. Jaeger, R. Harvey, L. Berry, J. Myra, R. Dumont, C. Philips, D. Smithe,
R. Barrett, D. Batchelor, P. Bonoli, M. Carter, E. D’Azevedo, D. D’Ippolito,
R. Moore and J. Wright (2006), ‘Global-wave solutions with self-consistent
velocity distributions in ion cyclotron heated plasmas’, Nuclear Fusion
46, S397-S408.

E. R. Jessup and D. C. Sorensen (1989), A divide and conquer algorithm for com-
puting the singular value decomposition. In Proc. Third SIAM Conference on
Parallel Processing for Scientific Computing, STAM, pp. 61-66.

E. P. Jiang and M. W. Berry (1998), Information filtering using the Riemannian
SVD (R-SVD). In Solving Irreqularly Structured Problems in Parallel: Proc.
5th International Symposium, IRREGULAR ’98 (A. Ferreira, J. D. P. Rolim,
H. D. Simon and S.-H. Teng, eds), Vol. 1457 of Lecture Notes in Computer
Science, Springer, pp. 386-395.

T. Joffrain, E. S. Quintana-Orti and R. A. van de Geijn (2006), Rapid devel-
opment of high-performance out-of-core solvers. In Applied Parallel Com-
puting: State of the Art in Scientific Computing (J. Dongarra, K. Madsen
and J. Wasniewski, eds), Vol. 3732 of Lecture Notes in Computer Science,
Springer, pp. 413-422.

K. Kabir, A. Haidar, S. Tomov and J. Dongarra (2015), Performance analysis and
design of a Hessenberg reduction using stabilized blocked elementary trans-
formations for new architectures. In Proc. Symposium on High Performance
Computing, Society for Computer Simulation International, pp. 135-142.

B. Kagstrom, D. Kressner and M. Shao (2012), On aggressive early deflation in
parallel variants of the QR algorithm. In Applied Parallel and Scientific Com-
puting (K. Jénasson, ed.), Vol. 7133 of Lecture Notes in Computer Science,
Springer, pp. 1-10.

L. Karlsson and B. Kagstrom (2011), ‘Parallel two-stage reduction to Hessenberg
form using dynamic scheduling on shared-memory architectures’, Parallel
Computing 37, T71-782.

J. Kurzak and J. J. Dongarra (2007), ‘Implementation of mixed precision in solving
systems of linear equations on the Cell processor’, Concurrency Computat.
Pract. Exper. 19, 1371-1385.

J. Kurzak, A. Buttari and J. J. Dongarra (2008), ‘Solving systems of linear equa-
tions on the CELL processor using Cholesky factorization’, IEEE Trans. Par-
allel and Distributed Systems 19, 1-11.

B. Lang (1999), ‘Efficient eigenvalue and singular value computations on shared
memory machines’, Parallel Computing 25, 845-860.

J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari and J. J. Dongarra (2006),
Exploiting the performance of 32 bit floating point arithmetic in obtaining
64 bit accuracy. In Proc. 2006 ACM/IEEE Conference on Supercomputing.

C. L. Lawson, R. J. Hanson, D. Kincaid and F. T. Krogh (1979), ‘Basic linear
algebra subprograms for Fortran usage’, ACM Trans. Math. Softw. 5, 308—
323.

ACCELERATED MULTICORE LINEAR ALGEBRA 157

H. Ltaief, P. Luszczek, A. Haidar and J. Dongarra (2012), Enhancing parallelism
of tile bidiagonal transformation on multicore architectures using tree re-
duction. In 9th International Conference on Parallel Processing and Applied
Mathematics: PPAM 2011 (R. Wyrzykowski, J. Dongarra, K. Karczewski
and J. Wasniewski, eds), Vol. 7203 of Lecture Notes in Computer Science,
Springer, pp. 661-670.

D. Lukarski (2012), Parallel sparse linear algebra for multi-core and many-core
platforms: Parallel solvers and preconditioners. PhD thesis, Karlsruhe Insti-
tute of Technology (KIT), Germany.

P. Luszczek and J. Dongarra (2012), Anatomy of a globally recursive embedded
LINPACK benchmark. In Proc. 2012 IEEE Conference on High Performance
Ezxtreme Computing Conference: HPEC 2012.

P. Luszczek, H. Ltaief and J. Dongarra (2011), Two-stage tridiagonal reduction for
dense symmetric matrices using tile algorithms on multicore architectures. In
IEEFE International Parallel and Distributed Processing Symposium: IPDPS
2011, IEEE, pp. 944-955.

J. Mayer (2009), ‘Parallel algorithms for solving linear systems with sparse trian-
gular matrices’, Computing 86, 291-312.

O. Messer, J. Harris, S. Parete-Koon and M. Chertkow (2012), Multicore and
accelerator development for a leadership-class stellar astrophysics code. In
Proc. PARA 2012: Applied Parallel and Scientific Computing (P. Manninen
and P. Oster, eds), Vol. 7782 of Lecture Notes in Computer Science, pp. 92—
106.

H. W. Meuer, E. Strohmaier, J. J. Dongarra and H. D. Simon (2011), TOP500
Supercomputer Sites, 38th edition. www.netlib.org/benchmark/top500.html

C. B. Moler (1967), ‘Iterative refinement in floating point’, J. Assoc. Comput.
Mach. 14, 316-321.

C. B. Moler (1972), ‘Matrix computations with Fortran and paging’, Comm. Assoc.
Comput. Mach. 15, 268-270.

B. C. Moore (1981), ‘Principal component analysis in linear systems: Controllabil-
ity, observability, and model reduction’, IEEE Trans. Automatic Control 26,
17-32.

G. E. Moore (1965), ‘Cramming more components onto integrated circuits’, Elec-
tronics 38(8).

M. Naumov (2011), Parallel solution of sparse triangular linear systems in the
preconditioned iterative methods on the GPU. Technical report NVR-2011-
001, NVIDIA.

J.-C. Nédélec (2001), Acoustic and Electromagnetic Equations: Integral Represent-
ations for Harmonic Problems, Springer.

Y. Notay (2000), ‘Flexible conjugate gradients’, SIAM J. Sci. Comput. 22, 1444
1460.

W. Oettli and W. Prager (1964), ‘Compatibility of approximate solution of lin-
ear equations with given error bounds for coefficients and right-hand sides’,
Numer. Math. 6, 405-409.

J. Park, M. Smelyanskiy, N. Sundaram and P. Dubey (2014), Sparsifying syn-
chronization for high-performance shared-memory sparse triangular solver.

158 A. ABDELFATTAH et al.

In Supercomputing, Vol. 8488 of Lecture Notes in Computer Science, Springer,
pp- 124-140.

D. S. Parker (1995a), Random butterfly transformations with applications in com-
putational linear algebra. Technical report CSD-950023, Computer Science
Department, University of California.

D. S. Parker (1995b), A randomizing butterfly transformation useful in block matrix
computations. Technical report CSD-950024, Computer Science Department,
University of California.

E. L. Poole and J. M. Ortega (1987), ‘Multicolor ICCG methods for vector com-
puters’, SIAM J. Numer. Anal. 24, 1394-1417.

A. Pothen and F. Alvarado (1992), ‘A fast reordering algorithm for parallel sparse
triangular solution’, SIAM J. Sci. Statist. Comput. 13, 645—653.

E. Quaranta and D. Drikakis (2009), ‘Noise radiation from a ducted rotor in a
swirling-translating flow’, J. Fluid Mech. 641, 463-473.

E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan and E. Weissmann (2012),
‘Power-management architecture of the Intel microarchitecture code-named
Sandy Bridge’, IEEE Micro 32, 20-27.

M. Rozloznik, G. Shklarski and S. Toledo (2011), ‘Partitioned triangular tridiag-
onalization’, ACM Trans. Math. Softw. 37, 1-16.

Y. Saad (1993), ‘A flexible inner-outer preconditioned GMRES algorithm’, STAM
J. Sci. Comput. 14, 461-469.

Y. Saad (2003), Iterative Methods for Sparse Linear Systems, STAM.

J. H. Saltz (1990), ‘Aggregation methods for solving sparse triangular systems on
multiprocessors’, SIAM J. Sci. Statist. Comput. 11, 123-144.

R. Schreiber and C. Van Loan (1989), ‘A storage-efficient WY representation for
products of Householder transformations’, SIAM J. Sci. Statist. Comput.
10, 53-57.

V. Simoncini and D. B. Szyld (2003), ‘Flexible inner-outer Krylov subspace meth-
ods’, SIAM J. Numer. Anal. 40, 2219-2239.

D. J. Singh (1994), Planewaves, Pseudopotentials, and the LAPW Method, Kluwer.

R. D. Skeel (1980), ‘Tterative refinement implies numerical stability for Gaussian
elimination’, Math. Comput. 35, 817-832.

R. Solca, A. Kozhevnikov, A. Haidar, S. Tomov, J. Dongarra and T. C. Schulthess
(2015), Efficient implementation of quantum materials simulations on distrib-
uted CPU-GPU systems. In Proc. International Conference for High Per-
formance Computing, Networking, Storage and Analysis, ACM, pp. 1-10.

G. W. Stewart (1973), Introduction to Matriz Computations, Academic Press.

S. Toledo (1997), ‘Locality of reference in LU decomposition with partial pivoting’,
SIAM J. Matriz Anal. Appl. 18, 1065-1081.

S. Tomov, R. Nath and J. Dongarra (2010a), ‘Accelerating the reduction to upper
Hessenberg, tridiagonal, and bidiagonal forms through hybrid GPU-based
computing’, Parallel Computing 36, 645—654.

S. Tomov, R. Nath, P. Du and J. Dongarra (2009), MAGMA wversion 0.2 Users’
Guide.

S. Tomov, R. Nath, H. Ltaief and J. Dongarra (201056), Dense linear algebra solvers
for multicore with GPU accelerators. In Proc. IEEE IPDPS ’10, pp. 1-8.

ACCELERATED MULTICORE LINEAR ALGEBRA 159

L. Trefethen and R. Schreiber (1990), ‘Average case analysis of Gaussian elimina-
tion’, SIAM J. Math. Anal. Appl. 11, 335-360.

M. Tuma and M. Benzi (1998), ‘A comparative study of sparse approximate inverse
preconditioners’, Appl. Numer. Math 30, 305—340.

M. A. Turk and A. P. Pentland (1991), Face recognition using eigenfaces. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
1991: Proc. CVPR’91, IEEE, pp. 586-591.

K. Turner and H. F. Walker (1992), ‘Efficient high accuracy solutions with
GMRES(m)’, STAM J. Sci. Statist. Comput. 13, 815-825.

A. C.N. van Duin (1996), ‘Scalable parallel preconditioning with the sparse approx-
imate inverse of triangular matrices’, SIAM J. Matriz Anal. Appl 20, 987—
1006.

J. van den Eshof, G. L. G. Sleijpen and M. B. van Gijzen (2005), ‘Relaxation
strategies for nested Krylov methods’, J. Comput. Appl. Math. 177, 347-365.

H. van der Vorst (1982), ‘A vectorizable variant of some ICCG methods’, STAM J.
Sci. Statist. Comput. 3, 350-356.

H. A. van der Vorst and C. Vuik (1994), ‘GMRESR: A family of nested GMRES
methods’, Numer. Linear Algebra Appl. 1, 369-386.

O. Villa, M. Fatica, N. A. Gawande and A. Tumeo (2013a), Power/performance
trade-offs of small batched LU based solvers on GPUs. In 19th International
Conference on Parallel Processing: FEuro-Par 2013, Vol. 8097 of Lecture Notes
in Computer Science, pp. 813-825.

0. Villa, N. A. Gawande and A. Tumeo (2013b), Accelerating subsurface transport
simulation on heterogeneous clusters. In 2013 IEEFE International Conference
on Cluster Computing: CLUSTER, IEEE, pp. 1-8.

V. Volkov and J. W. Demmel (2008), LU, QR and Cholesky factorizations using
vector capabilities of GPUs. Technical report UCB/EECS-2008-49, University
of California, Berkeley. LAPACK Working Note 202.

C. Vuik (1995), ‘New insights in GMRES-like methods with variable precondition-
ers’, J. Comput. Appl. Math. 61, 189-204.

I. Wainwright and H. P. C. Sweden (2013), Optimized LU-decomposition with full
pivot for small batched matrices. In 2018 NVIDIA GPU Tech. Conf.

J. H. Wilkinson (1963), Rounding Errors in Algebraic Processes, Prentice Hall.

J. H. Wilkinson, ed. (1988), The Algebraic Eigenvalue Problem, Oxford University
Press.

M. Wolf, M. Heroux and E. Boman (2011), Factors impacting performance of
multithreaded sparse triangular solve. In High Performance Computing for
Computational Science: VECPAR 2010, Vol. 6449 of Lecture Notes in Com-
puter Science, Springer, pp. 32—44.

I. Yamazaki, S. Tomov and J. Dongarra (2015), ‘Mixed-precision Cholesky QR
factorization and its case studies on multicore CPU with multiple GPUs’,
SIAM J. Sci. Comput. 37, C307-C330.

I. Yamazaki, S. Tomov, T. Dong and J. Dongarra (2014), Mixed-precision ortho-
gonalization scheme and adaptive step size for improving the stability and
performance of CA-GMRES on GPUs. In 11th International Conference on
High Performance Computing for Computational Science: VECPAR 2014,
Revised Selected Papers (Best Paper Award), pp. 17-30.

160 A. ABDELFATTAH et al.

A. YarKhan, J. Kurzak and J. Dongarra (2011), QUARK Users’ Guide, Innov-
ative Computing Laboratory, Electrical Engineering and Computer Science,
University of Tennessee.

S. N. Yeralan, T. A. Davis and S. Ranka (2013), Sparse multifrontal QR on the
GPU. Technical report, University of Florida.

M.-C. Yeung and T. F. Chan (1995), Probabilistic analysis of Gaussian elimination
without pivoting. Technical report CAM95-29, Department of Mathematics,
University of California, Los Angeles.

T. J. Ypma (1995), ‘Historical development of the Newton—Raphson method’,
SIAM Review 37, 531-551.

Y. Zhang, M. Taylor, T. Sarkar, H. Moon and M. Yuan (2008), ‘Solving large
complex problems using a higher-order basis: Parallel in-core and out-of-core
integral-equation solvers’, IEEE Antennas Propag. 50, 13-30.

