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Abstract—In high-performance computing environments, in-
put/output (I/O) from various sources often contend for scarce
available bandwidth. Adding to the I/O operations inherent to
the failure-free execution of an application, I/O from check-
point/restart (CR) operations (used to ensure progress in the
presence of failures) place an additional burden as it increase
I/O contention, leading to degraded performance. In this work,
we consider a cooperative scheduling policy that optimizes the
overall performance of concurrently executing CR-based appli-
cations which share valuable I/O resources. First, we provide a
theoretical model and then derive a set of necessary constraints
needed to minimize the global waste on the platform. Our results
demonstrate that the optimal checkpoint interval, as defined by
Young/Daly, despite providing a sensible metric for a single appli-
cation, is not sufficient to optimally address resource contention
at the platform scale. We therefore show that combining optimal
checkpointing periods with I/O scheduling strategies can provide
a significant improvement on the overall application performance,
thereby maximizing platform throughput. Overall, these results
provide critical analysis and direct guidance on checkpointing
large-scale workloads in the presence of competing I/O while
minimizing the impact on application performance.

I. INTRODUCTION

Space-sharing high-performance computing (HPC) plat-

forms for the concurrent execution of multiple parallel appli-

cations is the prevalent usage pattern in today’s HPC centers.

In fact, space-sharing in this fashion is more common than

capability workloads that span the entire platform [1]. Fur-

thermore, while computational nodes are dedicated to a par-

ticular application instance, the interconnect links and storage

partition are typically shared amongst application instances.

Therefore, without careful consideration, network and storage

contention can reduce individual application and overall system

performance [2]. On these platforms, checkpoint/restart (CR)

is the most common strategy employed to protect applications

from underlying faults and failures. Generally, CR periodically

outputs snapshots (i.e. checkpoints) of the application’s global,

distributed state to some stable storage device. When an appli-

cation failure occurs, the last stored checkpoint is retrieved and

used to restart it. Typically, concurrently executing applications

independently decide when to take their own checkpoints.

There are two widely-used approaches to determine when an

application should commit a checkpoint: (i) using a fixed check-

point period (typically one or a few hours) for each application;

and (ii) using platform and application-specific metrics to deter-

mine its optimal checkpoint period. In the second approach, the

well-known Young/Daly formula [3], [4] yields an application

optimal checkpoint period,
√
2μC seconds, where C is the time

to commit a checkpoint and μ the Mean Time Between Failures

(MTBF) for the application: μ = μind

q , where q is the number

of processors enrolled by the application and μind is the MTBF

of an individual processor [5]. Both μ and C in the Young/Daly

formula are application-dependent, and optimal periods can be

quite different over the application spectrum.

Independent CR of concurrent application instances can

incur significant resource wastage, because they lead to an

inefficient usage of an already scarce resource, namely available

I/O bandwidth [6]. There are two major reasons for this:

• Application-CR I/O contention: On many systems, the I/O

subsystem does not have enough available usable bandwidth

to meet the requirements of the concurrent application work-

loads [6]. This congestion is expected to worsen going for-

ward with the increased importance of data intensive work-

flows in HPC. Let βtot be the total filesystem I/O bandwidth.

Concurrently executing applications typically perform regular

(non-CR) I/O operations throughout their execution, so that

only a fraction βavail of the total bandwidth remains available

for checkpoints. This fraction may be insufficient, particularly

when some applications perform intensive non-checkpoint I/O

and others may write very large checkpoints.

• CR-CR I/O contention: Most importantly, there is a high

probability of overlapping CR activity amongst concurrent

application instances. Consider the simple case where two

applications of same size checkpoint simultaneously a file of

the same size. Each will be assigned half the fraction βavail

to checkpoint, therefore the commits will take twice as long.

Such interferences can severely decrease application efficiency

and overall platform throughput: when the expected checkpoint

commit time used to compute the optimal checkpoint interval

differs from the actual checkpoint commit time, efficiency

will decrease. This is consistent with practical observations of

interference conducted on various HPC systems [7], [8] and is

confirmed by the experiments reported in Section VI.

In this work, we develop and investigate a cooperative CR
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scheduling strategy for concurrently executing HPC applica-

tions. Our objective is to assess the impact of such interferences

in the overall platform efficiency, and to design scheduling

algorithms that optimize I/O bandwidth availability for CR

activity. Using these cooperative algorithms, applications never

checkpoint concurrently but always in sequence, with a dy-

namic, priority-dependent frequency dictated by a cooperative

scheduler. It may be counterintuitive to give an I/O token to

each application, because one could expect that the aggregated

I/O bandwidth provided by the system is always sufficient

to allow for several applications to checkpoint concurrently.

However, concurrent checkpoints always incur interferences

and delays, and our simulations show that these interferences

have a tremendous impact on performance in many realistic

scenarios. On the contrary, our cooperative scheme eliminates

all interferences. There are two cases; (i) When enough I/O

bandwidth is available, each application can checkpoint with

its optimal, Young/Daly, period. In this case, scheduling ap-

plications to checkpoint in sequence is enough to provide an

optimal I/O strategy; (ii) When I/O bandwidth is scarce, it is no

longer possible to checkpoint each application with its optimal,

Young/Daly, period. In this case, our scheduling algorithm

provides an optimal checkpoint period that maximizes overall

platform throughput. This cooperative checkpoint process is

calculated such that there is no I/O interference and minimal

re-work to be done when failures occur.

The main contributions of this paper are the following: (i)

Development of a model allowing for the quantification of

the I/O interference of checkpointing applications sharing a

common underlying I/O substrate; (ii) Investigation of the costs

of various I/O-aware scheduling strategies through both steady-

state analysis as well as detailed simulations; (iii) Survey of a

number scheduling strategies: from oblivious algorithms simi-

lar to those currently deployed on many large-scale platforms,

to ones which exploit application knowledge in an effort to min-

imize the total system waste by scheduling the application with

the most critical I/O needs; and (iv) Extensive set of simulations

that assess the dramatic impact of checkpoint interference and

demonstrate the usefulness of cooperative strategies for current

and forthcoming HPC systems.

The rest of the paper is organized as follows. Our model

is described in Section II, followed by a description of the

various scheduling strategies in Section III. Section IV presents

a theoretical analysis of the model under a steady-state scenario,

and provides a lower bound of the optimal platform waste.

Section V describes the discrete event simulator used to quanti-

tatively compare the different scheduling strategies. Section VI

presents the results of the simulation, providing guidance on

the necessary I/O bandwidth for current and future systems.

Section VII surveys related work and is followed by a summary

and future directions outlined in Section VIII.

II. MODEL

Computational Platform Model: We consider a shared

platform comprised of computational nodes, storage resources

in the form of a parallel file system (PFS), and a network

that interconnects the nodes and storage resources. Applica-

tions are scheduled on the platform by a job scheduler such

that computational nodes are space-shared (dedicated) amongst

concurrent application instances. The I/O subsystem is time-

shared (contended) amongst application instances (i.e. multiple

applications performing I/O simultaneously result in a per-

application reduction in commit speed). Without loss of gen-

erality, we consider a linear interference model in which the

global throughput remains constant and is evenly shared among

contending applications, proportional to their size; a more

adversarial interference model can be substituted, if needed.

Application Workload Model: Applications can vary in

size (computational node count), duration, memory footprint

and I/O requirements. Application I/O entails loading an input

file at startup, performing regular I/O operations during their

main execution phase and storing an output file at completion.

Because applications are long-running, (typically, several hours

or days) and the platform is failure-prone, applications are

protected using coordinated CR that incurs periodic CR I/O.

To model these behavioral variations with minimal parame-

ters, we make the following simplifying assumptions: (i) There

is a large number of applications, but only a small number of

application classes, i.e., sets of applications with similar sizes,

durations, footprints and I/O needs; (ii) Excluding initialization

and finalization I/O, an application’s regular (non-CR) I/O

operations are evenly distributed over its makespan; and (iii)

Job makespans are known a priori. This allows us to ignore all

other sources of job disturbance except C/R overheads.

We use specific numbers and characteristics of application

classes based on documented production workloads, such as

those provided in the APEX workflows report on the Cielo

platform [9]. To avoid the side effects induced by hundreds

of completely identical jobs, we use a normal distributions for

job durations with a mean equal to original APEX value and

small (20%) standard deviation. In the rest of the paper, we

use the term job to denote a specific application instance, and

application class to denote a set of applications with similar

characteristics.

Checkpoint Period and I/O Interference: Both application

computation and CR generate I/O requests. In both cases,

activity is scheduled using an I/O scheduling algorithm (see

Section III). As described above, steady-state application I/O is

regular. However, CR I/O periodicity, P , depends upon the CR

policy being used. In our model, applications either checkpoint

using an application-defined periodicity or using Young and

Daly’s [3], [4] optimal checkpoint period detailed in Section I.

The parameters in this formula are dependent upon application

features (checkpoint dataset size) and platform features (system

reliability and I/O bandwidth). For fixed, application-defined

periods, a common heuristic in compute centers is to take a

checkpoint every hour – capping the worst case amount of lost

work at one hour. In the reminder of this paper we will refer to

the two variants as Fixed (with a 1 hour period unless otherwise

specified) and Daly.

Traditionally, when a job Ji of class Ai completes a check-

point, its next checkpoint is scheduled to happen Pi − Ci
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instants later (and the first checkpoint is set at date Pi). With

potential CR I/O interference, the checkpoint commit may

last longer than Ci, and setting the appropriate checkpoint-

ing period can be challenging. Additionally, I/O scheduling

algorithms that try to mitigate I/O interference can impose

further CR I/O delays. In other words, the traditional strategy

of scheduling subsequent checkpoints at Pi − Ci yields the

desired checkpointing period Pi only in interference-free sce-

narios. CR I/O delays (induced by interferences or scheduling

delays) dilate the checkpoint duration to Cdilated, and the

effective period differs from the desired period by the difference

Cdilated − Ci. Section III discusses how each I/O scheduling

algorithm handles this discrepancy.

Job Scheduling Model: To evaluate the scheduling poli-

cies, we consider a finite segment, typically lasting a few days,

of a representative schedule where the computing resource

usage by each application instance (job) in each class remains

nearly constant. Of course, with varying job execution times,

we cannot enforce a fixed proportion of each application class

at every instant. However, we ensure the proper proportion is

enforced on average throughout the schedule execution. Simi-

larly, we enforce that at every instant during the finite segment,

at least 98% of the nodes are enrolled for the execution. This

allows us to compare actual (simulated) performance with the

theoretical performance of a co-scheduling policy that opti-

mizes the steady-state I/O behavior of the job portfolio, assum-

ing that all processors are used. We shuffle and simultaneously

present all jobs to the scheduler, which uses a simple, greedy

first-fit algorithm. We resubmit failed jobs with a new wall-time

equal to the fraction that remained when the last checkpoint

commit started. In this case, input I/O becomes recovery I/O;

output I/O is unmodified.

The Formal Model: We consider a set A of |A| ap-

plications classes A1, . . . A|A| that execute concurrently on a

platform with N nodes. Application class Ai specifies: (i) ni:

the number of jobs in Ai; (ii) qi: the number of nodes used by

each job in Ai; (iii) Pi: the checkpoint period of each job in

Ai; and (iv) Ci and Ri: the checkpoint and recovery durations

for each job in Ai when there is no interference with other I/O

operations. Jobs inherit their characteristics from their classes.

For a job Jj , we use qj , Pj , Cj and Rj to denote respectfully

the number of nodes, checkpoint period, and checkpoint and

recovery durations of the application class to which Jj belongs.

We let PDaly(Jj) =
√
2Cjμj be the Daly period [3], [4] of a

job Jj , where μj = μind

qj
and μind is the MTBF of an individual

processor [5]. At each instance, we schedule as many jobs as

possible. Jobs that are subject to failures are restarted at the

head of the scheduling queue, as to restart immediately on the

same compute nodes previously used (in most cases, only one

node has failed and is replaced by a hot spare).

III. I/O SCHEDULING ALGORITHMS

In this section, we present the application I/O scheduling

algorithms used in this study. The first algorithm, Oblivious,

represents the status-quo in which I/O activities are scheduled

independently and may incur slowdowns due to I/O contention.

The second algorithm, Ordered, coordinates I/O activity to

eliminate interference: I/O operations are scheduled in a First-

Come-First-Serve (FCFS) fashion and only one I/O operation

executes at any given time, while other I/O requests are blocked

until their turn comes. The third algorithm, Ordered-NB, is

similar except that jobs that are waiting for the I/O token to

checkpoint continue working until their turn comes. Lastly, our

new heuristic, Least-Waste improves on Ordered-NB by giving

the I/O token to the I/O operation that will minimize system

waste. Note that unlike the blocking approaches (Oblivious and

Ordered), non-blocking optimizations (Ordered-NB and Least-
Waste) may require application code refactoring.

A. Oblivious I/O Scheduling
In Oblivious I/O scheduling, jobs are executed to fill-up the

system based on processor availability, and their I/O workload

(including CR activities) are not coordinated by the system.

Instead, jobs use the parallel file system assuming they are

the sole user – with no modifications made to their access

patterns to accommodate for possible interference. One has ob-

served that concurrent I/O resource access can decrease the I/O

bandwidth observed by applications [10]. Under the conditions

of an under-provisioned I/O substrate, our model gives each

I/O stream a decrease in bandwidth linearly proportional to

the number of competing operations. We account for the ad-

ditional delays imposed by this decreased available bandwidth

as waste. Since subsequent checkpoints are scheduled to start

after Pi−Ci, and delays may result in checkpoint commit times

longer than Ci, the resultant checkpoint period may be longer

than Pi. This is consistent with a trivial I/O policy that does not

consider potential contention.

B. Blocking Ordered FCFS I/O Scheduling
A simple optimization to the Oblivious scheme is to favor one

jobs’ I/O over all others. While the overall throughput may re-

main unchanged (given an efficient filesystem implementation),

the favored job completes its I/O workload faster (i.e., in time

Ci for a job of class Ai). In the Ordered scheme, I/O requests

are performed sequentially, in request arrival order. Jobs with

outstanding I/O requests are blocked until their requests are

completed. Assuming a favorable linear interference model, a

simple workload with two jobs can show the potential advan-

tage of the Ordered over Oblivious strategy. If the two jobs

simultaneously request I/O transfers of similar data volume, V ,

in the Oblivious strategy, both jobs take V
βavail

2

time to complete

their I/O. In the Ordered strategy, the first scheduled job takes

only V
βavail

, while the second job waits V
βavail

before its own I/O

starts, but then executes at full available bandwidth completing

in 2V
βavail

. Thus, reducing I/O interference reduces the average I/O

completion time (although fairness may be decreased). Once

again, however, observed checkpoint durations may increase

past Ci, due to I/O scheduling wait time, and the checkpointing

period may be, on average, larger than the desired Pi.

C. Non-Blocking Ordered-NB FCFS I/O Scheduling
The previous strategy trades the cost of I/O interferences for

idle time, as jobs perform a blocking (idle) wait for the I/O to-
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ken. If the application developer can refactor the program code

to continue computing while awaiting I/O request completions,

it becomes possible to replace otherwise idle wait time with

useful computation. In the Ordered-NB algorithm, when the

previous checkpoint ends at time tnow, a tentative time for the

next checkpoint is set at treq = tnow +Pi −Ci. At time treq , a

non-blocking I/O request is made to request the I/O token – the

I/O token is still scheduled FCFS according to request arrival

time. The job continues its computation until the scheduler

informs it that the I/O token is available. At this point, the job

must generate its checkpoint data as soon as possible (or after a

short synchronization1). In most applications, the granularity of

the work is small enough for a simple approach to be efficient:

applications can use existing APIs in SCR [11] or FTI [12] to

regularly poll if a checkpoint should be taken at this time. In

this work, we assume that this re-synchronization cost is neg-

ligible relative to the checkpoint commit duration. Postponing

checkpoint I/O increases a job’s exposure to failures. However,

if the job successfully commits the postponed checkpoint, upon

a subsequent failure, the job would restart from the time at

which the postponed checkpoint was taken, not at treq – a fact

that may mitigate the increased risk exposure when compared

to Ordered and Oblivious algorithms.

D. Variants

The periods Pi of the checkpointing requests are input

parameters to the three strategies Oblivious, Ordered and

Ordered-NB. In Section V, we instantiate each strategy with

two variants: (i) using a fixed checkpointing period for each

job; and (ii) using the Young/Daly period of each job.

E. Least-Waste Algorithm

Finally, our Least-Waste algorithm further refines the

Ordered-NB algorithm by issuing the I/O token to the job whose

I/O request minimizes the total expected waste (explained

hereafter), rather than simply based on request arrival order.

Given the time-dependent nature of this decision, the selection

may not be a global optimum, but only an approximation

given currently available information about the system status.

The Least-Waste algorithm assumes that jobs issue checkpoint-

ing requests according to their Daly period2. For each I/O

scheduling decision, at time t (when a previous I/O operation

completes), we consider a pool of r + s candidates from two

different categories:

• Category IO-CANDIDATE CIO: Jobs Ji, 1 ≤ i ≤ r with an

(input, output or recovery) I/O request of length vi seconds and

enrolls qi processors. Ji initiated its I/O request di seconds ago

and has been idle for di seconds.

• Category CKPT-CANDIDATE CCkpt: Jobs Ji, r + 1 ≤ i ≤
r + s, with a checkpoint duration of Ci seconds and enrolls qi
processors. Ji took its last checkpoint di seconds ago and keeps

1In user-level checkpointing, the job typically finishes its current computing
block before generating its checkpoint data.

2Fixed checkpointing makes little sense in the Least-Waste strategy, it is
designed to optimize checkpoint frequencies across all jobs.

executing until the I/O token is available for a new checkpoint.

Since Ji is a candidate, di ≥ PDaly(Ji).
If we select job Ji to perform I/O, the expected waste Wi

incurred to the other r+ s− 1 candidate jobs in CIO ∪ CCkpt is

computed as follows. Assume first that Ji ∈ CIO. Then Ji will

use the I/O resource for vi seconds:

• Every other job Jj ∈ CIO stays idle for vi additional seconds,

hence its waste Wi(j) is Wi(j) = qj(dj +vi) since there are qj
processors enrolled in Jj that remain idle for dj + vi seconds.

For Jj ∈ CIO, the waste Wi(j) is deterministic.

• Every job Jj ∈ CCkpt continues executing for vi additional

seconds, hence will be exposed to the risk of a failure with

probability vi/μj , where μj = μind/qj . The cost of such a

failure will be vi/2 seconds on average. Thus, overall, the qj
processors will have to recover and re-execute dj+vi/2 seconds

of work, hence we have Wi(j) = vi

μj
qj(Rj + dj + vi

2 ) =
vi

μind
q2j (Rj + dj + vi

2 ), where Rj is the recovery time for Jj .

For Jj ∈ CCkpt, the waste Wi(j) is probabilistic.

Altogether, the expected waste Wi incurred to the other

r + s − 1 candidate jobs is Wi =
∑

Jj∈CIO,j �=i Wi(j) +∑
Jj∈CCkpt

Wi(j). We obtain

Wi = vi ×
(∑

1≤j≤r,j �=i qj(dj + vi) +
∑

r+1≤j≤r+s

q2j
μind

(Rj + dj +
vi
2

)

⎞
⎠

(1)

Assume now that the selected job Ji ∈ CCkpt. Then Ji will

use the I/O resource for Ci seconds instead of vi seconds for

Ji ∈ CIO. We directly obtain the counterpart of Equation (1)

for its waste Wi:

Wi = Ci ×
(∑

1≤j≤r qj(dj + Ci) +
∑

r+1≤j≤r+s,j �=i

q2j
μind

(Rj + dj +
Ci
2

)

⎞
⎠

(2)

Finally, we select the job Ji ∈ CIO ∪ CCkpt whose waste Wi

is minimal.

F. Feasibility of Cooperative Strategies

The cooperative strategies (Ordered, Ordered-NB, and Least-
Waste) require a form of synchronization to be implemented.

This synchronization can happen at the filesystem level for

Ordered: metadata servers in the filesystem can select which

I/O stream is given the priority, and in the extreme case, give

access to the I/O storage nodes only to a given application

(e.g. by using the technology proposed in CALCioM, [10]);

however, Ordered-NB and Least-Waste cannot be implemented

without modifying the applications, as work must continue until

the access is granted. Operating and runtime systems should

provide these strategies at the level of the checkpoint library

(e.g. inside SCR or FTI). These libraries already provide APIs

for the applications to get informed when a checkpoint is

desirable, and applications that use these libraries regularly poll

the system to decide if a checkpoint should be started.

Moreover, checkpointing libraries try to take advantage of

the memory hierarchy to checkpoint first the process memory

on unreliable (but fast) media, and then to upload the check-

points in the background, while the application proceeds to

compute. As the I/O Interference scheduling strategies rely on

knowing when a checkpoint is started and when it is complete,
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implementing that strategy at the checkpointing library level is

thus the natural place.

IV. LOWER BOUND

We now derive a lower bound for optimal platform waste.

When we assess the performance of the scheduling algorithms

presented in Section III, we also compare their relative per-

formance to this lower bound (in Section VI). We envision a

(theoretical) scenario in which the platform operates in steady-

state, a constant number of jobs per application class spanning

the entire platform. We also assume that the I/O bandwidth

βavail available for CR operations remains constant throughout

execution. This amounts to ignoring initial input and final

output I/O operations, or more precisely, to assuming these

operations span the entire execution of the jobs. Without this

assumption, we would need to account for job durations; this

renders the steady-state analysis intractable. We determine the

optimal checkpointing period for each application class with

the objective of minimizing the total waste of the platform; or

equivalently, of maximizing the total throughput. To complicate

this analysis, these optimal periods may not be achievable,

hence we derive a lower bound of the optimal waste.

In steady-state operation, there are ni jobs of class Ai, each

using qi nodes, and with checkpoint time Ci. Because we

orchestrate checkpoints to avoid CR-CR interferences, we have

Ci = sizei

βavail
, where sizei denote the size of the checkpoint file

of all jobs of class Ai. The waste of a job is the ratio of time the

job spends doing resilience operations by the time it does useful

work. The time spent performing resilience operations include

the time spent during each period to checkpoint; and in case of

failure, the time to rollback to the previous checkpoint and the

time to recompute lost work. We express the waste Wi of a job

Ji of class Ai that checkpoints with period Pi as [5]:

Wi = Wi(Pi) =
Ci

Pi
+

qi
μ
(
Pi

2
+Ri) (3)

Let W be the waste of the platform, defined as the weighted

arithmetic mean of the Wi for all applications, where each

application is weighted by its number of computing nodes:

W =
∑
i

niqi
N Wi (4)

In the absence of I/O constraints, the checkpointing period

can be minimized for each job independently. Indeed, the opti-

mal period for a job of class Ai is obtained by minimizing Wi in

Equation (3). Differentiating and solving δWi

δPi
= − Ci

P 2
i
+ qi

2μ =

0, we readily derive that

Pi =

√
2
μ

qi
Ci =

√
2μiCi (5)

where μi is the MTBF of class Ai applications, and we retrieve

the Daly period Pi = PDaly(Ji).
I/O constraints may impose the use of sub-optimal periods.

If each job of class Ai checkpoints in time Ci during its period

Pi (hence without any contention), it uses the I/O device during

a fraction Ci

Pi
of the time. The total usage fraction of the I/O

device is F =
∑

i
niCi

Pi
and cannot exceed 1. We have to solve

the following optimization problem: find the set of values Pi

that minimize W in Equation (4) subject to the I/O constraint:

F =
∑
i

niCi

Pi
≤ 1 (6)

Hence the optimization problem is to minimize:

W =
∑
i

niqi
N

(
Ci

Pi
+

qi
μ
(
Pi

2
+Ri)

)
(7)

subject to Equation (6). Using the Karush-Kuhn-Tucker condi-

tions [13], we know that there exists a nonnegative constant λ

such that− δW
δPi

= λ δF
δPi

for all i. We derive that niqiCi

NP 2
i
− niq

2
i

2μN =

−λniCi

P 2
i

for all i. This leads to:

Pi =

√
2μN
q2i

( qi
N + λ

)
Ci (8)

for all i. Note that when λ = 0, Equation (8) reduces to

Equation (5). Because of the I/O constraint in Equation (6),

we choose for λ the minimum value such that Equation (6)

is satisfied. If λ �= 0, this will lead to periods Pi larger than

the optimal value of Equation (5). Note that there is no closed-

form expression for the minimum value of λ, it has to be found

numerically. Altogether, we state our main result:

Theorem 1. In the presence of I/O constraints, the optimal
checkpoint periods are given by Equation (8), where λ is the
smallest non-negative value such that Equation (6) holds. The
total platform waste is then given by Equation (7).

The optimal periods may not be achievable, because Equa-

tion (6) is a necessary, but not sufficient condition. Even though

the total I/O bandwidth is not exceeded, meaning there is

enough capacity to take all the checkpoints at the given periods,

we would still need to orchestrate these checkpoints into an

appropriate, periodic, repeating pattern. In other words, we only

have a lower bound of the optimal platform waste.

V. SIMULATION FRAMEWORK

We use discrete event simulations to evaluate the

performance of the proposed approaches. The simulator

is publicly available from https://github.com/SMURFSorg/
InterferingCheckpoints. Simulations are instantiated by a set

of initial conditions that define a set of application classes, the

distribution of resource usage between application classes, and

the main characteristics of the platform on which application

instances will execute.
High level parameters: Application classes are character-

ized by: initial input and output sizes, checkpoint size, quantity

of work to execute, number of nodes to use, volume of I/O to

execute during job makespan, and job compute time.

Platforms are characterized by the number of nodes, a system

Mean Time Between Failures, and an aggregated I/O subsystem

bandwidth that is shared among the nodes. For simplicity, we

assume symmetric read and write filesystem bandwidths, hence

Ci = Ri for each application class, Ai.
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A simulation first randomly selects a list of jobs that are

instances of the different application classes. This list is ordered

by job priority (i.e., arrival time for our FCFS algorithms) and

constrained by two parameters: the minimum simulated time to

consider, and the relative proportion of platform resources used

by each application class (based on the APEX report [9]). As

an example, we consider the subset of application classes given

by the APEX workflows report for the subset of application

classes of LANL (EAP, LAP, Silverton and VPIC), simulated

as if executed on the Cielo supercomputer, for a minimal exe-

cution time of 60 days. A simulation will randomly instantiate

one of the four classes, assigning a work duration uniformly

distributed between 0.8w and 1.2w, where w is the typical

walltime specified for the chosen application class, and count

the resource allocated for this application class, until 1.) the

simulated execution would necessarily run for at least 2 months,

and 2.) resources used by the selected class is within 1% of the

target goal of the representative workload percentage defined in

the APEX workflows report (see Table I).

In addition to the jobs list, we generate a set of node failure

times according to an exponential distribution with the specified

MTBF. At the chosen times, we randomly choose which of the

nodes fail. These jobs list and failure times constitute the initial

conditions of a simulation.

Job Scheduling: We compute a job schedule (start and end

times for all jobs in the list) using a simple first-fit strategy

considering: job characteristics, job priority and resource avail-

ability. We simulate online scheduling; whenever a job ends at

a date different than the initially planned end date (because of

failures, or because the I/O interference made the job extend

after its planned end date), the schedule is amended by re-

scheduling all jobs that were not started yet.

Execution Simulation: Once a job is started, it executes

its initial input. It then, 1.) executes some work for a certain

period, and 2.) checkpoints. These two steps are repeated until

all planned work is executed, after which the final output is

executed by the job, before it ends. At any time during the

execution, a node hosting the job may be subject to a failure

(according to the pre-computed failure times and location).

When that happens, the job is terminated and a new job is

added to the list of jobs to schedule. That new job represents

the restart of the failed one; it has similar characteristics except

its initial input corresponds to the restart size, and its work

time corresponds to the remaining work from the last successful

checkpoint. To reflect a common job scheduling policy on

shared platforms, restarted jobs are set to the highest priority,

maximizing their chances of obtaining an immediate allocation

and continuing what was the original (failed) job execution.

Interference Models: Our simulations implement each of

the interference models and avoidance strategies defined in

Section III: for Oblivious-Fixed and Oblivious-Daly, interfering

I/O and checkpoints get a portion of the available aggregated

bandwidth proportional to the number of nodes they use, and

inversely proportional to the number of nodes involved for

all jobs doing I/O; for Ordered-Fixed and Ordered-Daly, I/O

requests and checkpoints are ordered in a first-come first-served

Workflow EAP LAP Silverton VPIC

Workload percentage 66 5.5 16.5 12

Work time (h) 262.4 64 128 157.2

Number of cores 16384 4096 32768 30000

Initial Input (% of memory) 3 5 70 10

Final Output (% of memory) 105 220 43 270

Checkpoint Size (% of memory) 160 185 350 85
TABLE I

LANL WORKLOADS FROM THE APEX WORKFLOWS REPORT.

basis, and when they are selected, obtain the full bandwidth;

for Ordered-NB-Fixed and Ordered-NB-Daly, I/O requests and

checkpoints are served in order, but the simulation adds all

the time waiting for a checkpoint to start as progress in the

computation for the job; and for Least-Waste, the same is

implemented, but I/O is ordered to minimize the waste in

Equations (1) and (2).

Note that in the scheduled I/O methods (Ordered-NB and

Least-Waste), initial inputs and final outputs are blocking (the

job cannot progress during the I/O until it is served), but

checkpoints are non-blocking.

Method of statistics collection from simulations: We com-

pute the distribution of performance of each strategy using the

Monte Carlo method: a large set of initial conditions (at least a

thousand) is randomly chosen, and we simulate the execution of

the system over each element of this set for each strategy. Since

simulations for the various scheduling strategies have different

initial conditions (including job mix), it would be misleading

to compare simple averages of the time spent doing useful

work (or time wasted) across simulation instances. Instead, we

collect performance statistics over a fixed length segment of

each simulation and extract and compare waste/work ratios that

can be compared appropriately. The segment excludes the first

and last days of the simulation: during the first day, jobs may

be synchronized artificially because a subset starts at the same

date, and during the last day, large amounts of resources may

not be used as new jobs are not added to the workload. For each

aggregate measurement, we compute and show mean, first and

ninth decile, and first and third quartile statistics.

VI. RESULTS

A. LANL APEX Simulation Workflows on Cielo

We consider the workload from LANL found in the APEX

Workflows report [9] that consists of four applications classes:

EAP, LAP, Silverton and VPIC. The main characteristics of

these classes are reported in Table I. We simulate the behavior

of these applications on the Cielo Platform. Cielo was a 1.37

Petaflops capability system operated from 2010 to 2016 at

the Los Alamos National Laboratory. It consisted of 143,104

cores, 286 TB of main memory, and a parallel filesystem

with a theoretical maximum capacity of 160GB/s. Cielo was

chosen for this initial analysis due to the availability of the

report [9], something not available for other platforms. Later

on, we consider similar workloads on a more modern platform.

The baseline in this comparison comprises a set of simula-

tions with neither faults, nor checkpoints, nor regular I/O inter-

ference. For these simulations, we selected a 60-day execution

segment, and computed the resources used by the jobs during

this period, i.e. the total time each node spent on (non-CR)
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Fig. 1. Slowdown of checkpoints due to interference for the APEX Workshop
workflow when simulating the Cielo platform with an effective bandwidth of
160GB/s, 80GB/s and 40GB/s.

I/O and computation in a failure-free environment. For the I/O

scheduling techniques presented in Section III, we compute the

resource waste as the total time nodes spend not progressing

jobs. In the figures, we represent the performance of each

strategy by computing the waste, i.e. the ratio of the resource

waste over a segment of 60 days divided by the application

resource usage over that same segment for the baseline sim-

ulation. Each simulation is conducted over 1,000 times; the

candlestick extremes represent the first and last decile of the

measures, while the boxes represent the first and last quartile,

and the center the mean value.

a) Slowdown of Checkpoints due to Interference: To il-

lustrate how independent checkpoints interfere with each other,

we measured how many resource applications spend their time

checkpointing, relative to the same checkpointing strategy,

but without interference. Applications either apply the fixed

checkpoint period of one hour, or the optimal period give

by the Young/Daly Formula. When two or more checkpoints

overlap, we consider two scenarios: either they are slowed

down proportionally to the amount of processes that share the

bandwidth (Oblivious), or the first checkpoint completes before

the next one can start (Ordered).

Depending on the filesystem availability and the MTBF of

the machine (which impacts the results by introducing more

or less failures, but also by changing the optimal checkpoint

interval), applications spend more time to commit their check-

point than they would if there was no interference. Figure 1

illustrates how much the average checkpoint commit is slowed

down as a function of the machine MTBF, for three system

I/O bandwidths: 160GB/s, which is the theoretical peak of the

machine, 80GB/s, and 40GB/s, which represent a degraded but

realistic value of the achievable bandwidth when there is no

interference. When the system bandwidth is at its peak (top of

the figure), the Young/Daly formula provides a critical tool to

minimize interference; still, when no cooperation between the

applications is enforced, a significant interference is observed,

and applications spend in average twice the time in checkpoint-
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Fig. 2. Waste as a function of the system bandwidth for the seven I/O and
Checkpointing scheduling strategies.

ing that they did expect. A simple interference management

policy, like Ordered, reduces this dramatically, for all values of

the MTBF. However, when the bandwidth is more constrained

(bottom of the figure), and when the node MTBF is shorter,

interferences introduce a significant slowdown for all strategies.

b) The Impact of Available System Bandwidth: First, we

explore the performance of each approach in a failure-prone

environment. Figure 2 represents the waste on the simulated

platform, assuming the node MTBF μind of 2 years (i.e. a

system MTBF of 1h). We vary the filesystem bandwidth from

40 GB/s to 160GB/s in order to evaluate the impact of this

parameter. We observe three classes of behavior: Oblivious-

Fixed and Ordered-Fixed exhibit a waste that decreases as the

bandwidth increases, but remains above 40% even at the max-

imum theoretical I/O bandwidth; Ordered-NB-Daly, Ordered-
NB-Fixed, and Least-Waste quickly decrease to below 20%

of waste, and reach the theoretical model performance3; and

Oblivious-Daly and Ordered-Daly start at the same level of

efficiency as Oblivious-Fixed and Ordered-Fixed, and slowly

reach 20% of waste as the bandwidth increases. Note, in some

cases the error bars dip below the theoretical lower bound.

In the simulations, failures have an exponential probability

distribution centered around the desired MTBF. For some runs,

a lower number of failures experienced during the simulation

results in a larger MTBF than the average used in the lower-

bound formula; such instances can experience a waste lower

than the theoretical model.

This figure shows that with a high frequency of failures,

providing each job with the appropriate checkpoint interval

is paramount to preventing unnecessary (or even detrimental)

checkpoints: the two strategies that render high waste despite

high bandwidth rely on a fixed 1h interval. However, it also

shows that this is not the sole criteria that should be taken

into account, nor a necessary condition to extract performance.

Even with favorable bandwidth, Oblivious-Daly and Ordered-

Daly experience nearly twice the waste of the other strategies

with the same checkpointing period. All strategies that decouple

the execution of the application from the filesystem availability

3Maple code to compute the performance predicted by the theoretical model
is available at https://github.com/SMURFSorg/InterferingCheckpoints.
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Fig. 3. Waste as a function of the system MTBF for the seven I/O and
Checkpointing scheduling strategies.

(Ordered-NB-Daly, Ordered-NB-Fixed, Least-Waste) exhibit

considerably better performance despite low bandwidth.

Notably, Least-Waste remains the most efficient technique

in this study, and reaches the theoretical performance given

by Equation (7) for steady-state analysis. This illustrates the

efficiency of the proposed heuristic (Equations (1) and (2)) to

schedule checkpoints and I/O in a way that avoids interferences,

allowing the system to behave as if no interference is experi-

enced, in most cases. The high variation shows that a minority

of the runs experienced a significantly higher waste, but such is

the case for all algorithms.

c) The Impact of System Reliability: Next, we explore

the performance of each approach under low bandwidth (and

thus high probability of interference). A scenario with such low

bandwidth is not unrealistic. As shown in Luu et al [6], practical

bandwidth can be considerably lower than theoretical. Figure 3

represents the waste on the simulated platform, assuming the

aggregated filesystem bandwidth of the system is 40GB/s. We

vary the node MTBF μind from 2 years (1h of system MTBF)

to 50 years (24h of system MTBF) in order to evaluate the

impact of this parameter. Similar to Figure 2, we observe three

classes of behavior: Oblivious-Fixed and Ordered-Fixed exhibit

a waste that remains constant around 80% for all values of

the MTBF. These approaches are critically dependent on the

filesystem bandwidth, and a lower frequency of failures does

not significantly improve their performance. The I/O subsystem

is saturated, and the applications spends most of their time

waiting for it. Oblivious-Daly and Ordered-Daly, see poor

efficiency for small MTBF values, but steadily improve to

come close to the theoretical bound for higher MTBF values.

Lastly, Ordered-NB-Daly, Ordered-NB-Fixed, and Least-Waste
quickly reach the theoretical model performance, even with a

low MTBF (4 year node MTBF or 2h of system MTBF).

For all the strategies that use the Daly checkpointing period,

increasing the MTBF reduces the amount of I/O required and

thus relieves the pressure of a constrained bandwidth. All

strategies that schedule the bandwidth are successful at in-

creasing the efficiency close to the theoretical model. Similarly,

Ordered-NB-Fixed, despite its fixed checkpoint interval is ca-

pable of reaching a performance comparable to the Daly-based
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Fig. 4. Minimum aggregated filesystem bandwidth to reach 80% efficiency
with the different approaches on the prospective future system.

strategies (which reduce the number of total checkpoints). The

rapid improvement of the Ordered-NB-Fixed approach can be

explained by a combination of 2 factors. Foremost, the non-

blocking aspect of the checkpoint provide the I/O subsystem

with enough flexibility to order the checkpoint without impos-

ing an additional wait. Delayed checkpoints only translate in

additional waste if that application itself is subject to failure.

Additionally, for lower MTBFs, the more frequent restarts of

interfering jobs, despite the fact that they delay the checkpoint-

ing operation, do not introduce additional waste.

B. Evaluating a Prospective System

To understand the impact of the I/O contention on future

platforms, we explore a prospective system and assess the

impact of I/O and checkpoint scheduling when the problem

size and the machine size will increase. We consider a future

system with 7PB of main memory and 50,000 compute nodes

(e.g. Aurora https://aurora.alcf.anl.gov/ ). Based on the APEX

workflow report, we extrapolate the increase in problem size

expected for the application classes considered previously, and

project these applications on the prospective system. We simu-

late the workload of Table I, scaling the problem size propor-

tionally to the change in machine memory size. The waste is

computed, as previously, by dividing the amount of resource

used for checkpoints and lost due to failures by the amount of

resource used in a fault-free and resilience-free run with the

same initial conditions. We vary system MTBF; and for each

strategy, we find the required aggregated practical bandwidth

necessary to provide a sustained 80% efficiency of the system.

This 80% target efficiency is viewed by many programs (e.g.
The Exascale Computing Project https://exascaleproject.org)

as a reasonable cost for resilience activities. Figure 4 shows the

impact of MTBF and strategies on this prospective system.

When failures are frequent (less than 10 year node MTBF),

the most critical element is to reduce the I/O pressure: all

strategies that use a fixed and frequent checkpoint interval re-

quire greater available bandwidth to reach the target efficiency.

In this case, strategies that combine an optimal checkpointing

period with I/O and checkpoint scheduling (Least-Waste and

Ordered-NB-Daly) perform similarly, consistently better than

all other approaches. These two approaches exhibit a strong
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resilience to failures, with a bandwidth requirement that only

increases by a factor of three between a very unstable system

(less than one hour system MTBF), and a stable one (an 8 hour

system MTBF). In contrast, the other strategies are much more

dependent upon the frequency of failures; the Oblivious-Fixed

strategy requires up to 50 times the bandwidth of Least-Waste
to reach the same efficiency.

When failures are less frequent (i.e. a node MTBF is at

least 15 years and a system MTBF of 2.6 hours), the hierarchy

of different approaches stabilizes. The two blocking strategies

relying on frequent checkpoints (Oblivious-Fixed and Ordered-

Fixed) remain expensive, requiring the highest bandwidth to

reach the target efficiency. The next contender, Ordered-NB-

Fixed, requires a quarter of the bandwidth to reach the same

efficiency. Despite using the same fixed checkpoint interval

as the previous methods, it benefits from not blocking when

the filesystem is not available. This is sufficient, when failures

are rare, to obtain a significant performance gain. All Daly-

based strategies benefit from reduced I/O pressure, and reach

the target efficiency with around half the bandwidth needed by

Oblivious-Fixed. We also observe that Ordered-NB-Daly and

Least-Waste remain the most efficient strategies for the whole

MTBF spectrum. These results highlight that checkpoint-based

strategies can scale to satisfy the need of future platforms,

whether by integrating I/O-aware scheduling strategies or by

significantly over-provisioning the I/O partition.

VII. RELATED WORK

We first discuss research regarding checkpoint-induced I/O

pressure, followed by works that regard avoiding I/O inter-

ference. These techniques are not necessarily independent:

generally, reducing I/O pressure will reduce the likelihood of

interference. Therefore, we focus our I/O interference discus-

sion to those techniques which consider the global scheduling

of checkpoints and/or application I/O across a platform.

Checkpointing and I/O: For a single application, the

Young/Daly formula [3], [4] gives the optimal checkpointing

period. This period minimizes platform waste, defined as the

fraction of job execution time that does not contribute to its

progress. Arunagiri et al. [14] studied longer, sub-optimal peri-

ods with the intent of reducing I/O pressure and showed, both

analytically and empirically using four real platforms, that a

decrease in the I/O requirement can be achieved with only a

small increase in waste.

Reducing I/O Pressure: There are two general strategies

for reducing I/O pressure from a single application: hiding or

reducing checkpoint commit times without reducing check-

point data volumes, and reducing commit times by reduc-

ing checkpoint data volumes. Strategies that attempt to hide

checkpoint times include Diskless [15] and remote checkpoint

protocols [16]. Multi-level checkpoint protocols like SCR [11],

[17] attempt to hide checkpoint commit times by writing check-

points to RAM, flash storage, or local disk on the compute

nodes [18] in addition to the parallel file system thereby im-

proving checkpoint or general I/O bandwidth.

Strategies that attempt to reduce checkpoint sizes include

memory exclusion, which leverage user-directives or other hints

to exclude portions of process address spaces from check-

points [19]. Additionally, incremental checkpointing protocols

reduce checkpoint volumes by utilizing the OS’s memory page

protection facilities to detect and save only pages that have

been updated between consecutive checkpoints [20], [21], [22],

[23], [24]. Similarly, page-based hashing techniques can also

be used to avoid checkpointing pages that have been written to

but whose content has not changed [25]. Finally, compression-

based techniques use standard compression algorithms to re-

duce checkpoint volumes [26] and can be used at the compiler-

level [27] or in-memory [28]. Tanzima et al. show that simi-

larities amongst checkpoint data from different processes can

be exploited to reduce checkpoint data volumes [29]. Lossy

compression methods are studied in [30], [31].

Avoiding I/O interference: Most closely related to our

work, a number of studies have considered the global schedul-

ing of checkpoints and other I/O across a platform to reduce

overall congestion, thereby increasing performance. Aupy et

al. [32] presented a decentralized I/O scheduling technique for

minimizing the congestion due to checkpoint interference by

taking advantage of the observed periodic and deterministic

nature of HPC application checkpoints and I/O. This technique

allows the job scheduler to pre-define each applications I/O

behavior for their entire execution. Similarly, a number of

works have investigated the efficiency of online schedulers for

data intensive [33], [34] and HPC workload I/O [10], [35].

Finally, a number of works have investigated utilizing recorded

system reliability information [36] and the statistical properties

of these failures [37] to determine effective checkpoint intervals

for the portion of the system used by the workload.

Summary: Unlike a number of the previous studies, our

technique considers the interaction between existing non-CR

application I/O and CR I/O. The proposed non-blocking ap-

proaches that we propose leverage the capability of applications

to continue working (to the increased risk of having to re-

execute more work) while they wait for the checkpoint token

to be granted. Additionally, our approach is agnostic to the

I/O patterns of the considered applications as long as they are

known. Also, we attempt at optimizing the efficiency of the en-

tire platform, with the changing workloads and failures running

on that platform, rather than just considering one workload.

Finally, and most importantly, this approach provides optimal

checkpointing periods in environments where I/O is highly

constrained and Daly/Young’s formula is less appropriate, a

common scenario on many leadership-class systems.

VIII. CONCLUSION AND FUTURE WORK

As we design larger, likely more error-prone platforms, ef-

fectively protecting applications from platform faults becomes

critical. Current fault-protection techniques available on pro-

duction platforms rely on checkpoint/restart to ensure fault

protection. However, these techniques, by their very nature, reg-

ularly save the application state to stable storage, and therefore

increase the burden of the already overtaxed I/O subsystem.
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Considering a comprehensive I/O interference model for

platforms susceptible to I/O contention, we designed multiple

I/O scheduling algorithms that target improving overall plat-

form job throughput via waste minimization. We also theorized

a lower-bound for platform waste for I/O constrained check-

pointing workloads. We use this theoretical lower-bound to

demonstrate the effectiveness of our Least-Waste I/O schedul-

ing and to compare its performance with other I/O scheduling

strategies. Our strategy invariably outperforms the others with

respect to the platform efficiency. Unsurprisingly, the biggest

gains are rendered on the platforms with a lower MTBF or

greater degrees of under-provisioned I/O. Through simulation,

we also show a path to supporting C/R on a prospective system

while maintaining a 80% platform efficiency, all without a large

investment in the I/O subsystem.

As burst-buffers and other NVRAM storage mechanisms

become more common, a natural extension of this work would

consider their impact on I/O contention/interference. Increasing

the available I/O bandwidth leads to reduced waste (due to

the decrease in checkpoint duration but also an increase in the

optimal checkpoint frequency and therefore a decrease in the

restart time), while providing relief to the shared I/O subsystem

to better absorb additional checkpoint information. We specu-

late that scheduling parallel filesystem I/O with a heuristic that

prioritizes jobs to minimize failure impact can help to improve

overall burst-buffer efficiencies. Such a heuristic would build

upon the strategies discussed in this work and extend them to

the new framework.
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