
Fast Batched Matrix Multiplication for Small Sizes
using Half-Precision Arithmetic on GPUs

Ahmad Abdelfattah, Stanimire Tomov
Innovative Computing Laboratory

University of Tennessee, USA
{ahmad,tomov}@icl.utk.edu

Jack Dongarra
University of Tennessee, USA

Oak Ridge National Laboratory, USA
University of Manchester, UK

dongarra@icl.utk.edu

Abstract—Matrix multiplication (GEMM) is the most impor-
tant operation in dense linear algebra. Because it is a compute-
bound operation that is rich in data reuse, many applications
from different scientific domains cast their most performance-
critical stages to use GEMM. With the rise of batch linear
algebra, batched GEMM operations have become increasingly
popular in domains other than dense linear solvers, such as
tensor contractions, sparse direct solvers, and machine learning.
In particular for the latter, batched GEMM in reduced precision
(i.e., FP16) has been the core operation of many deep learning
frameworks.

This paper introduces an optimized batched GEMM for FP16
arithmetic (HGEMM) using graphics processing units (GPUs).
We provide a detailed design strategy that takes advantage
of the Tensor Core technology that was recently introduced
in CUDA-enabled GPUs. The developed solution uses low-level
APIs provided by the vendor in an optimized design that
overcomes the limitations imposed by the hardware (in the form
of discrete configurations). The outcome is a highly flexible GPU
kernel that provides a lot of controls to the developer, despite
the aforementioned restrictions. The paper also pays particular
attention to multiplications of very small matrices that cannot
fully occupy the Tensor Core units. Our results show that the
proposed design can outperform the highly optimized vendor
routine for sizes up to 100 by factors between 1.2× and 10× using
a Tesla V100 GPU. For extremely small matrices, the observed
speedups range between 1.8× and 26×.

Index Terms—Matrix multiplication, batched linear algebra,
FP16 arithmetic, GPU computing

I. INTRODUCTION

High-performance linear algebra libraries empower many
scientific applications to run efficiently on today’s massively
parallel architectures. Considering dense linear algebra soft-
ware, achieving high performance is usually possible through
algorithmic designs that express as many computational stages
as possible in terms of compute-bound routines in general, and
matrix multiplication (GEMM) in particular. The latter com-
bines two properties that make it an extremely important kernel
in many high-performance computing (HPC) applications. The
first is that it is an embarrassingly parallel operation. The
second is its high operational intensity [1], which is defined
as the ratio between the amount of floating-point operations
(FLOPs) and the number of bytes transferred to/from the main
memory. A standard GEMM operation updates a matrix C,
where CM×N = αAM×K × BK×N + βCM×N . Both α and
β are scalars. The total number of FLOPs of this equation

is equal to (2MNK) . The amount of bytes transferred is
equal to P × [K(M +N)+2MN], where P is the number of
bytes required to represent a floating-point number in a specific
precision. We consider only half-precision arithmetic in this
paper, so P = 2. If β is zero, there is no need to read C, so the
amount of memory transfer becomes 2× [K(M+N)+MN],
while the amount of FLOPs remains the same. GEMM is a
compute-bound kernel, since the FLOP complexity is cubic,
while the memory traffic is only quadratic.

Outside the field of dense linear solvers, matrix multiplica-
tion can still be important in many scientific domains, where
the computational workload can be broken down into a large
number of independent GEMM operations of relatively small
sizes. The workload is often called a “batch workload,” and
dedicated routines have been optimized for such workloads
(e.g., batched GEMMs). It turns out that the batched GEMM
kernel is almost as important as the regular non-batched
GEMM, since it has been featured in many applications, such
as sparse direct solvers [2], and tensor contractions [3]. Some
hardware vendors now provide optimized batched GEMM
kernels such as the Intel Math Kernel Library (MKL) library1

and the NVIDIA cuBLAS library.2

Since the booming of machine learning applications and
artificial intelligence (AI), there has been an interest in de-
veloping high-performance half-precision arithmetic (16-bit
floating-point format), since most AI applications do not nec-
essarily require the accuracy of single or double precisions [4].
Half precision also enables machine learning applications to
run faster, not only because of the faster arithmetic, but also
because of the reduction in memory storage and traffic by a
factor of 2× against single precision, and by a factor of 4×
against double precision. NVIDIA’s graphics processing units
(GPUs) introduced half-precision arithmetic with the Pascal
architecture. They implement the “binary16” format which is
defined by the IEEE-754 standard [5]. While the Pascal GPU
architecture introduced hardware support for FP16 arithmetic,
the Volta architecture, which powers the Summit supercom-
puter,3 comes with hardware acceleration units (called Tensor
Cores) for matrix multiplication in FP16. These Tensor Cores

1https://software.intel.com/mkl
2https://developer.nvidia.com/cublas
3https://www.olcf.ornl.gov/summit/

are theoretically 12× faster than the theoretical FP16 peak
performance of the preceding architecture. Applications taking
advantage of the Tensor Cores can run up to 4× faster than
using the regular FP16 arithmetic on the same GPU.

In this paper, we investigate the use of the Tensor Cores
to provide a general purpose batched matrix multiplication
in FP16 arithmetic (batched HGEMM). The paper addresses
some challenges in using Tensor Cores programmatically in a
GPU kernel, such as discrete sizes and restricted thread con-
figurations. The proposed design allows a highly flexible and
robust implementation that takes advantage of the hardware
acceleration while mitigating the limitations imposed by the
hardware. We prioritize design flexibility in order to withstand
potential future changes to such a recent technology. The
developed solution is equipped with many tuning parameters
that control different aspects of the kernel. The paper presents
a tuning process that exposes a tradeoff between performance
tolerance and the number of compiled kernel instances. The
paper also thoroughly investigates batched HGEMM on ex-
tremely small matrices that cannot fill the Tensor Cores with
enough work. While the vendor routine is very optimized for
relatively large sizes, we observe that the developed kernel
outperforms cuBLAS for sizes less than 100 with speedups
that range between 1.2× and 10×. The range of speedups
for very small sizes is even larger, ranging between 1.8× and
26×.

II. RELATED WORK

GPUs are throughput-oriented processors capable of deliv-
ering very high performance in tasks with high degrees of par-
allelsim. Since GEMM is a very good example of such tasks,
GPUs have become very popular in the field of dense linear
solvers. Research efforts go back almost a decade ago, when
GPUs started to have programmable shared memories (i.e.,
user-controlled caches). This enabled researchers to develop
the first compute-bound GEMM on GPUs [6]. Since then, the
GEMM kernel has been subject to continuous improvements,
like register and shared memory blocking and prefetching [7].
Such developments sparked many efforts in providing fast
high-level dense linear solvers on GPUs, such as the MAGMA
library [8], ViennaCL [9], and Chameleon [10]. Performance
portability of GEMM was achieved through performance-
critical tuning parameters that control different aspects of the
GEMM design [11] [12]. Following the publicly available
developments from the research community, the GPU vendor
started providing highly optimized GEMM implementations
that are written in a low-level language [13] in order to
overcome some limitations imposed by the compiler and the
hardware scheduler. Similarly, assembly implementations [14],
[15] are available today in the cuBLAS library, with the
ability to achieve a performance that is very close to the GPU
theoretical peak. Similar to the libraries mentioned above, the
vendor also provides a library called cuSOLVER4 for high-
level dense linear algebra algorithms.

4https://developer.nvidia.com/cusolver

All the aforementioned efforts address the problem of one
GEMM operation that is relatively large enough to provide
enough parallel work for the GPU. The recent application-
driven interests in batch linear solvers have encouraged ven-
dors and library developers to design dedicated routines that
can address a large number of small matrix problems. Al-
gorithmically, a batched GEMM is still a very important
operation, since it remains the performance key to higher-level
algorithms such as the batched one-sided factorizations [16].
However, the importance of the batched GEMM goes beyond
the boundaries of dense linear algebra to affect other scientific
domains, such as sparse direct solvers [2], tensor contrac-
tions [17] [3], and machine learning [18]. The challenges
in optimizing batched GEMM are different from the regular
GEMM kernel. As the problem sizes are relatively smaller, the
GEMM operations are no longer compute-bound, and more
attention should be paid to optimizing the memory traffic.
Automatic performance tuning is even more important in batch
routines, since it has been found that the performance is more
sensitive to tuning parameters in small matrix problems [19].

Batched GEMM operations are crucial to machine learning
applications in particular. For example, convolutional neural
networks (CNNs) are a very popular class of deep neural
networks. They were initially implemented using custom dense
kernels, as originally done in Caffe [20] and other libraries,
such as tensor convolutions and activation functions. These
custom kernels were developed locally per package. And since
they dominate the training time for CNNs, re-optimizations
had to be done whenever the underlying architecture changed.
This is why research efforts, such as cuDNN [18], Mag-
maDNN [21], and others, focused on providing optimized
primitives for deep learning, similar to the way BLAS pro-
vides optimized primitives to LAPACK algorithms. The most
important operation in CNNs is batched spatial convolution,
which can be cast into batched matrix multiplication [22] [18].
In addition, the work done in [23] uses batched GEMMs of
very small sizes (3 × 3) to implement fast CNN algorithms
based on minimal filtering algorithms [24]. On another front,
the batched GEMM operations in machine learning are not
necessarily required to have the accuracy of single or double
precisions. In fact, it has been shown that lower precisions are
enough for training deep neural networks [4]. Furthermore,
the need for extreme computational power in DNNs arises
from their hyperparameter tuning – a process of training
multiple DNNs to empirically find the best network in various
applications [25]. With the popularity of GPUs in large scale
AI applications, the latest architectures from NVIDIA, namely
Volta and Turing, are equipped with Tensor Cores, which
provide hardware acceleration for matrix-multiply-accumulate
operations. The cuBLAS library provides high-level APIs for
GEMM and batched GEMM in half precision (i.e., HGEMM
and batched HGEMM, respectively). There are also low-level
APIs that can be used to program the Tensor Cores inside a
GPU kernel. While the high-level APIs have been used to
accelerate mixed-precision iterative refinement dense linear
solvers [26], [27], this is the first effort, to the best of the

authors’ knowledge, to programmatically use the Tensor Cores
in an open-source and general purpose batched HGEMM
routine that is competitive with the vendor optimized library.

III. THE FP16 TENSOR CORES IN GPUS

The CUDA Toolkit is one of the first programming models
to provide half-precision (i.e., FP16) arithmetic. Early support
was added in late 2015 for selected embedded GPU mod-
els that are based on the Maxwell architecture. The FP16
arithmetic has become mainstream in CUDA-enabled GPUs
since the Pascal architecture. The data type (__half) im-
plements the IEEE-754 standard specification of the binary16
format [5]. The format uses a 16-bit storage, where 10 bits are
used for the mantissa, 5 bits are assigned to the exponent, and
one bit is used to denote the sign. In general, half precision
has a dynamic range that is significantly smaller than single
or double precisions. Incorporating such a reduced precision
was mainly motivated by the disruptive emergence of machine
learning applications.

The Pascal architecture has a theoretical peak FP16 perfor-
mance that is twice as fast as the peak FP32 performance.
While the following architectures (Volta and Turing) maintain
such ratio, they introduce further hardware acceleration for
matrix multiplication in FP16. The hardware acceleration units
are called Tensor Cores. They can deliver a theoretical peak
performance that is up to 8× faster than the peak FP32
performance. For example, each Volta V100 GPU has 640
Tensor Cores, evenly distributed across 80 multiprocessors.
Each Tensor Core possesses a mixed-precision 4×4×4 matrix
processing array which performs the operation D = A×B+C,
where A, B, C and D are 4× 4 matrices. The inputs A and
B must be represented in FP16 format, while C and D can
be represented in FP16 or in FP32 formats. It is also possible
that C and D point to the same matrix.

The vendor library (cuBLAS) provides various optimized
routines, mostly GEMMs, that can take advantage of the
Tensor Core acceleration by setting the proper flag. The
programming model also provides a set of low-level APIs
that can be used programmatically in a user’s kernel. From
a programmer’s point of view, tensor cores can be pro-
grammed using opaque objects called fragments. Each frag-
ment is used to store one matrix. Fragments can be loaded
from shared memory or from global memory using the
load_matrix_sync() API. A similar API is available for
storing the contents of a fragment into shared/global memories.
The mma_sync() is used to perform the multiplication.

The programming model imposes some restrictions to the
programming of tensor cores. First, the GEMM dimensions
(M , N , K), which also control the size of the fragments, are
limited to three discrete combinations, namely (16, 16, 16),
(32, 8, 16), and (8, 32, 16). Second, the operations of load,
store, and multiply fragments must be performed by one full
warp (32 threads). Finally, the load/store APIs require that the
leading dimension of the corresponding matrix be multiple
of 16-bytes. As an example, a standard GEMM operation of
size (16, 16, 16) requires three load_matrix_sync() calls

(for A, B, and C), one mma_sync() call, and then a final
store_matrix_sync() call to write the result.

IV. DESIGN DETAILS

This section describes the design details of the proposed
batched HGEMM kernel. We assume that the dimensions of
the GEMM operations are unified across the batch (i.e., fixed-
size batches). Recall that a GPU kernel consists of a grid
of thread blocks (TBs). We define the number of GEMM
operations as batchCount.

BLK_K

BLK_M

M

K
A

BLK_M

BLK_N

C

BLK_N

BLK_K

K

N
B

Fig. 1. Organization of the batched GEMM grid

The kernel is developed as part of the MAGMA li-
brary. 5 Performance comparisons are made against the highly
optimized batched HGEMM routine provided by cuBLAS.
In order to turn on Tensor Cores in cuBLAS, the flag
CUBLAS_TENSOR_OP_MATH must be set. The CUDA ver-
sion used in this paper is 9.2.

A. Grid Design

The grid design is similar to many previous contributions,
such as [19]. The output matrices are subdivided into smaller
blocks that can fit into a fast memory level (i.e., registers or
shared memory). Such blocks can be square or rectangular,
with their sizes denoted as (BLK_M×BLK_N). The grid con-
figuration is a 3D thread block organization of size (

⌈
M

BLK_M

⌉
,⌈

N
BLK_N

⌉
, batchCount). The grid is implicitly subdivided

into batchCount subgrids, where each subgrid has a unique
batchid (the z−dimension of the grid), and takes care of a
single GEMM operation. Similarly, the input matrices A and B
are subdivided into smaller blocks of sizes (BLK_M×BLK_K)
and (BLK_K×BLK_N), respectively. Within every subgrid,

5https://icl.utk.edu/magma/

each TB is responsible for computing a block of the output
matrix by reading a block row of A and a block column of B.
Figure 1 illustrates the TB organization of the kernel. Unless
otherwise mentioned, we use this grid organization across all
the design variants discussed in this paper.

B. Thread Block Design

1) A Simple Design: Before thinking of sophisticated op-
timizations, the following questions should be answered: is it
enough to subdivide the matrices using the discrete combi-
nations imposed by tensor cores? Will these sizes be enough
to achieve high performance? To answer such questions, we
tried a simple design where the values of BLK_M, BLK_N,
and BLK_K are restricted to the combinations defined by the
Tensor Core hardware. Each TB consists of one warp. In order
to avoid the limitations imposed on the leading dimensions by
the load/store APIs, the kernel always performs the load/store
operations through shared memory storage that abides by the
leading dimension rule, thus removing such limitations from
the matrices stored in the global GPU memory.

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140

T
f
o
p
/s

Matrix size (M = N = K)

 cublas

 magma-simple(16,16,16)

 magma-simple(32,8,16)

 magma-simple(8,32,16)

Fig. 2. Performance of the simple MAGMA batched HGEMM kernel that
uses the same blocking parameters defined by Tensor Cores. Results are shown
for square matrices using a Tesla V100 GPU, with batchCount = 50K.

Figure 2 shows the performance of such a kernel against
cuBLAS. We observe that the performance of the MAGMA
kernel is not competitive with the vendor routine, except for a
slight advantage at sizes up to 50. Regardless of which Tensor
Core sizes are used, the kernel performance does not scale as
the matrix sizes get bigger. This means that the blocking values
for the kernel must not be restricted to the Tensor Core sizes.
The design should expand the parameter space for BLK_M,
BLK_N, and BLK_K beyond the limited sizes imposed by the
hardware.

2) Double-Sided Recursive Blocking: Recursive and hier-
archical blocking are well-known techniques that have been
used in previous GEMM designs [7]. In this paper, we use a
similar technique. The matrices are blocked using the values
of BLK_M, BLK_N, and BLK_K, which are typically larger
than the Tensor Core sizes. The kernel main loop consists
of
⌈

K
BLK_K

⌉
iterations. At each iteration, each TB holds a

BLK_M×BLK_K block of A, a BLK_K×BLK_N block of B,
and a BLK_M×BLK_N block of C. The latter is also cached

for the lifetime of the TB, since it is accumulated across
all iterations. This is the top level of blocking. Within each
TB, the respective blocks of A, B, and C are recursively
subdivided using one of the three Tensor Core sizes. We define
the Tensor Core sizes by the parameters TC_M, TC_N, and
TC_K. In order to fully benefit from the computational power
of Tensor Cores, it is best that (BLK_M, BLK_N, BLK_K) are
fully divisible by (TC_M, TC_N, TC_K), respectively.

Block of C
BLK_M

BLK_N

Read /
Write

Compute

D
I
M
_
X

DIM_Y

T
C
_
N

TC_M

WARP 0

WARP 1

WARP 2

WARP 3

WARP 0

WARP 1

WARP 2

WARP 3

WARP 0

WARP 1

WARP 2

WARP 3

WARP 0

WARP 1

WARP 2

Fig. 3. An example for the double-sided recursive blocking applied to a
block of C. The blocking dimensions for reads and writes are decoupled
from those used for computations. The right side also shows how four warps
can collaboratively work on a block og C.

Recursive blocking is usually single-sided, meaning that
recursion is implemented in one specific way for both com-
putations and memory operations. In this paper, however, we
use a new double-sided recursive blocking technique, where
recursion depends on which stage of the kernel is being
executed. The recursion technique mentioned above uses the
Tensor Core sizes for subdivision, and so it is used during the
computation stage. However, the same subdivision may not
be necessarily be good for memory operation. This is why we
use different recursive subdivision sizes that come into play at
loading and storing data blocks. Since the data are loaded into
shared memory first (not into fragments directly), we are not
obligated to use a single warp in a 32 × 1 configuration. We
propose to use a generic 2D thread configuration at read and
write stages. A warp reorganizes itself into a DIM_X×DIM_Y
configuration. As an example, when loading a 16×16 block of
data, it is much better to use a 16×2 configuration rather than
the default 32× 1 one. As a result, each block of A, B, and
C is subdivided into sub-blocks of sizes DIM_X×DIM_Y, and
the read/write operations are done using two nested for loops.
In order to maximize the benefit of the design by having fully
unrolled loops, it is required that each of BLK_M, BLK_N, and
BLK_K is fully divisible by DIM_X and DIM_Y.

3) Collaborative Warps: As mentioned before, the flexibil-
ity of the developed kernel is a priority. Another generalization
that helps in this direction is to allow a TB to have multiple
collaborative warps. Such generalization allows TBs to have
any number of threads that is a multiple of 32. During reading
and writing of data blocks, threads reorganize themselves into
a DIM_X×DIM_Y configuration, as mentioned before. Note
that the parameter space for DIM_X and DIM_Y is now much

bigger, which serves flexibility. As an example, four warps
can be used in many configurations, such as 8 × 16, 16 × 8,
32 × 4, 64 × 2, · · · etc. During computation, however, we
must reorganize the threads in a 32×N_WARPS configuration
in order to use the Tensor Cores. Since the data block of C is
subdivided into many sub-blocks of size TC_M×TC_N, warps
loop over these sub-blocks in a round-robin manner. For each
sub-block, the respective warp loops over the corresponding
sub-block rows of A and the sub-block columns of B, sends
them in chunks to the Tensor Cores, and keeps accumulating
the results in a dedicated fragment. The right side of Figure 3
shows collaboration among four warps.

0

1

2

3

4

5

6

7

8

9

10

1 2 4 8 16 32

Tf
lo

p/
s

Number of Warps

cuBLAS

magma (DIM_X=16)

magma (DIM_X=32)

Fig. 4. The impact of the number of warps on performance for relatively
large blocking sizes. Results are shown for square 64× 64 matrices using a
Tesla V100 GPU, with batchCount = 50K. All blocking sizes are set to
64, with all Tensor Core sizes set to 16. DIM_Y = (#warps×32)/DIM_X.

The use of collaborative warps is beneficial when using
relatively large values of BLK_M, BLK_N, or BLK_K. Reading
in large blocks is usually required to achieve a high memory
bandwidth and to increase data reuse. But since Tensor Core
multiplications must be performed by a single warp, large
blocks of data could mean too much work for one warp,
and it becomes better to involve more warps in computation.
To better quantify this concept, we performed an experiment
on a batch of square multiplications of size 64 × 64. For
simplicity, we fix BLK_M = BLK_N = BLK_K = 64, and
TC_M = TC_N = TC_K = 16. We also show two possible
thread configurations, one with DIM_X = 16, and the other
with DIM_X = 32. Figure 4 shows that increasing the number
of warps per TB leads to huge performance benefits when the
blocks are relatively large (while fixing all other parameters).
However, the performance slows down if too many warps are
used per TB. One reason is occupancy, which impacts the
number of live TBs that can be scheduled by the runtime on the
same multiprocessor. Another reason is that some warps may
be idle during the compute phase. This appears in Figure 4
when the number of warps is set to 32. With blocking sizes
set to 64 and Tensor Core sizes set to 16, we have a 4 × 4
sub-block organization, which means that 16 warps out of the
32 are not assigned to any computational workload.

Fig. 5. The relative reduction in memory traffic for A and B using (BLK_M,
BLK_N) ≥ (TC_M, TC_N). Results are shown for (TC_M, TC_N) = (16, 16)
“top,” and (32, 8) “bottom..” Note that BLK_x must always be multiple of
TC_x.

4) Summary of Design Contributions: We highlight two
main design contributions in the proposed kernel. The first
is the double-sided recursive blocking, which generalizes
BLK_M, BLK_N, and BLK_K so that they are not bound to the
Tensor Core sizes. The second is the use of collaborative warps
inside a thread block. The latter improves the compute time
inside a thread block versus a single warp configuration (Fig-
ure 4). On the other hand, generic block sizes help improve the
memory traffic required by the kernel. To illustrate this point
further, we simplify our analysis by assuming that BLK_M
and BLK_N fully divide M and N , respectively. The proposed
kernel would then require M×N

BLK_M×BLK_N thread blocks. Ideally,
all matrices (A, B, and C) are read once, while only C is
written once. The proposed kernel performs an ideal memory
traffic for C, since each thread block takes care of one block
of C, and so it reads and writes such a block exactly once.
However, since the parallel work is distributed across many
independent thread blocks, there have to be redundant memory
loads for A and B. The redundant loads are significantly
affected by BLK_M and BLK_N. The total memory loads for A
and B per thread block are given by (K×(BLK_M+BLK_N)),
since it has to read an entire block row of A and a block
column of B. The total memory traffic (for A and B) for
the whole kernel is given by MNK(BLK_M+BLK_N)

BLK_M×BLK_N . We can

now calculate the improvement (reduction) in memory traffic
by comparing the previous formula against the case when
(BLK_M, BLK_N, BLK_K) = (TC_M, TC_N, TC_K), which
eventually yields:

Memory traffic improvement = BLK_M×BLK_N×(TC_M+TC_N)
TC_M×TC_N×(BLK_M+BLK_N)

Figure 5 shows the relative reduction in memory traffic
for blocking sizes up to 128. As an example, using (BLK_M,
BLK_N) = (64, 64) can reduce the memory traffic by a factor
of 4× when (TC_M, TC_N) = (16, 16), and by a factor of 5×
when (TC_M, TC_N) = (32, 8). Such a reduction usually leads
to a better performance, since most of the memory requests
are fulfilled from the main memory due to the relatively small
caches in GPUs (compared to CPUs). It should be noted that
very large blocks could worsen other aspects of the kernel,
such as occupancy and register pressure. Therefore, a tuning
process is required to search for the best blocking sizes on a
specific GPU.

The pseudocode below shows the main loop of the kernel.
At each iteration, a pair of data blocks, from A and B, is
loaded from global memory to shared memory. The actual di-
mensions of these blocks (am, an, bm, bn) are computed
at the beginning of the iteration so that the read_global()
function accounts for partial blocks by means of zero-padding
if required. Synchronization is required to make sure all data
are visible to all warps before proceeding to the multiplication
subroutine tc_multiply(). Another synchronization point
is required to make sure all warps are done with the currently
loaded data, and that it is safe to load another pair of data
blocks.

for (int kk = 0; kk < K; kk += BLK_K) {
(am, an) <- compute_block_size(A);
(bm, bn) <- compute_block_size(B);

sA <- read_global<...>(am, an, A, LDA);
sB <- read_global<...>(bm, bn, B, LDB);

sync<...>();
tc_multiply<...>(sA, sB, fC);
sync<...>();
// advance A, B pointers
A += BLK_K * LDA;
B += BLK_K;

}

The tc_multiply() subroutine is a heavily templated
inlined device function that performs the multiplication using
Tensor Cores in a round-robin style. The routine uses a
number of constants that are known at compile time (shown
in all-caps, such as TC_BLOCKS, NWARPS, and NFRAG).
TC_BLOCKS refers to the total number of multiplications a
thread block performs, while NWARPS and NFRAG refer to
the number of warps and the number of accumulator fragments
per warp, respectively. The code distributes the TC_BLOCKS
multiplications across warps. At each iteration of the outer
loop, every warp independently calculates the coordinates of
the C sub-block it should compute. It then proceeds to the
innermost loop, where the corresponding sub-block row of A
is multiplied by the corresponding sub-block column of B
using the Tensor Core APIs. The code has a cleanup section

that handles the situation when NWARPS does not fully divide
TC_BLOCKS.
template<...>
__device__ __inline__ void
tc_multiply(half* sA, half* sB,

wmma::fragment<...> fC[NFRAG])
{

// Declare A, B fragments
wmma::fragment<...> fA;
wmma::fragment<...> fB;

int b = 0;
#pragma unroll
for(b = 0; b < TC_BLOCKS - NWARPS; b += NWARPS){

(i, j, fid) <- get_next_frag_indices(warp_id);
#pragma unroll
for(int k = 0; k < BLK_K; k+=TC_K){

half* ptrA = sA + k * BLK_M + i;
half* ptrB = sB + j * BLK_K + k;
wmma::load_matrix_sync(fA, ptrA, BLK_M);
wmma::load_matrix_sync(fB, ptrB, BLK_K);
wmma::mma_sync(fC[fid], fA, fB, fC[fid]);

}
}

// cleanup code
if(warp_id < TC_BLOCKS - b){

(i, j, fid) <- get_next_frag_indices(warp_id);
#pragma unroll
for(int k = 0; k < BLK_K; k+=TC_K){

half* ptrA = sA + k * BLK_M + i;
half* ptrB = sB + j * BLK_K + k;
wmma::load_matrix_sync(fA, ptrA, BLK_M);
wmma::load_matrix_sync(fB, ptrB, BLK_K);
wmma::mma_sync(fC[fid], fA, fB, fC[fid]);

}
}

}

V. PERFORMANCE TUNING

The developed kernel is written using C++ templates, with
eight main tuning parameters. These parameters are the con-
figuration sizes of the Tensor Cores (TC_M, TC_N, TC_K), the
blocking sizes for A, B, and C (BLK_M, BLK_N, BLK_K), and
the thread configuration for reading and writing data blocks
(DIM_X, DIM_Y). In this section, we describe a performance
tuning experiment that was conducted on square matrices. The
same steps apply to non-square test cases.

A. Parameter Space Generation

The kernel parameters must satisfy a number of conditions
in order for the kernel to perform correctly. As mentioned
before, a Tensor Core dimensions TC_x must fully divide
BLK_x, where x∈{M, N, K}. Each of DIM_X and DIM_Y
must fully divide every blocking size BLK_x. The product
DIM_X×DIM_Y must also be multiple of 32, in order to
have full warps. There is another set of restrictions imposed
by the hardware resources, such as the maximum allowed
shared memory space per TB. Despite such conditions and
restrictions, the parameter space for the kernel remains very
large. Using an automated script, the initial number of el-
igible kernels was larger than 15, 000. In order to prune
the search space, we have applied some “soft constraints.”
Such constraints are based on gained experience while tuning
the batched GEMM kernel for other precisions [19], where
the learned lesson was to use lightweight thread blocks in
order to help the CUDA runtime schedule as many thread

blocks per multiprocessor as possible. Recall that Figure 5
suggests large blocking sizes, which could use too much of
the resources. Therefore, the purpose of the soft constraints
is to eliminate potentially bad candidates, which reduces the
amount of time required to perform the tuning sweep. Because
we are considering small sizes up to 128, the constraints
aim for a “sweet spot” where thread blocks can handle
large blocks of data while being relatively lightweight. As
an example, each blocking size BLK_x is given the range
[16:128] in steps of 16. This caps the kernel’s shared memory
requirement to 32KB. The maximum number of warps per
TB is also capped at four. This is the minimum number of
warps required to hide the execution latencies of core math
operations on a multiprocessor.6 Despite such constraints, the
automated generation script was able to find 4, 948 eligible
kernel instances. Each kernel instance has a unique ID (version
number) that is used for testing and reporting results.

B. Testing and Evaluation

All kernel instances were compiled and tested on square
sizes up to 128. The total compilation and execution time was
around four days, due to the limited access to one V100 GPU.
All the collected data were then sent to an automatic analysis
program that truncates the results into a smaller subset. This
is done by extracting, for each size, the best performing BK
“winning kernels,” where BK is a tunable value. The program
also takes an acceptable performance tolerance TOL. We define
TOL as the percentage of the best observed performance that
can be sacrificed in order to reduce the number of compiled
kernels. This helps avoid very large binaries when the routine
is finally released into a software library. By investigating the
winning kernel IDs across all the test points, we can reduce the
number of compiled kernels by prioritizing the most frequent
winning kernels that are within the acceptable tolerance.

The tuning experiment was conducted using BK = 10, while
varying TOL between 0% and 15%. Table I shows the number
of compiled kernels against different values of TOL. At zero
tolerance, there are eleven kernel instances required for the
fifteen test points used in the experiment. Such a finding
emphasizes the performance sensitivity to tuning parameters,
since a small change in the size leads to a switch of kernels.
This is not the case for relatively large sizes, where usually one
kernel instance can cover a larger range of sizes. In general,
we can reduce the number of compiled kernels by 36% if the
tolerance is increased from 0% to 15%. We also observe that
increasing TOL does not always result in reducing the number
of kernels. In fact, the outcome depends on the performance
variations at each test point, and whether more “acceptable”
kernels can be found within the larger tolerance.

Figure 6 shows the best performance of the developed
kernel when tolerance is set to 0% and 15%. The figure also
shows the percentage drop going from zero tolerance to 15%
tolerance. Ideally, no negative percentages should be observed.

6https://docs.nvidia.com/cuda/volta-tuning-guide/index.html#sm-
scheduling

TOL Number of kernels (reduction %)
0% 11 (0%)
5% 8 (27.2%)

10% 8 (27.2%)
15% 7 (36.3%)

TABLE I
THE REQUIRED NUMBER OF COMPILED KERNELS FOR A GIVEN

PERFORMANCE TOLERANCE (TOL). THE VALUE OF BK IS FIXED AT 10.
THE COLLECTED DATA ARE GENERATED ON A TESLA V100 GPU. TEST

POINTS ARE FOR SQUARE SIZES UP TO 128, WITH BATCHCOUNT = 3,000.

However, our measurements show a different behavior. While,
for the most part, the performance of zero tolerance is higher,
there are some measurements where the performance at 15%
tolerance is actually better. Such behavior can occur when
there is some noise in the original data collected, due to warm-
up runs or insufficient number of runs at each test point,
especially when two kernel instances are performing very
closely to each other. In addition, the negative percentages
are in the range of ≈ 1% or less, which means that the tuning
experiment conducted here delivers the best performance with
a error margin of ≈ 1%. The maximum performance drop
observed is 11.92%, which is in the range of the accepted
tolerance.

8.57%
0%

0%

-1.12%
-0.97%

0.64%
-1.18%

9.27%

7.71%
-0.64%

-0.54%

11.92%
6.09%

2.17%
-0.46%

0 5 10 15 20

16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

Tflop/s

M
at

rix
 s

iz
e

magma (tolerance = 0%)

magma (tolerance = 15%)

Fig. 6. Impact of the tolerance setting on the outcome of the tuning
experiment. The performance is recorded for square sizes up to 128, with
batchCount = 3,000, on a Tesla V100 GPU.

VI. PERFORMANCE AGAINST THE VENDOR LIBRARY

Figure 7 shows the final performance of the tuned MAGMA
kernel against cuBLAS. Recall that the cuBLAS kernel is
written in a low-level language to utilize some optimization
techniques that are not available in CUDA C or PTX in-
structions. And so, its asymptotic performance is faster than
MAGMA by factors up to 3× for large matrices. However, the
developed kernel has a significant advantage against cuBLAS
for small sizes below 100, scoring speedups that range between
1.2× and 23.8×. We observe that, in general, the smaller the
sizes, the larger the speedup. We also observe performance

drops at some sizes (e.g., 72, 104 and 112). This is a known
behavior in most GPU kernels, which occurs for problem sizes
that are not fully divisible by the blocking values.

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140

T
f
o
p
/s

Matrix size

 magma

 cublas

23.8x
10.5x

7.3x
5.5x

4.2x 2.7x

2.4x

1.5x

1.5x
1.2x

1.2x

0.9x

0.9x
0.8x

0.8x

Fig. 7. Performance of the batched HGEMM kernel against cuBLAS. Results
are for square sizes up to 128, with batchCount = 50,000, on a Tesla V100
GPU.

VII. OPTIMIZATION FOR EXTREMELY SMALL MATRICES

This section focuses on performance optimization for small
sizes that cannot fully occupy the Tensor Cores. In particular,
we are looking into small matrices, both square and rectangu-
lar, whose dimensions are ≤ 16. This range of sizes has been
subject to many research efforts recently, due to its popularity
in many applications [3] [28]. We present three different
approches for such tiny sizes, and assess the advantages and
disadvantages of each. Since the matrices are extremely small,
performance tests are conducted using batchCount= 1M in
order to saturate the GPU as much as possible. The significant
slowdown of the cuBLAS performance was not observed on
sizes smaller than 16 when the batch contains more than 65K
operations.

A. Improving Grid Design of the Existing Kernel

We begin with the same kernel developed in Section IV.
For very small sizes, it is enough to use a single warp per TB
(recall that we cannot use sub-warps in order to use Tensor
Cores). However, the original grid design in Section IV-A
assigns one subgrid to one TB, which means exactly one
warp per TB. This means that if the warp gets stalled—due to
memory operations, for example—the whole TB stays idle in
a waiting state. While it is possible for the runtime to execute
other TBs on the same multiprocessor, we propose to alter the
design of the kernel grid to allow multiple subgrids (problems)
in the same TB, and so warp latency hiding is possible not
only across TBs, but also across warps in the same TB. Such
a modification has been added to the same kernel with the
introduction of a ninth tuning parameter NSG that controls the
number of subgrids per TB. The NSG is set to 1 by default for
sizes larger than 16, since the TB is usually configured with
more than one warp, and so setting NSG> 1 has a limited
benefit. On the contrary, it is recommended to increase NSG

for small sizes less than 16. We tested the performance for
NSG∈{1, 2, 3, 4}. Figure 8 shows the performance benefit with
a tuned NSG versus fixing it at 1. We observe that a tunable
NSG has an impact only on sizes up to 10, with speedups up
to 23% at size 2 × 2. The performance for sizes 11 through
16 remains the same despite increasing NSG. We point out
that such a finding does not contradict the results of Figure 4,
which shows a drop in performance with increasing warps. The
experiment shown in Figure 4 increases the number of warps
while fixing the amount of work, while the tuning experiment
of NSG increases both the number of warps and the workload
(each warp is assigned a different GEMM), in an effort to hide
the potential latencies of stalled warps. We refer to this kernel
with the modified grid as magma-small-v1.

23%

23%

22%

22%

20%

18%

16%

15%

3%

2%

0 200 400 600 800 1000 1200

1

2

3

4

5

6

7

8

9

10

Gflop/s

M
at

rix
 S

iz
e

Tuned NSG NSG=1

Fig. 8. Performance of the MAGMA kernel against against different values
of NSG. Results are shown for square sizes up to 10, with batchCount =
1M, on a Tesla V100 GPU.

B. A New Kernel: Improving Tensor Core Utilization
The modified grid design of the existing kernel does im-

prove the performance for small sizes. However, such modifi-
cation still assigns a single multiplication to the Tensor Cores
at a time. For simplicity, consider the Tensor Core sizes (16,
16, 16). If there is a multiplication where both M and N
are ≤ 8, then we can use a single Tensor Core operation to
perform multiple multiplications at the same time. Figures 9
and 10 show how the Tensor Cores can be utilized to perform
multiple independent GEMMs concurrently. The figures show
both square and rectangular cases. The general idea is to store
the A matrices along a block column of width K, while the
B matrices are stored along a block row of height K. The
output matrices are stored in a diagonal-like shape in the
output fragment. Note that the grey cells in the output fragment
correspond to non-zero results that are not needed.

The number of simultaneous GEMMs that can be done is a
function of M , N , TC_M, and TC_N. From Figures 9 and 10,
we can deduce that the maximum number of simultaneous
GEMMs is min(

⌊
TC_M
M

⌋
,
⌊
TC_N
N

⌋
). Note that this formula is in-

dependent of K, for which the only requirement is K ≤TC_K.

B3

0

B0 B1 B2

C0

C1

C2

C3

0
A2

A3

A0

A1

Batch
C4x4 = A4x4 ✕ B4x4
Maximum 4 simultaneous
GEMMs per tensor core
operation

Fig. 9. Improving Tensor Core utilization by assigning multiple GEMMs at
a time. Example for square matrices of size 4, with all Tensor Core sizes set
to 16.

B0 B1 B2

C0

C1

C2

A0

A1

A2

0

0
Batch

C3x5 = A3x9 ✕ B9x5
Maximum 3 simultaneous
GEMMs per tensor core
operation

Fig. 10. Improving Tensor Core utilization by assigning multiple GEMMs at
a time. Example for (M , N , K) = (3, 5, 9), with all tensor core sizes set to
16.

Such a design could not be incorporated into the original
kernel, because it contradicts one of its design principles.
The general kernel uses multiple warps per a partial GEMM
operation, while this kernel allows a single warp to span
multiple operations at the same time. This is why a separate
kernel is developed, which we call magma-small-v2. Figure 11
shows the performance improvement obtained by magma-
small-v2 against magma-small-v1. The speedups are much
more significant than the ones observed in Figure 8. The
speedups decrease as the problem sizes increase, since fewer
concurrent GEMMs can be executed per Tensor Core oper-
ation. The performance improvements become insignificant
after size 8 × 8, since exactly one GEMM can be executed
at a time starting size 9× 9 and up.

5.9x

4.6x

3.6x

2.7x

2.2x

1.5x

1.3x

1.3x

1.1x

0.9x

0 200 400 600 800 1000 1200

1

2

3

4

5

6

7

8

9

10

Gflop/s

M
at

rix
 S

iz
e

magma-small-v2

magma-small-v1

Fig. 11. Performance improvement due to increased Tensor Core utilization.
Results are shown for square sizes up to 10, with batchCount = 1M, on a
Tesla V100 GPU.

C. Are Tensor Cores Necessary for Small Sizes?

Although the magma-small-v2 kernel has been successful
in improving the performance against magma-small-v1, the
use of Tensor Cores for such small sizes may still be ques-
tionable. A single Tensor Core operation can perform 8192
FLOPs using any of the (TC_M, TC_N, TC_K) combinations.
Considering Figure 9, we perform four multiplications, each
having 2 × 43 = 128 FLOPs, for a total of 512 FLOPs.
This means that magma-small-v2 uses only 6.25% of the
available compute power, while the configuration shown in
Figure 10 uses 9.89% of it. Such low ratios raise questions
about using Tensor Cores, and whether conventional methods
(i.e., without Tensor Cores) can perform the multiplications
more efficiently. In this regard, we refer to a kernel that has
been developed before for very small matrices [29]. The kernel
addresses very small square multiplication of sizes up to 32.
The main design idea is to use an N×N thread configuration
for each GEMM, such that each thread is responsible for a
single element in the output matrix. The code is fully unrolled
for every size using C++ templates. In this paper, we use
the same kernel, but rather generalize it to work for both
square and rectangular multiplications. The generalization uses
a 1D thread configuration of max(M ×K,K × N,M × N)
for each subgrid. The configuration is remapped to M ×K,
K × N , or M × N configurations when transferring A, B,
or C respectively. For each problem, A and B are loaded in
shared memory, while C is kept in registers for accumulation.
We call the generalized kernel magma-small-v3.

We tested the performance of magma-small-v3 for square
sizes against magma-small-v2, for which the results are sum-
marized in Figure 12. We observe that significant improve-
ments for small sizes can yet be achieved by a kernel that does
not use the Tensor Cores. Similar to Figure 11, the speedups
are observed only for size up to 10. The smaller the sizes, the
larger the speedup.

To put all results into perspective, Figure 13 summarizes the

4.1x

3.2x

2.4x

2x

1.4x

1.5x

1.1x

1.1x

1.1x

1x

0 200 400 600 800 1000 1200

1

2

3

4

5

6

7

8

9

10

Gflop/s

M
at

rix
 S

iz
e

magma-small-v3

magma-small-v2

Fig. 12. Performance improvement of magma-small-v3 against magma-small-
v2. Results are shown for square sizes up to 10, with batchCount = 1M,
on a Tesla V100 GPU.

performance of all three versions against cuBLAS. The data
labels show the speedup scored by the best performing version
against the vendor routine. The figure shows a minimum
speedup of 80% at size 16. The speedup grows as the sizes
become smaller, reaching 25.8× at sizes 2× 2.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

G
f
o
p
/s

Matrix size

 magma-small-v1

 magma-small-v2

 magma-small-v3

 cublas

44.0x44.0x
25.8x25.8x

15.6x15.6x
10.2x10.2x

6.2x6.2x

5.0x5.0x 3.5x3.5x

3.1x3.1x 2.5x2.5x
2.1x2.1x

2.2x2.2x

2.1x2.1x

2.1x2.1x

2.0x2.0x

1.9x1.9x

1.8x1.8x

Fig. 13. Performance of all kernel versions against cuBLAS. Results are
shown for square sizes up to 16, with batchCount = 1M, on a Tesla V100
GPU

The magma-small-v1 is the best performing kernel for sizes
10 and up. For smaller sizes, the magma-small-v3 is the
best solution, though no Tensor Cores are used. This is an
interesting observation that nicely aligns with the percentage
Tensor Core utilization in a given multiplication. Recall that
the performance is memory bound at such small sizes, and so
the compute time of the kernel should ideally be negligible
in order to have the best performance. The V100 GPU
has a theoretical peak FP16 performance of 125 teraFLOP/s
using Tensor Cores. The theoretical peak performance without
Tensor Cores is 31.7 teraFLOP/s, which is 25.12% of the
Tensor Core performance. Now, depending on the utilization
of the Tensor Core compute power, we can tell whether it is

recommended to use Tensor Cores for memory bound kernels
that operate on very small problems. Figure 14 shows the
percentage utilization for square matrix multiplications, based
on a (16, 16, 16) configuration of Tensor Cores. The utilization
is computed as

⌊
16
N

⌋
× 2×N3

8192 , where N is the size of the square
matrices. The figure shows matching results with Figure 13.
Using Tensor is recommended only if the utilization is above
25.12%, which is the case for sizes larger than 10. Below this
size, the useful compute power provided by the Tensor Cores
becomes less than the non-accelerated FP16 performance. This
is why magma-small-v3 is the best solution for sizes less than
10.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Threshold = 25.12%Threshold = 25.12%

C
o
m
p
u
te

p
o
w
e
r
u
til
iz
e
d

(%
)

Matrix size

Fig. 14. The percentage of available Tensor Core compute power for square
multiplications of small matrices.

While Figure 13 shows that there is no winning scenario for
the magma-small-v2 kernel, the same is not true for rectangular
multiplications. In order for magma-small-v2 to outperform
magma-small-v1, it has to perform multiple GEMMs using one
Tensor Core operation, which implies that M and N must be
≤ 8. In addition, the value of K has to be sufficiently larger
than M and N in order to enhance the Tensor Core utilization.
As an example, Figure 15 shows the performance results for
M = 4 and N = 3, while varying K between 1 and 16. We
observe that magma-small-v2 has a clear advantage for K ≥ 8.
The overall improvement against cuBLAS is also substantial,
scoring speedups between 5.5× and 9.8×.

VIII. IMPACT OF BATCHCOUNT ON PERFORMANCE

The reported results so far discuss only the “asymptotic
performance” by making batchCount large enough to sat-
urate the GPU with enough work. However, the actual value
of batchCount varies significantly from one application to
another. As an example, the original work that introduced the
CUDA Deep Neural Network (cuDNN) library [18] shows
results for “mini-batches” up to 128 only. Tensor-formulated,
high-order finite element method (FEM) simulations [3] can
be performed using a sequence of GEMM operations executed
independently on each element, thus making batchCount
equal to the number of elements. The latter typically ranges
from a few thousands to an order of a million, depending

 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

G
f
o
p
/s

K (M = 4, N = 3)

 magma-small-v1

 magma-small-v2

 magma-small-v3

 cublas

9.4x9.4x

9.4x9.4x

9.8x9.8x 8.2x8.2x
6.3x6.3x 5.4x5.4x

5.5x5.5x

5.5x5.5x

5.6x5.6x
5.6x5.6x

5.6x5.6x 5.5x5.5x
5.5x5.5x

5.6x5.6x
5.6x5.6x

5.7x5.7x

Fig. 15. Performance of all kernel versions against cuBLAS, with M = 4
and N = 3. Results are shown for batchCount = 1M, on a Tesla V100
GPU

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000

T
f
o
p
/s

batchCount

 magma (size=32)

 cublas(size=32)

 magma (size=64)

 cublas(size=64)

 magma (size=96)

 cublas(size=96)

 magma (size=128)

 cublas(size=128)

Fig. 16. Impact of batchCount on performance. Results are shown for
selected square sizes on a Tesla V100 GPU

on the discretization. Performing batch computations on hier-
archical matrices, as presented in [30], can use batches that
are order of 100K, depending on the blocking size and the
order of the original matrix. Other work related to block-Jacobi
preconditioning [31] uses a maximum block size of 16× 16,
with the number of blocks being dependent again on the size
of the matrix. Generally speaking, there is no typical range
for batchCount, since such information is very application-
specific.

Figures 16 and 17 show the performance plotted against
a wide range of batchCount values for selected matrix
sizes. For the very small sizes in Figure 17, we run magma-
small-v1 for sizes ≥ 10, and magma-small-v3 otherwise.
In general, the performance of both MAGMA and cuBLAS
steadily increases as the batch becomes larger. For any given
matrix size, the faster of the two routines maintains such an
advantage across all batch sizes. We observe that, for sizes less
than 96, the performance of cuBLAS stagnates much earlier
than MAGMA, thus conceding the advantage to the latter. We
also observe that, for most sizes, the advantage of MAGMA

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000

G
f
o
p
/s

batchCount

 magma (size=16)

 cublas(size=16)

 magma (size=10)

 cublas(size=10)

 magma (size=8)

 cublas(size=8)

 magma (size=4)

 cublas(size=4)

Fig. 17. Impact of batchCount on performance. Results are shown for
very small selected sizes a Tesla V100 GPU

becomes apparent when the batch contains more than 200
operations.

IX. CONCLUSION AND FUTURE WORK

This paper introduced an optimized batched matrix multi-
plication kernel using FP16 arithmetic on GPUs. The paper
represents one of the first efforts to programmatically use the
Tensor Core technology in an open-source implementation.
The first part of the paper presents a highly flexible design that
uses a double-sided blocking technique in order to overcome
the restricted block sizes of the Tensor Cores. The developed
kernel outperforms the vendor routine for sizes up to 100,
scoring speedups that range between 1.2× and 10×. The
second part of the paper addresses optimization techniques that
are specific for very small problem sizes that cannot entirely
occupy the Tensor Core units. Three different designs have
been discussed in this regard. The best performance observed
across those designs is significantly higher than cuBLAS. The
observed speedups are in the range of 1.8× to 26×.

Future directions include investigating other optimization
techniques to improve the asymptotic performance for larger
sizes, automatic performance tuning for various shapes and
settings, supporting variable size problems in the same batch,
and studying the impact of such work on real applications
from different fields.

ACKNOWLEDGMENT

This work is partially supported by NSF Grant No. OAC
1740250 and CSR 1514286, NVIDIA, and the Department
of Energy under the Exascale Computing Project (17-SC-20-
SC and LLNL subcontract under DOE contract DE-AC52-
07NA27344).

REFERENCES

[1] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful
Visual Performance Model for Multicore Architectures,” Commun.
ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1498765.1498785

[2] S. N. Yeralan, T. A. Davis, W. M. Sid-Lakhdar, and S. Ranka,
“Algorithm 980: Sparse QR Factorization on the GPU,” ACM Trans.
Math. Softw., vol. 44, no. 2, pp. 17:1–17:29, Aug. 2017. [Online].
Available: http://doi.acm.org/10.1145/3065870

[3] A. Abdelfattah, M. Baboulin, V. Dobrev, J. J. Dongarra, C. W. Earl,
J. Falcou, A. Haidar, I. Karlin, T. V. Kolev, I. Masliah, and S. Tomov,
“High-Performance Tensor Contractions for GPUs,” in International
Conference on Computational Science 2016, ICCS 2016, 6-8 June
2016, San Diego, California, USA, 2016, pp. 108–118. [Online].
Available: https://doi.org/10.1016/j.procs.2016.05.302

[4] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
Learning with Limited Numerical Precision,” in Proceedings of the
32Nd International Conference on International Conference on Machine
Learning - Volume 37, ser. ICML’15. JMLR.org, 2015, pp. 1737–1746.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3045118.3045303

[5] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std
754-2008, pp. 1–70, Aug 2008. [Online]. Available:
https://ieeexplore.ieee.org/document/4610935

[6] V. Volkov and J. Demmel, “Benchmarking GPUs to tune dense
linear algebra,” in Proceedings of the ACM/IEEE Conference
on High Performance Computing, SC 2008, November 15-21,
2008, Austin, Texas, USA, 2008, p. 31. [Online]. Available:
http://doi.acm.org/10.1145/1413370.1413402

[7] R. Nath, S. Tomov, and J. Dongarra, “An Improved Magma Gemm For
Fermi Graphics Processing Units,” The International Journal of High
Performance Computing Applications, vol. 24, no. 4, pp. 511–515,
2010. [Online]. Available: https://doi.org/10.1177/1094342010385729

[8] S. Tomov, J. J. Dongarra, and M. Baboulin, “Towards dense linear
algebra for hybrid GPU accelerated manycore systems,” Parallel
Computing, vol. 36, no. 5-6, pp. 232–240, 2010. [Online]. Available:
https://doi.org/10.1016/j.parco.2009.12.005

[9] K. Rupp, P. Tillet, F. Rudolf, J. Weinbub, A. Morhammer, T. Grasser,
A. Jngel, and S. Selberherr, “ViennaCL—Linear Algebra Library for
Multi- and Many-Core Architectures,” SIAM Journal on Scientific
Computing, vol. 38, no. 5, pp. S412–S439, 2016. [Online]. Available:
https://doi.org/10.1137/15M1026419

[10] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault,
and S. Tomov, “Faster, Cheaper, Better – a Hybridization Methodology
to Develop Linear Algebra Software for GPUs,” in GPU Computing
Gems, W. mei W. Hwu, Ed. Morgan Kaufmann, Sep. 2010, vol. 2.
[Online]. Available: https://hal.inria.fr/inria-00547847

[11] Y. Li, J. Dongarra, and S. Tomov, “A Note on Auto-tuning GEMM for
GPUs,” in Computational Science – ICCS 2009. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 884–892.

[12] J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning GEMM Kernels
for the Fermi GPU,” IEEE Transactions on Parallel and Distributed
Systems, vol. 23, no. 11, pp. 2045–2057, Nov 2012.

[13] G. Tan, L. Li, S. Triechle, E. H. Phillips, Y. Bao, and N. Sun,
“Fast implementation of DGEMM on Fermi GPU,” in Conference on
High Performance Computing Networking, Storage and Analysis, SC
2011, Seattle, WA, USA, November 12-18, 2011, 2011, pp. 35:1–35:11.
[Online]. Available: http://doi.acm.org/10.1145/2063384.2063431

[14] J. Lai and A. Seznec, “Performance Upper Bound Analysis and
Optimization of SGEMM on Fermi and Kepler GPUs,” in Proceedings
of the 2013 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), ser. CGO ’13. Washington, DC, USA:
IEEE Computer Society, 2013, pp. 1–10. [Online]. Available:
http://dx.doi.org/10.1109/CGO.2013.6494986

[15] S. Gray, “A full walk through of the SGEMM implementation,”
https://github.com/NervanaSystems/maxas/wiki/SGEMM, 2015.

[16] A. Haidar, T. Dong, P. Luszczek, S. Tomov, and J. J. Dongarra,
“Batched matrix computations on hardware accelerators based on
GPUs,” IJHPCA, vol. 29, no. 2, pp. 193–208, 2015. [Online].
Available: https://doi.org/10.1177/1094342014567546

[17] C. Jhurani and P. Mullowney, “A GEMM interface and implementation
on NVIDIA GPUs for multiple small matrices,” CoRR, vol.
abs/1304.7053, 2013. [Online]. Available: http://arxiv.org/abs/1304.7053

[18] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “cuDNN: Efficient Primitives for
Deep Learning,” CoRR, vol. abs/1410.0759, 2014. [Online]. Available:
http://arxiv.org/abs/1410.0759

[19] A. Abdelfattah, A. Haidar, S. Tomov, and J. J. Dongarra, “Performance,
design, and autotuning of batched GEMM for gpus,” in High
Performance Computing - 31st International Conference, ISC High

Performance 2016, Frankfurt, Germany, June 19-23, 2016, Proceedings,
2016, pp. 21–38. [Online]. Available: https://doi.org/10.1007/978-3-
319-41321-1 2

[20] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture
for Fast Feature Embedding,” in Proceedings of the 22Nd ACM
International Conference on Multimedia, ser. MM ’14. New
York, NY, USA: ACM, 2014, pp. 675–678. [Online]. Available:
http://doi.acm.org/10.1145/2647868.2654889

[21] L. Ng, K. Wong, A. Haidar, S. Tomov, and J. Dongarra, “MagmaDNN
High-Performance Data Analytics for Manycore GPUs and CPUs,”
December 2017, Magma-DNN, 2017 Summer Research Experiences
for Undergraduate (REU), Knoxville, TN. [Online]. Available:
http://icl.cs.utk.edu/magma/software/

[22] K. Chellapilla, S. Puri, and P. Simard, “High Performance Convolutional
Neural Networks for Document Processing,” in Tenth International
Workshop on Frontiers in Handwriting Recognition, G. Lorette, Ed.,
Université de Rennes 1. La Baule (France): Suvisoft, Oct. 2006,
http://www.suvisoft.com. [Online]. Available: https://hal.inria.fr/inria-
00112631

[23] A. Lavin and S. Gray, “Fast algorithms for convolutional neural net-
works,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[24] S. Winograd, S. for Industrial, A. Mathematics, C. B. of the
Mathematical Sciences, and N. S. F. E. U. d’Amèrica),
Arithmetic Complexity of Computations, ser. CBMS-NSF Regional
Conference Series in Applied Mathematics. Society for
Industrial and Applied Mathematics, 1980. [Online]. Available:
https://books.google.com/books?id=GU1NQJBcWIsC

[25] N. Tomov and S. Tomov, “On deep neural networks for detecting
heart disease,” CoRR, vol. abs/1808.07168, 2018. [Online]. Available:
http://arxiv.org/abs/1808.07168

[26] A. Haidar, A. Abdelfattah, M. Zounon, P. Wu, S. Pranesh, S. Tomov, and
J. Dongarra, “The Design of Fast and Energy-Efficient Linear Solvers:
On the Potential of Half-Precision Arithmetic and Iterative Refinement
Techniques,” in Computational Science – ICCS 2018. Springer Inter-
national Publishing, 2018, pp. 586–600.

[27] A. Haidar, S. Tomov, J. Dongarra, and N. Higham, “Harnessing GPU
Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision
Iterative Refinement Solvers,” in Proceedings of the International ACM
Conference on International Conference on Supercomputing (SC’18),
2018, (In press).

[28] K. Kim, T. B. Costa, M. Deveci, A. M. Bradley, S. D. Hammond,
M. E. Guney, S. Knepper, S. Story, and S. Rajamanickam,
“Designing Vector-friendly Compact BLAS and LAPACK Kernels,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. New
York, NY, USA: ACM, 2017, pp. 55:1–55:12. [Online]. Available:
http://doi.acm.org/10.1145/3126908.3126941

[29] I. Masliah, A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou,
and J. J. Dongarra, “High-Performance Matrix-Matrix Multiplications
of Very Small Matrices,” in Euro-Par 2016: Parallel Processing -
22nd International Conference on Parallel and Distributed Computing,
Grenoble, France, August 24-26, 2016, Proceedings, 2016, pp. 659–671.
[Online]. Available: https://doi.org/10.1007/978-3-319-43659-3 48

[30] I. Yamazaki, A. Abdelfattah, A. Ida, S. Ohshima, S. Tomov, R. Yokota,
and J. J. Dongarra, “Performance of Hierarchical-matrix BiCGStab
Solver on GPU Clusters,” in 2018 IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2018, Vancouver, BC,
Canada, May 21-25, 2018, 2018, pp. 930–939. [Online]. Available:
https://doi.org/10.1109/IPDPS.2018.00102

[31] H. Anzt, J. Dongarra, G. Flegar, and E. S. Quintana-Ort, “Variable-size
batched GaussJordan elimination for block-Jacobi preconditioning on
graphics processors,” Parallel Computing, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819117302107

