
13

Implementing Singular Value
and Symmetric/Hermitian Eigenvalue
Solvers
Mark Gates
Mohammed Al Farhan
Ali Charara
Jakub Kurzak
Dalal Sukkari
Asim YarKhan
Jack Dongarra

Innovative Computing Laboratory

April 2, 2020

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperative.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

Revision Notes

09-2019 first publication
04-2020 added generalized Hermitian definite eigenvalues (Section 2.3) and eigenvectors

(Section 2.5)

@techreport{gates2019implementing,

author={Gates, Mark and Al Farhan, Mohammed and Charara, Ali and

Kurzak, Jakub and Sukkari, Dalal and YarKhan, Asim and

Dongarra, Jack},

title={{SLATE} Working Note 13:

Implementing Singular Value and Symmetric/Hermitian Eigenvalue Solvers},

institution={Innovative Computing Laboratory, University of Tennessee},

year={2019},

month={September},

number={ICL-UT-19-07},

note={revision 04-2020}

}

i

Contents

Contents ii

List of Figures iii

1 Introduction 1
1.1 Significance of SLATE . 1
1.2 Design of SLATE . 3

2 Implementation 6
2.1 Singular Value Decomposition . 6
2.2 Hermitian Eigenvalue Problem . 7
2.3 Generalized Hermitian Definite Eigenvalue Problem 7
2.4 Three Stage Algorithms . 8
2.5 Eigenvector Computation . 13

2.5.1 Eigenvectors of tridiagonal matrix . 13
2.5.2 Second stage back-transformation . 14
2.5.3 First stage back-transformation . 15

3 Performance 17
3.1 Environment . 17

3.1.1 Hardware . 17
3.1.2 Software . 17

3.2 Results . 18

Bibliography 21

ii

List of Figures

1.1 Dependencies of ECP applications on dense linear algebra software. 2
1.2 SLATE in the ECP software stack. 3
1.3 Code size comparison - ScaLAPACK vs SLATE . 5

2.1 Three stage Hermitian eigenvalue and SVD algorithms. 11
2.2 One panel of the first stage reduction to band form. 11
2.3 Bulge-chasing algorithm. 12
2.4 Hermitian bulge-chasing algorithm. 12
2.5 Redistribute 1D block row cyclic distributed matrix using 4× 1 grid into a 2D block

cyclic distribution using 2× 2 grid. 14
2.6 Second stage back transformation, with V block size jb = 3 vectors. Block reflector 3

is highlighted to show overlap. 15
2.7 Dependencies allow up to

⌈
mt
2

⌉
parallel tasks. 16

3.1 Summit node architecture. 18
3.2 SVD performance comparison. 19
3.3 Generalized to standard eigenvalue performance comparison. 20

iii

CHAPTER 1

Introduction

1.1 Significance of SLATE

Software for Linear Algebra Targeting Exascale (SLATE) 1 is being developed as part of the
Exascale Computing Project (ECP) 2, which is a joint project of the U.S. Department of Energy’s
Office of Science and National Nuclear Security Administration (NNSA). SLATE will deliver
fundamental dense linear algebra capabilities for current and upcoming distributed-memory
systems, including GPU-accelerated systems as well as more traditional multi core–only systems.

SLATE will provide coverage of existing LAPACK and ScaLAPACK functionality, including
parallel implementations of Basic Linear Algebra Subroutines (BLAS), linear systems solvers,
least squares solvers, and singular value and eigenvalue solvers. In this respect, SLATE will serve
as a replacement for LAPACK and ScaLAPACK, which, after two decades of operation, cannot
be adequately retrofitted for modern, GPU-accelerated architectures.

Figure 1.1 shows how heavily ECP applications depend on dense linear algebra software. A direct
dependency means that the application’s source code contains calls to the library’s routines.
An indirect dependency means that the applications needs to be linked with the library due to
another component depending on it. Out of 60 ECP applications, 38 depend on BLAS – either
directly on indirectly – 40 depend on LAPACK, and 14 depend on ScaLAPACK. In other words,
the use of dense linear algebra software is ubiquitous among the ECP applications.

1http://icl.utk.edu/slate/
2https://www.exascaleproject.org

1

http://icl.utk.edu/slate/
https://www.exascaleproject.org

1.1. SIGNIFICANCE OF SLATE CHAPTER 1. INTRODUCTION

Application BLAS LAPACK SCALAPACK
AMPE

AMReX
CANDLE

CEED-MAGMA
CEED-MFEM

CEED-Nek5000
CEED-OCCA
CEED-PUMI

Chroma
Combustion-PELE

CPS
Diablo

E3SM-MMF-ACME-MMF
EQSIM-SW4

ExaBiome-GOTTCHA
ExaBiome-HipMCL

ExaBiome-MetaHipMer
ExaCA

ExaConstit
ExaFEL-LUNUS

ExaFEL-M-TIP
ExaFEL-psana

ExaGraph-AWPM
ExaGraph-HipMCL

ExaGraph-Kokkoskernels
ExaGraph-Zoltan2

ExaMPM
ExaSGD-GOSS

ExaSGD-GridPACK
ExaSGD-PIPS

ExaSGD-StructJuMP
ExaSky-HACC/CosmoTools

ExaSky-Nyx
ExaSMD-Nek5000
ExaSMR-OpenMC

ExaSMR-Shift
ExaStar-Castro
ExaStar-FLASH

ExaWind-Nalu
GAMESS
LAMMPS

LATTE
LIBCCHEM

MEUMAPPS-SL
MEUMAPPS-SS

MFIX-Exa
MILS

NWChemEx
ParSplice

PICSAR
QMCPACK

Subsurface-Chombo-Crunch
Subsurface-GEOS

Truchas-PBF
Tusas

Urban-WRF
WarpX

WCMAPP-XGC
WDMApp-GENE

xaFEL-CCTBX

Figure 1.1: Dependencies of ECP applications on dense linear algebra software.

2

1.2. DESIGN OF SLATE CHAPTER 1. INTRODUCTION

1.2 Design of SLATE

SLATE is built on top of standards, such as MPI and OpenMP and de facto standard industry
solutions such as NVIDIA CUDA and AMD HIP. SLATE also relies on high performance
implementations of numerical kernels from vendor libraries, such as Intel MKL, IBM ESSL,
NVIDIA cuBLAS, and AMD rocBLAS. SLATE interacts with these libraries through a layer of
C++ APIs. Figure 1.2 shows SLATE’s position in the ECP software stack.

Figure 1.2: SLATE in the ECP software stack.

The following paragraphs outline the foundations of SLATE’s design.

Object-Oriented Design: The design of SLATE revolves around the Tile class and the Matrix
class hierarchy. The Tile class is intended as a simple class for maintaining the properties
of individual tiles and implementing core serial tile operations, such as tile BLAS, while the
Matrix class hierarchy maintains the state of distributed matrices throughout the execution
of parallel matrix algorithms in a distributed-memory environment. Currently, the classes
are structured as follows:

BaseMatrix is an abstract base class for all matrices.

Matrix represents a general m× n matrix.

BaseTrapezoidMatrix is an abstract base class for all upper-trapezoid or lower-
trapezoid, m× n matrices. For upper matrices, tiles A(i, j) are stored for i ≤ j.
For lower matrices, tiles A(i, j) are stored for i ≥ j.
TrapezoidMatrix represents an upper-trapezoid or a lower-trapezoid, m × n

matrix. The opposite triangle is implicitly zero.

TriangularMatrix represents an upper-triangular or a lower-triangular,
n× n matrix.

SymmetricMatrix represents a symmetric, n×n matrix, with only the upper or
lower triangle stored. The opposite triangle is implicitly known by symmetry
(Aj,i = Ai,j).

HermitianMatrix represents a Hermitian, n×n matrix, with only the upper or
lower triangle stored. The opposite triangle is implicitly known by symmetry
(Aj,i = Āi,j).

3

1.2. DESIGN OF SLATE CHAPTER 1. INTRODUCTION

Tiled Matrix Layout: The new matrix storage introduced in SLATE is one of its most impact-
ful features. In this respect, SLATE represents a radical departure from other distributed
linear algebra software such as ScaLAPACK or Elemental, where the local matrix occupies
a contiguous memory region on each process. In contrast, tiles are first class objects
in SLATE that can be individually allocated and passed to low-level tile routines. In
SLATE, the matrix consists of a collection of individual tiles with no correlation between
their positions in the matrix and their memory locations. At the same time, SLATE also
supports tiles pointing to data in a traditional ScaLAPACK matrix layout, thereby easing
an application’s transition from ScaLAPACK to SLATE.

Handling of side, uplo, trans: The classical BLAS takes parameters such as side, uplo,
trans (named “op” in SLATE), and diag to specify operation variants. Traditionally, this
has meant that implementations have numerous cases. The reference BLAS has nine cases
in zgemm and eight cases in ztrmm (times several sub-cases). ScaLAPACK and PLASMA
likewise have eight cases in ztrmm. In contrast, by storing both uplo and op within the
matrix object itself, and supporting inexpensive shallow copy transposition, SLATE can
implement just one or two cases and map all the other cases to that implementation
by appropriate transpositions. For instance, SLATE only implements one case for gemm

(NoTrans, NoTrans) and handles all other cases by swapping indices of tiles and setting
trans appropriately for the underlying tile operations.

Templating of Precisions: SLATE handles multiple precisions by C++ templating, so there
is only one precision-independent version of the code, which is then instantiated for the
desired precisions. Operations are defined so that they can be applied consistently across
all precisions. SLATE’s BLAS++ component provides overloaded, precision-independent
wrappers for all underlying, node-level BLAS, and SLATE’s PBLAS are built on top of
these. Currently, the SLATE library has explicit instantiations of the four main data types:
float, double, std::complex<float>, and std::complex<double>. The SLATE code
should be able to accommodate other data types, such as half, double-double, or quad
precision, given appropriate underlying node-level BLAS.

Templating of Execution Targets: Parallelism is expressed in SLATE’s computational rou-
tines. Each computational routine solves a sub-problem, such as computing an LU factor-
ization (getrf) or solving a linear system given an LU factorization (getrs). In SLATE,
these routines are templated for different targets (CPU or GPU), with the code typically
independent of the target. The user can choose among various target implementations:

Target::HostTask means multithreaded execution by a set of OpenMP tasks.

Target::HostNest means multithreaded execution by a nested “parallel for” loop.

Target::HostBatch means multithreaded execution by calling a batched BLAS routine.

Target::Devices means (multi-)GPU execution using calls to batched BLAS.

MPI Communication: Communication in SLATE relies on explicit dataflow information.
When a tile is needed for computation, it is broadcast to all the processes where it is
required. Rather than explicitly listing MPI ranks, the broadcast is expressed in terms of
the destination (sub)matrix to be updated. This way, SLATE’s messaging layer is oblivious
to the mapping of tiles to processes. Also, multiple broadcasts are aggregated to allow for
pipelining of MPI messages with transfers between the host and the devices. Since the set

4

1.2. DESIGN OF SLATE CHAPTER 1. INTRODUCTION

of processes involved in a broadcast is determined dynamically, the use of MPI collectives
is not ideal, as it would require setting up a new subcommunicator for each broadcast.
Instead, SLATE uses point-to-point MPI communication following a hypercube pattern to
broadcast the data.

Node-Level Coherency: For offload to GPU accelerators, SLATE implements a memory
consistency model, inspired by the MOSI cache coherency protocol [1, 2], on a tile-by-tile
basis. For read-only access, tiles are mirrored in the memories of, possibly multiple, GPU
devices and deleted when no longer needed. For write access, tiles are migrated to the
GPU memory and returned to the CPU memory afterwards if needed. A tile’s instance
can be in one of three states: Modified, Shared, or Invalid. Additional flag OnHold can be
set along any state, as follows:

Modified (M) indicates that the tile’s data is modified. Other instances should be Invalid.
The instance cannot be purged.

Shared (S) indicates that the tile’s data is up-to-date. Other instances may be Shared or
Invalid. The instance may be purged unless it is on hold.

Invalid (I) indicates that the tile’s data is obsolete. Other instances may be Modified,
Shared, or Invalid. The instance may be purged unless it is on hold.

OnHold (O) is a flag orthogonal to the other three states that indicates a hold is set on
the tile instance, and the instance cannot be purged until the hold is released.

Dynamic Scheduling: Dataflow scheduling (omp task depend) is used to execute a task graph
with nodes corresponding to large blocks of the matrix. Dependencies are tracked using
dummy vectors, where each element represents a block of the matrix, rather than the
matrix data itself. For multi-core execution, each large block is dispatched to multiple
cores—using either nested tasking (omp task) or batched BLAS. For GPU execution, calls
to batched BLAS are used specifically to deliver fast processing of matrix blocks that are
represented as large collections of tiles.

One of the main benefits of SLATE’s architecture is dramatic reduction in the size of the
source code, compared to ScaLAPACK (Figure 1.3). As of August 2019, with more than two
thirds of ScaLAPACK’s functionality covered, SLATE’s source code is 8× to 9× smaller than
ScaLAPACK’s.

0

250

500

750

1000

1250

1500

1750

2000

0

100000

200000

300000

400000

500000

FILES LINES OF CODE
EXCLUDING COMMENTS

1,839

204

441,894

52,923

Figure 1.3: Code size comparison - ScaLAPACK vs SLATE (numbers from August 2019).

5

CHAPTER 2

Implementation

2.1 Singular Value Decomposition

In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex
matrix A of the form UΣV H , where U is an m ×m real or complex unitary matrix, Σ is an
m× n rectangular diagonal matrix with non-negative real numbers on the diagonal, and V is
n× n real or complex unitary matrix. The diagonal entries σi of Σ are known as the singular
values of A. The columns of U and the columns of V are known as the left-singular vectors
and the right-singular vectors of A, respectively. Typically the values σi are ordered such that
σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0. Typically, only the first min(m,n) columns of U and rows of V
are computed, yielding the “reduced” or “economy-size” SVD, since the remaining columns of U
and rows of V are multiplied by the zero part of Σ and do not contribute to A.

The SVD is the generalization of the eigendecomposition of a positive semidefinite normal matrix
to any m × n matrix via an extension of the polar decomposition. The SVD is related to
the eigendecomposition in the following way. The singular values are the square roots of the
eigenvalues of ATA, the columns of V are the corresponding eigenvectors, and the columns of U
are the eigenvectors of AAT .

The discovery of the SVD is attributed to four famous mathematicians, who seem to have come
across it independently: Eugenio Beltrami (in 1873), Camille Jordan (in 1874), James Joseph
Sylvester (in 1889), Léon César Autonneand (in 1915). The first proof of the singular value
decomposition for rectangular and complex matrices seems to be by Carl Eckart and Gale J.
Young in 1936 [3].

First practical methods for computing the SVD are attributed to Kogbetliantz and Hestenes [4]
and resemble closely the Jacobi eigenvalue algorithm, which uses Jacobi (Givens) plane rotations.

6

2.2. HERMITIAN EIGENVALUE PROBLEM CHAPTER 2. IMPLEMENTATION

These were replaced by the method of Golub and Kahan [5], which uses Householder reflections
to reduce to bidiagonal, then plane rotations to continue the reduction to diagonal. The most
popular algorithm used today is the variant of the Golub/Kahan algorithm published by Golub
and Reinsch [6].

2.2 Hermitian Eigenvalue Problem

In linear algebra, an eigendecomposition or spectral decomposition is the factorization of a matrix
into a canonical form, where the matrix is represented in terms of its eigenvalues and eigenvectors.
An eigenvector or characteristic vector of a linear transformation is a nonzero vector that changes
by a scalar factor when that linear transformation is applied to it. That is, a (non-zero) vector x
of dimension n is an eigenvector of a square n × n matrix A if it satisfies the linear equation
Ax = λx. In other words, the eigenvectors are the vectors that the linear transformation A
merely elongates or shrinks, and the amount that they elongate/shrink by is the eigenvalue.

A square n× n matrix A with n linearly independent eigenvectors qi (where i = 1, ..., n) can be
factored as A = XΛX−1 where X is the square n×n matrix whose ith column is the eigenvector
xi of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues,
Λii = λi. Only diagonalizable matrices can be factorized in this way.

Any Hermitian matrix can be diagonalized by a unitary matrix, and the resulting diagonal matrix
has only real entries. This implies that all eigenvalues of a Hermitian matrix A with dimension
n are real, and that A has n linearly independent eigenvectors. Moreover, a Hermitian matrix
has orthogonal eigenvectors for distinct eigenvalues. Given that conjugate transpose of a unitary
matrix is also its inverse, the Hermitian eigenvalue problem boils down to A = XΛXH . This
means A = XΛXT in the case of real symmetric matrices.

Historically, eigenvalues arose in the study of quadratic forms and differential equations. The
initial discoveries are attributed to Euler, Lagrange, and Cauchy. The list of mathematicians
who contributed to the field includes such famous names as Fourier, Sturm, Hermite, Brioschi,
Clebsch, Weierstrass, Liouville, Schwarz, and Poincaré. Generally, Hilbert is credited with using
the German word eigen, which means “own”, to denote eigenvalues and eigenvectors, though he
may have been following a related usage by Helmholtz.

The first numerical algorithm for computing eigenvalues and eigenvectors appeared in 1929,
when Von Mises published the power method. One of the most popular methods today, the QR
algorithm, was proposed independently by Francis [7] and Kublanovskaya [8] in 1961.

2.3 Generalized Hermitian Definite Eigenvalue Problem

The generalized Hermitian definite eigenvalue problem has various types:

• Type 1: Az = λBz,

• Type 2: ABz = λz,

• Type 3: BAz = λz,

7

2.4. THREE STAGE ALGORITHMS CHAPTER 2. IMPLEMENTATION

where A is Hermitian and B is Hermitian positive-definite.

To solve it, we first reduce it to the standard eigenvalue form, Âx = λx. The reductions for
types (2) and (3) are identical; they differ in the back-transformation. First, form the Cholesky
factorization of B as either B = LLH with lower triangular L, or B = UHU with upper triangular
U . Then form Â, which overwrites A, as:

• Type 1: compute Â = L−1AL−H or Â = U−HAU−1, as shown in Algorithm 1;

• Type 2 or 3: compute Â = LHAL or Â = UAUH , as shown in Algorithm 2.

Only the lower or upper triangles of A, Â, and B are stored and computed on, the opposite
triangle being known from symmetry. The hegst routine (Hermitian generalized to standard)
takes A and the Cholesky factor L or U of B as input; the lower or upper triangle of Â overwrites
the lower or upper triangle of A on output.

After solving the standard eigenvalue problem, Âx = λx, an eigenvector x is back-transformed
to be an eigenvector z of the generalized eigenvalue problem as follows:

• Type 1 or 2: z = L−Hx or z = U−1x using trsm;

• Type 3: z = Lx or z = UHx using trmm.

2.4 Three Stage Algorithms

We solve both the SVD and the Hermitian eigenvalue problem by a three stage algorithm, shown
in Figure 2.1:

(1) First stage reduction from full to triangular band (SVD) or Hermitian band (eigenvalue)
form, which uses Level 3 BLAS.

(2) Second stage reduction band to real bidiagonal (SVD) or real symmetric tridiagonal
(eigenvalue) form. This uses a bulge chasing algorithm.

(3) Third stage reduction to diagonal form, revealing the singular values or eigenvalues.
Currently we use QR iteration, but could also use divide and conquer, MRRR, bisection,
or other solver.

This is in contrast to the traditional algorithm used in LAPACK and ScaLAPACK that goes
directly from full to bidiagonal or symmetric tridiagonal, which uses Level 2 BLAS and is
memory-bandwidth limited. If m� n (or m� n), the SVD has an optional initial reduction
from tall (or wide) to square, using a QR (or LQ) factorization.

For the SVD, the first stage proceeds by computing a QR factorization of a block column to
annihilate entries below the diagonal, and updating the trailing matrix, as shown in Figure 2.2.
It then computes an LQ factorization of a block row to annihilate entries right of the upper
bandwidth, and updates the trailing matrix. It repeats factoring block columns and block rows,
until the entire matrix is brought to band form. The width of the block columns and rows is the
resulting matrix bandwidth, nb.

8

2.4. THREE STAGE ALGORITHMS CHAPTER 2. IMPLEMENTATION

Algorithm 1 Reduction to standard form (type 1) pseudocode.

1: function hegst(type, A, B)
2: for k = 1, . . . , nt // nt = number of block rows in A.
3: // A(k, k) = B(k, k)−1 ∗A(k, k) ∗B(k, k)−H .
4: hegst(type, A(k, k), B(k, k))
5: // A(k + 1 : nt, k) = A(k + 1 : nt, k) ∗B(k, k)H .
6: for m = k + 1, . . . , nt
7: trsm(B(k, k), A(m, k))
8: end
9: // A(k + 1 : nt, k) = [B(k + 1 : nt, k) ∗A(k, k)] +A(k + 1 : nt, k).

10: for m = k + 1, . . . , nt
11: hemm(A(k, k), B(m, k), A(m, k))
12: end
13: // A(k+1 : nt, k+1 : nt) = [A(k+1 : nt, k)∗B(k+1 : nt, k)]+A(k+1 : nt, k+1 : nt).
14: for m = k + 1, . . . , nt
15: for n = k + 1, . . . , nt
16: her2k(A(m, k), B(m, k), A(m,n))
17: end
18: end
19: // A(k + 1 : nt, k) = [B(k + 1 : nt, k) ∗A(k, k)] +A(k + 1 : nt, k).
20: for m = k + 1, . . . , nt
21: hemm(A(k, k), B(m, k), A(m, k))
22: end
23: // A(k + 1 : nt, k) = B(k + 1 : nt, k + 1 : nt) ∗A(k + 1 : nt, k).
24: for m = k + 1, . . . , nt
25: for n = k + 1, . . . , nt
26: trsm(B(m,n), A(m, k))
27: end
28: end
29: end
30: return A
31: end function

9

2.4. THREE STAGE ALGORITHMS CHAPTER 2. IMPLEMENTATION

Algorithm 2 Reduction to standard form (type 2 or 3) pseudocode.

1: function hegst(type, A, B)
2: for k = 1, . . . , nt // nt = number of block rows in A.
3: // A(k, 1 : k) = [A(k, 1 : k) ∗B(1 : k, 1 : k)].
4: for m = 1, . . . , k
5: for n = 1, . . . , k
6: trmm(B(m,n), A(k,m))
7: end
8: end
9: // A(k, 1 : k) = [A(k, k) ∗B(k, 1 : k)] +A(k, 1 : k).

10: for m = 1, . . . , k
11: hemm(A(k, k), B(k,m), A(k,m))
12: end
13: // A(1 : k, 1 : k) = [A(k, 1 : k)H ∗B(k, (1 : k)H] +A(1 : k, 1 : k).
14: for m = 1, . . . , k
15: for n = 1, . . . , k
16: her2k(A(k,m), B(k,m), A(m,n))
17: end
18: end
19: // A(k, 1 : k) = [A(k, k) ∗B(k, 1 : k)] +A(k, 1 : k).
20: for m = 1, . . . , k
21: hemm(A(k, k), B(k,m), A(k,m))
22: end
23: // A(k, 1 : k) = [B(k, k)H ∗A(k, 1 : k)].
24: for m = 1, . . . , k
25: trmm(B(k, k), A(k,m))
26: end
27: // A(k, k) = B(k, k)H ∗A(k, k) ∗B(k, k).
28: hegst(type, A(k, k), B(k, k))
29: end
30: return A
31: end function

10

2.4. THREE STAGE ALGORITHMS CHAPTER 2. IMPLEMENTATION

A Λ

1. Hermitian
to band
(he2hb)

2. band to
tridiagonal

(hb2st)

3. tridiagonal
eigenvalue solver

(sterf, etc.)

traditional (hetrd)

Â Σ

1. general
to band
(ge2tb)

2. band to
bidiagonal

(tb2bd)

3. bidiagonal
SVD solver
(bdsqr, etc.)

A

0. tall to
square
(geqrf)

traditional (gebrd)

Figure 2.1: Three stage Hermitian eigenvalue and SVD algorithms.
Three stage Hermitian eigenvalue (top) and SVD (bottom) algorithms.

trailing
matrix

} nb

Q
R

 p
an

el

trailing
matrix

LQ panel

Figure 2.2: One panel of the first stage reduction to band form.

11

2.4. THREE STAGE ALGORITHMS CHAPTER 2. IMPLEMENTATION

T1,5

task T1,1

(a) initial band matrix

task T1,1

T1,5

T1,3

T1,4

kernel 3

kernel 2

kernel 1

T1,2

(b) tasks in sweep 1

T1,5

task T1,1

sweep 1

sweep 2

(c) overlap of sweeps

Figure 2.3: Bulge-chasing algorithm. “o” indicates eliminated elements; “+” indicates fill. Arrows
show application of Householder reflector on left (→), which update a block row, and on right (↓),
which update a block column.

Figure 2.4: Hermitian bulge-chasing algorithm. Only the lower triangle is accessed; the upper
triangle is known implicitly by symmetry.

The second stage reduces the band form to the final bidiagonal form using a bulge chasing
technique. It involves 6nbn

2 operations, so it takes a small percentage of the total operations,
which decreases with n. The operations are memory bound, but are fused together as Level 2.5
BLAS [9] for cache efficiency. We designed the algorithm to use fine-grained, memory-aware
tasks in an out-of-order, data-flow task-scheduling technique that enhances data locality [10, 11].

The second stage proceeds in a series of sweeps, each sweep bringing one row to bidiagonal and
chasing the created fill-in elements down to the bottom right of the matrix using successive
orthogonal transformations. It uses three kernels. Kernel 1 (yellow task T1,1 in Figure 2.3b)
applies a Householder reflector from the right (indicated by the down arrow) to eliminate a row
right of the superdiagonal, which also creates a bulge of fill-in beneath the diagonal. It then
applies a Householder reflector from the left (indicated by the right arrow) to eliminate the
first column of the bulge below the diagonal, and applies the update to the first block column
only. The remainder of the bulge is not eliminated, but is instead left for subsequent sweeps to
eliminate, as they would reintroduce the same nonzeros.

Kernel 2 (blue task T1,2) continues to apply the left Householder reflector from kernel 1 (or
kernel 3) to the next block column, creating a bulge above the upper bandwidth. It then applies
a right Householder reflector to eliminate the first row of the bulge right of the upper bandwidth,

12

2.5. EIGENVECTOR COMPUTATION CHAPTER 2. IMPLEMENTATION

updating only the first block row.

Kernel 3 (red task T1,3) continues to apply the right Householder reflector from kernel 2, creating
a bulge below the main diagonal. As in kernel 1, it then applies a left Householder reflector to
eliminate the first column of the bulge below the diagonal and updates just the current block
column. After kernel 3, kernel 2 is called again (blue task T1,4) to continue application of the left
Householder reflector in the next block column. A sweep consists of calling kernel 1 to bring a
row to bidiagonal, followed by repeated calls to kernels 2 and 3 to eliminate the first column or
row of the resulting bulges, until the bulges are chased off the bottom-right of the matrix.

For parallelism, once a sweep has finished the first kernel 3, a new sweep can start in parallel.
This new sweep is shifted over one column and down one row, as shown in Figure 2.3c. Before
task i in sweep s, denoted as Ts,i, can start, it depends on task Ts−1, i+3 in the previous sweep
being finished, to ensure that kernels do not update the same entries simultaneously. To maximize
cache reuse, tasks are assigned to cores based on their data location. Ideally, the band matrix
fits into the cores’ combined caches, and each sweep cycles through the cores as it progresses
down the band.

For the Hermitian eigenvalue problem, the second stage shown in Figure 2.4 is very similar to the
SVD second stage. Where the SVD has different reflectors from the right and left, here the same
reflector is applied from the left and the right. Symmetry is taken into account, so only entries
in the lower triangle are computed, while entries in the upper triangle are known by symmetry.

2.5 Eigenvector Computation

The three stage Hermitian approach to solve the eigenvalue problem of a dense matrix is to first
reduce it to Hermitian band matrix form, A = Q1BQ

H
1 using Householder reflectors, then reduce

the banded matrix further into a real symmetric tridiagonal matrix B = Q2TQ
H
2 , finally, compute

the eigenpairs of the tridiagonal matrix using an iterative method such as QR iteration, or the
recursive approach of divide-and-conquer, such that T = Q3ΛQ

H
3 . The subsequent eigenvectors

are then accumulated during the back transformation phase, i.e., X = Q1Q2Q3 to calculate the
eigenvectors X of the original matrix A.

2.5.1 Eigenvectors of tridiagonal matrix

Once the tridiagonal reduction is achieved, the implicit QR eigensolver steqr2 calculates the
eigenvalues and optionally its associated eigenvectors of the condensed matrix structure. In
SLATE (and ScaLAPACK), the steqr2 is a modified version of the LAPACK routine steqr which
allows each process to perform updates on the distributed matrix Q2, and achieve parallelization
during this step.

Algorithm 3 shows the call to the tridiagonal eigensolver steqr2. First, a matrix to store the
eigenvectors Q3,1D of the tridaigonal matrix T is created using a 1D block row cyclic with a
np × 1 process grid, where np is the number of MPI processes. Then each process updates up
to (n/nb)/np rows of the matrix Q3,1D, where n is the matrix size and nb is the block size used
to distribute the rows of Q3,1D. Finally, the matrix of the eigenvectors is redistributed to a 2D

13

2.5. EIGENVECTOR COMPUTATION CHAPTER 2. IMPLEMENTATION

Figure 2.5: Redistribute 1D block row cyclic distributed matrix using 4× 1 grid into a 2D block
cyclic distribution using 2× 2 grid.

block cyclic distribution as illustrated in Figure 2.5.

Algorithm 3 Tridiagonal Eigensolver using steqr2 pseudocode.

function steqr2(T , Q3)
// The “1D block row cyclic” grid configuration
1D = np × 1
// Compute the number of rows owned by each processor
nrc = (n/nb)/np
// Build SLATE matrix Q3,1D using the 1-dim grid
Q3,1D = Matrix(nrc, nb, np, 1)
// Call steqr2 to compute the eigenpairs of the tridiagonal matrix
(Q3,1DΛQH

3,1D) = steqr2(T)
// The “2D block cyclic” grid configuration
2D = p× q
// Redistribute the 1-dim eigenvector matrix into 2-dim matrix
Q3 = redistribute(Q3,1D)

end function

2.5.2 Second stage back-transformation

The second stage back-transformation multiplies the vectors Q3 by Q2 from the second stage
reduction from band to tridiagonal form (“bulge chasing”), to form Q2Q3. SLATE uses a
distributed version of the scheme developed by [12]. The Householder vectors generated during
the bulge chasing (Figure 2.4) are stored in a matrix V , shown in Figure 2.6. Conceptually, the
vectors from each sweep i are stored in column i of the lower triangular matrix V . The vectors
are blocked together into parallelograms, as shown in Figure 2.6b, to form block Householder
reflectors, Hr = I − VrTrV H

r where Vr is the rth block of V , using the compact WY format [13].
Thus Q2 = Hk · · ·H2H1. Application of these Hr overlap, illustrated in Figure 2.6c, creating the
dependencies between them shown in Figure 2.6b. These dependencies allow up to

⌈
mt
2

⌉
updates

to occur in parallel. Figure 2.7 shows these blocks and the corresponding tasks for a 10 × 10
block matrix. For instance, all four dark blue tasks update different rows of Q3 and so can run in
parallel. Using the OpenMP task scheduler makes taking advantage of this parallelism very easy.

14

2.5. EIGENVECTOR COMPUTATION CHAPTER 2. IMPLEMENTATION

1

1

1

2

2

2

3

3

4

4

5

5

6

6

7
8 9 10

(a) Householder
vectors, numbered
by sweep.

1

1

2

2

3

3

4
5
6
7
2

4

3

5

6

7 1

(b) Dependencies
between blocks of
vectors.

3

4

(c) Application of
block reflectors 3
and 4 overlaps.

2435 6 7
1

(d) Blocks stored in packed
order.

Figure 2.6: Second stage back transformation, with V block size jb = 3 vectors. Block reflector 3 is
highlighted to show overlap.

The routine unmtr_hb2st, outlined in Algorithm 4, applies Q to a matrix C; for eigenvectors,
C = Q3. Application of each Hr becomes a single task, with dependencies on the two rows it
updates, row[i] and row[i + 1]. The parallelism in Figure 2.7b occurs automatically based on
these dependencies. Within a row of C, updating each tile is independent, so we can use nested
parallelism in the parallel for loop.

In SLATE, each parallelogram block Vr is 2nb × nb. To ease computation, instead of storing
blocks in a lower triangular matrix (Figure 2.6b), each block is stored as one 2nb × nb tile, with
explicit zeros in the upper and lower triangular areas, as shown in Figure 2.6d. This allows us,
for instance, to use LAPACK’s larft function to compute Tr from Vr, and to use gemm instead
of trmm. Normally, Vr has unit diagonal. SLATE stores the Householder τ values on the diagonal
of Vr. During computation, the diagonal is set to 1’s, and the τ values are restored afterwards.

2.5.3 First stage back-transformation

The first stage back-transformation multiplies the vectors (Q2Q3) by Q1 from the first stage
reduction to band, to form X = Q1(Q2Q3). The routine unmtr_he2hb applies Q1 or QH

1 on
the left or right of a matrix C, which is then overwritten by Q1C, QH

1 C, CQ1, or CQH
1 . For

eigenvectors, we need only the left, no-transpose case with C = Q2Q3, to form the eigenvectors
X = Q1(Q2Q3). It is essentially identical to applying Q from a QR factorization, but shifted by
one block-row since we reduced to band form instead of triangular form, as in QR. Thus, as in
LAPACK, we can leverage the existing unmqr routine that applies Q from a QR factorization.

15

2.5. EIGENVECTOR COMPUTATION CHAPTER 2. IMPLEMENTATION

0 1 2 3 4 5 6 7 8 9 10
block cols

0

1

2

3

4

5

6

7

8

9

10

bl
oc

k
ro

ws

(a) Blocks of vectors, colored by independent
blocks.

0
time

0

1

2

3

4

5

6

7

8

9

10

bl
oc

k
ro

ws
(b) Simulated run showing task parallelism.

Figure 2.7: Dependencies allow up to
⌈
mt
2

⌉
parallel tasks.

Algorithm 4 unmtr hb2st back-transformation pseudocode. Indices are block rows/cols.

function unmtr hb2st(V,C)
// C is mt× nt block rows/cols, blocksize nb × nb
// V is mt(mt+ 1)/2 blocks, blocksize 2nb × nb
for j = mt− 1 to 0

for i = j to mt− 1
task depend in, out on row[i] and row[i+ 1]

r = i− j + j ·mt− j(j − 1)/2
Broadcast Vr
Compute T from Vr (larft)
D = VrT (gemm or trmm)
parallel for k = 0 to nt− 1

if Ci:i+1,k are local then
// Compute QC = (I − V TV H)C
W = V H

r Ci:i+1,k

Ci:i+1,k = Ci:i+1,k −DW
end

end
end task

end
end

end function

16

CHAPTER 3

Performance

3.1 Environment

3.1.1 Hardware

Performance numbers were collected using the Summit system 1,2 at the Oak Ridge Leadership
Computing Facility (OLCF). Summit is equipped with IBM POWER9 processors and NVIDIA
V100 (Volta) GPUs. Each of Summit’s nodes contains two POWER9 CPUs (with 22 cores each)
and six V100 GPUs. Each node has 512 GB of DDR4 memory, and each GPU has 16 GB of
HBM2 memory. NVLink 2.0 provides all-to-all 50 GB/s connections for one CPU and three
GPUs (i.e., one CPU is connected to three GPUs with 50 GB/s bandwidth each, and each GPU
is connected to the other two with 50 GB/s bandwidth each). The two CPUs are connected with
a 64 GB/s X Bus. Each node has a Mellanox enhanced-data rate (EDR) InfiniBand network
interface controller (NIC) that supports 25 GB/s of bi-directional traffic. Figure 3.1 shows the
hardware architecture of a Summit node.

3.1.2 Software

The software environment used for the SVD experiments included:

• GNU Compiler Collection (GCC) 6.4.0,
• NVIDIA CUDA 10.1.105,
• IBM Engineering Scientific Subroutine Library (ESSL) 6.1.0,

1https://www.olcf.ornl.gov/summit/
2https://en.wikichip.org/wiki/supercomputers/olcf-4

17

https://www.olcf.ornl.gov/summit/
https://en.wikichip.org/wiki/supercomputers/olcf-4

3.2. RESULTS CHAPTER 3. PERFORMANCE

Figure 3.1: Summit node architecture.

• IBM Spectrum MPI 10.3.0.0,
• Netlib LAPACK 3.8.0, and
• Netlib ScaLAPACK 2.0.2.

For the generalized Hermitian eigenvalues, these were updated to:

• GNU Compiler Collection (GCC) 8.1.1,
• NVIDIA CUDA 10.1.243,
• IBM Engineering Scientific Subroutine Library (ESSL) 6.1.0,
• IBM Spectrum MPI 10.3.1.2,
• Netlib LAPACK 3.8.0, and
• Netlib ScaLAPACK 2.0.2.

3.2 Results

Here, we present the results of our preliminary performance experiment with the singular value
solve. Figure 3.2 shows the execution time of ScaLAPACK compared to SLATE with and without
GPU acceleration. Two MPI ranks are mapped to one node of Summit, i.e., one rank is mapped
to one CPU socket (22 cores) and three GPU devices. Only singular values are computed in all
cases (no vectors).

For a matrix of size 32,768 × 32,768, ScaLAPACK took 925 seconds, while SLATE took 324
seconds using CPUs only and 233 seconds with GPU acceleration. That is, SLATE was almost

18

3.2. RESULTS CHAPTER 3. PERFORMANCE

Figure 3.2: SVD performance comparison.

3 times faster without acceleration and almost 4 times faster with acceleration. Since the
performance gap increases with the problem size, we expect SLATE to be an order of magnitude
faster for matrices in the O(100K) range without acceleration, and further benefit 3× to 4×
from acceleration.

For the generalized Hermitian definite eigenvalue problem, Figure 3.3 shows the performance
for conversion from the generalized form to standard form (hegst). On the CPU host, SLATE
closely matches ScaLAPACK’s performance, while when using GPUs, SLATE gets a modest
acceleration. We will continue to investigate ways to optimize the performance.

19

3.2. RESULTS CHAPTER 3. PERFORMANCE

Matrix Size (N)

Se
co

nd
s

0

100

200

300

400

500

20000 40000 60000 80000 100000

SLATE Host SLATE Devices ScaLAPACK

18 nodes x (42 POWER9 + 6 V100 per node) (summit@ORNL)

DHEGST: Time taken on 18 nodes

Figure 3.3: Generalized to standard eigenvalue performance comparison.

20

Bibliography

[1] Paul Sweazey and Alan Jay Smith. A class of compatible cache consistency protocols and
their support by the IEEE futurebus. ACM SIGARCH Computer Architecture News, 14(2):
414–423, 1986.

[2] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A primer on memory consistency and
cache coherence. Synthesis Lectures on Computer Architecture, 6(3):1–212, 2011.

[3] Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211–218, 1936.

[4] Magnus R Hestenes. Inversion of matrices by biorthogonalization and related results. Journal
of the Society for Industrial and Applied Mathematics, 6(1):51–90, 1958.

[5] Gene Golub and William Kahan. Calculating the singular values and pseudo-inverse of a
matrix. Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical
Analysis, 2(2):205–224, 1965.

[6] Gene H Golub and Christian Reinsch. Singular value decomposition and least squares
solutions. In Linear Algebra, pages 134–151. Springer, 1971.

[7] John GF Francis. The qr transformation a unitary analogue to the lr transformation—part
1. The Computer Journal, 4(3):265–271, 1961.

[8] Vera N Kublanovskaya. On some algorithms for the solution of the complete eigenvalue
problem. USSR Computational Mathematics and Mathematical Physics, 1(3):637–657, 1962.

[9] Gary W Howell, James W Demmel, Charles T Fulton, Sven Hammarling, and Karen
Marmol. Cache efficient bidiagonalization using BLAS 2.5 operators. ACM Transactions on
Mathematical Software (TOMS), 34(3):14, 2008. doi: 10.1145/1356052.1356055.

[10] Azzam Haidar, Jakub Kurzak, and Piotr Luszczek. An improved parallel singular value
algorithm and its implementation for multicore hardware. In Proceedings of the International

21

BIBLIOGRAPHY BIBLIOGRAPHY

Conference on High Performance Computing, Networking, Storage and Analysis (SC’13),
page 90. ACM, 2013. doi: 10.1145/2503210.2503292.

[11] Azzam Haidar, Hatem Ltaief, and Jack Dongarra. Parallel reduction to condensed forms for
symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels. In
Proceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’11), pages 8:1–8:11. ACM, 2011. doi: 10.1145/2063384.2063394.

[12] Azzam Haidar, Stanimire Tomov, Jack Dongarra, Raffaele Solca, and Thomas Schulthess.
A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based
on fine-grained memory aware tasks. International Journal of High Performance Computing
Applications, 28(2):196–209, 2014. doi: 10.1177/1094342013502097.

[13] Robert Schreiber and Charles Van Loan. A storage-efficient WY representation for products
of Householder transformations. SIAM Journal on Scientific and Statistical Computing, 10
(1):53–57, 1989. doi: 10.1137/0910005.

22

	Contents
	List of Figures
	Introduction
	Significance of SLATE
	Design of SLATE

	Implementation
	Singular Value Decomposition
	Hermitian Eigenvalue Problem
	Generalized Hermitian Definite Eigenvalue Problem
	Three Stage Algorithms
	Eigenvector Computation
	Eigenvectors of tridiagonal matrix
	Second stage back-transformation
	First stage back-transformation

	Performance
	Environment
	Hardware
	Software

	Results

	Bibliography

