
PAPI Software-Defined Events for
in-depth Performance Analysis

Journal Title
XX(X):1–13
©The Author(s) 2016
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Heike Jagode1, Anthony Danalis1, Hartwig Anzt1,2 and Jack Dongarra1,3,4

Abstract
The methodology and standardization layer provided by the PAPI performance monitoring library has played a vital
role in application profiling for over a decade. It has enabled sophisticated performance analysis tool designers and
performance-conscious scientists to gain insights into their applications by simply instrumenting their code using a
handful of PAPI functions that “just work” across different hardware components.
In the past, PAPI development had focused primarily on hardware-specific performance metrics. However, the rapidly
increasing complexity of software infrastructure poses new measurement and analysis challenges for the developers
of large-scale applications. In particular, acquiring information regarding the behavior of libraries and runtimes—used
by scientific applications—requires low-level binary instrumentation, or APIs specific to each library and runtime. No
uniform API for monitoring events that originate from inside the software stack has emerged.
In this paper, we present our efforts to extend PAPI’s role so that it becomes the de facto standard for exposing
performance-critical events, which we refer to as Software-Defined Events (SDEs), from different software layers.
Upgrading PAPI with SDEs enables monitoring of both types of performance events—hardware- and software-related
events—in a uniform way, through the same consistent PAPI interface. The goal of this paper is threefold. First, we
motivate the need for SDEs and describe our design decisions regarding the functionality we offer through PAPI’s
new SDE interface. Second, we illustrate how SDEs can be utilized by different software packages, specifically, by
showcasing their use in the numerical linear algebra library MAGMA-Sparse, the tensor algebra library TAMM that is part
of the NWChem suite, and the compiler-based performance analysis tool Byfl. Third, we provide a performance analysis
of the overhead that results from monitoring SDEs and discuss the trade-offs between overhead and functionality.

Keywords
PAPI, SDE, Software-defined Events, libraries, instrumentation, performance, NWChem, MAGMA, Byfl

Introduction

Developing applications using some form of a modular,
or layered, design—where different logical operations are
performed by different, smaller units of a large, complex
application—is not only a good software engineering
principle, but is also common practice across diverse fields.
Focusing on the field of High Performance Computing
(HPC), we see that the community has moved away from the
large monolithic FORTRAN codes that dominated the field
a few decades ago, and has adopted more structured designs,
which foster code reuse as well as closer collaboration
among different academic groups. Besides adhering to
good software engineering principles, this transition was
necessitated by the increasing complexity of hardware
platforms, which transitioned from single node machines
to distributed-memory heterogeneous supercomputers. As a
result, many modern HPC applications are not only internally
organized in smaller units, but also use external libraries
for functions such as communication and synchronization
(with the Message Passing Interface [MPI] being the leading
choice), runtimes for on-node parallelism (such as OpenMP),
and a plethora of external libraries for functions such as
math, or access to accelerators. In the rest of this paper, we
will discuss performance aspects of such applications, and
we will use the term “module” for any code entity, such as

library, runtime, class, etc., which can be used as a building
block of a larger application.

In HPC, where application performance is critical, there
is a drawback to adopting a design that is non-monolithic.
Specifically, the developers of one module lack information
regarding the internal behavior of modules they deploy
but did not develop themselves. For example, when using
a communication library, such as MPI, the application
developer does not know if the actual data transfer of
a non-blocking call (such as MPI_Isend()) took place
when that function was called, or was postponed until
the matching MPI_Wait() was called. Similarly, when
using a numerical linear algebra library, the domain scientist
does not know the algorithm-specific characteristics, such
as the residual or the number of sparse matrix-vector
multiplications performed during the execution of an

1University of Tennessee, Knoxville, USA
2Karlsruhe Institute of Technology, Germany
3Oak Ridge National Laboratory, USA
4University of Manchester, UK

Corresponding author:
Heike Jagode, Innovative Computing Laboratory, University of Ten-
nessee, Suite 203 Claxton, 1122 Volunteer Blvd, Knoxville TN 37996,
USA.
Email: jagode@icl.utk.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

application. In summary, when complex applications are
properly structured in multiple modules, the lack of
information exchange between different modules can lead to
sub-optimal interactions between different modules, which,
ultimately, leads to loss of performance.

Some projects with wide adoption, such as MPI
and OpenMP, have been developing a “tools’ interface”
(MPI T Islam et al. (2016) and OMPT Eichenberger et al.
(2013) respectively). This is an effort to create custom
hooks inside the libraries that implement these standards,
such that external performance analysis tools can use these
hooks to extract information about the internal behavior
of aforesaid libraries. Efforts like these offer a solution to
the problem of exchanging information between modules
without breaking the modularity of complex applications.
However, developing library-specific APIs is not a scalable
approach. It is not feasible for every group of library
developers to establish their own API and expect scientific
application developers or performance analysis toolkits to
adopt them all.

As a solution to this problem, we have developed
an API for exporting Software-Defined Events (SDEs)
through the Performance Application Programming Inter-
face (PAPI) Terpstra et al. (2009). Being the de facto standard
middleware layer for hardware performance events, with
wide adoption by toolkits and application codes, and wide
availability on most software stacks, PAPI is the perfect
vehicle for supporting and delivering generic SDEs.

In the rest of this paper, we discuss the design decisions we
have made regarding the functionality of the new PAPI SDE
interface, we illustrate the concept and usefulness of SDEs
in modern libraries, and we evaluate the performance effect
of adding PAPI SDEs in HPC software layers.

Design and Functionality

The main functionality of PAPI Software-Defined Events is
to expose performance-critical properties and the internal
behavior of black-box modules in the software stack to
the top-level applications, or performance analysis toolkits.
PAPI has a near-ubiquitous presence on modern HPC
systems, and wide support by performance analysis tools.
Consequently, if library developers choose to take advantage
of PAPI SDEs to export internal, performance-relevant
characteristics to the outside world, they can expect this
information to be used for more sophisticated performance
analysis of applications that use their library. Furthermore,
developers of scientific applications with heavy use of
multiple external libraries, can take advantage of library-
specific SDEs in order to track and fix performance issues
resulting from poor coordination between different libraries.

The developers of a given software module are experts in
both the semantics of their module and its implementation.
For this reason, we designed the SDE functionality so
the experts can export whatever information they deem
important, and wherever they think it should be exported
from. We do not attempt to dictate the type of information
that should be exported as an SDE. Instead, we offer a
generic mechanism and middleware layer that allows any
kind of information to be exported.

As an illustration, iterative solvers from a math
library could export the number of iterations it took
until convergence was attained. Furthermore, algorithm-
specific properties, such as the residual computed during
each iteration, could be exported and potentially used
to extrapolate when the solver is expected to reach its
convergence criterion. As another example, a climate code
could export a performance metric of “emulated years per
second”. In other words, PAPI SDEs were not designed for
performance experts to annotate a third-party code so they
can measure how long it took for a code segment to execute.
There are other tools for this type of annotation. Rather, PAPI
SDEs are meant to be used by the developers who write a
software module so that the internal behavior of their module
can be understood better by those who use it.

Design Decisions
Since the early design and development stages of
PAPI SDEs, we interacted heavily with members of
the performance analysis toolkit community, as well as
developers of libraries and runtimes which would make
natural targets for early adoption. These interactions revealed
two principal concerns.

• Performance analysis toolkit communities strongly
emphasized the importance of preserving the existing
API that is currently exported by PAPI for measuring
hardware events.

• Library and runtime communities were mostly
concerned with the performance overhead caused by
the introduction of SDEs in their codes.

Since PAPI is positioned as a middleware layer, success
depends on adoption by other software modules and toolkits.
As a result, we used the concerns raised by the community
to guide our design decisions.

To address the requests made by developers of toolkits,
we implemented SDE support in PAPI as a new component,
which provides an API for registering SDEs into the existing
PAPI framework. After SDEs have been registered, they can
be accessed using the same API that has always been used for
accessing hardware events through PAPI. In other words, we
created a new API for library writers to register their software
events with PAPI, but we maintained the existing API (e.g.,
PAPI_start(), PAPI_read(), PAPI_stop()) for
users and toolkits to monitor these events.

Satisfying the performance concerns of library developers
was more challenging, since there is often a tradeoff between
overhead and functionality. Our approach to handling the
tradeoff is multi-faceted and enables the library developers to
make the choices that best fit the requirements of their code.
Specifically, we provide several types of SDEs that strike
a different balance between overhead and functionality. We
discuss these SDE types in the following sections.

PAPI SDE Counter Types
1. Registered counters offer developers the ability to

register an existing internal variable of their library
as a PAPI counter for an SDE. The registration of
such a counter happens only once, presumably during
the initialization of the library, so the performance

Prepared using sagej.cls

Jagode, Danalis, Anzt, Dongarra 3

overhead due to the registration is constant and
negligible. Through this SDE type, PAPI enables
entities outside a library to read a variable that already
existed in the library and was updated by library code
when needed. Therefore, no additional work needs to
be performed by the library code in order to support
this type of SDE.

2. Registered function pointers offer library developers
the ability to register a special-purpose function: one
that is internal to the library and invoked by PAPI.
When called, the function acts as an accessor to deliver
the counter value. This type of SDE is useful when
a library has no pre-existing variable that acts as a
counter for an event. It is also useful in case the value
of the event counter must be derived from a complex
internal state of the library rather than a single variable.
The registration of a function pointer happens only
once, so the performance overhead of the registration
is constant and negligible. For this type of SDE, the
registered function is only used to read a value, not
to update a counter, and therefore does not have to be
called by the library. Instead, it is only called by PAPI
when the application using the library makes a call to
PAPI_read(). Therefore, this type of SDE does not
add overhead to the fast path of the library. In other
words, when the library is involved in a “maximum
performance run,” where PAPI is not used to monitor
its behavior, the registered function does not get called.

3. Created counters offer library developers the
flexibility of creating a counter inside PAPI, instead
of having a counter inside the library. The creation of
such a counter happens only once, but updating the
value of a created counter requires a call to a PAPI
SDE function. This type of SDE has two main benefits
over registered counters. First, created counters are
always thread safe. As a result, using a created counter
relieves the library developers of the need to use
explicit thread safe code every time they update the
counter. Second, since PAPI is aware of every update
of the counter value, this type of SDE lends itself
to more accurate overflow support, or other types
of notification of performance analysis toolkits. The
drawback of this type of SDE is that it requires a call to
a PAPI SDE function inside the library code every time
the event counter needs to be updated, and therefore
has higher overhead than registered counters.

4. Recorders offer library developers the ability to
record a series of values associated with an event.
Similarly to created counters, the memory associated
with a recorder is managed internally by PAPI, and the
creation of a recorder happens only once, but a PAPI
SDE function needs to be called for every new value
that is being recorded. PAPI makes no assumptions
about the type of the variable being recorded. Instead,
the API requires only a pointer to the variable and the
size of the variable. This way, library developers are
free to record any type of data from simple integers
to complex structures—or even strings, or arrays of
values.
When a recorder is created, PAPI automatically creates
a few additional auxiliary counters. The first has the

same name as the recorder with the additional suffix
“:CNT”. This counter holds the count of elements that
have been recorded at any given time. In addition,
there are five more auxiliary counters automatically
created for each recorder. When read, these counters
return the quantiles of the recorded distribution, and
in particular the minimum and maximum values
recorded, as well as the three quartiles (i.e., 25%,
median, 75%). The names of these counters are formed
by adding one of the prefixes {:MIN, :Q1, :MED,
:Q3, :MAX} to the name of the recorder. In contrast
with the auxiliary counter “:CNT”, these statistical
counters are optional and depend on the ability of PAPI
to compare the recorded values. Since the recorded
values can be of arbitrary type, when a library creates a
recorder it is expected to provide a pointer to a function
that is able to compare two values of the type that
is recorded. If the function pointer is NULL, then the
statistical counters are not created.

5. Groups offer library developers the possibility of
aggregating the values of multiple counters into
a single entity. Groups are implemented as first-
class citizens and can be added into larger groups
recursively. When a library creates a group it must
specify whether the value that is reported when this
group counter is read consists of the minimum, the
maximum, or the sum of the values of the counters
which belong to the group. Both registered and created
counters can be added to groups, but recorders can not
be added to groups. However, the auxiliary counters
associated with a recorder could be added to groups. In
terms of performance overhead, groups do not require
any additional code to be inserted in the fast path of
a library. The value of a group is assembled when a
user application calls PAPI_read() by reading the
values of all the counters that belong to the group.

PAPI SDE Application Programming Interface
While the previous sections focus on the concepts of the
SDEs and their usefulness and usability by libraries, this
section covers details about the actual API. The PAPI SDE
API calls are only meant to be used inside libraries to export
software-defined events from within those libraries. As of
today, all API functions are thread-safe, and available in C
and FORTRAN-2008.

From the domain scientists’ perspective, questions like
(a) what constitutes a software counter, and (b) where, in
a scientific application, is the right place to log a counter,
are hard to answer. It is important to note that it is a design
decision of the SDE API to not answer these questions,
but instead, to offer a generic API that can be used in
diverse ways by different libraries and applications alike. As
discussed in Section “Design Decisions”, our design gives
full control to the library developers.

On the other hand, the API for reading SDEs remains
the same as the standard API for reading hardware events,
i.e., PAPI_start()and PAPI_stop(). In that sense,
nothing changes for applications and tools that already have
PAPI hooks in their software. Instead, they will automatically
inherit the SDE functionality.

Prepared using sagej.cls

4 Journal Title XX(X)

void *papi_sde_init(const char *lib_name);

The first function that must be called by a library is
papi_sde_init() and it has the specification shown
above. This function is called only once to initialize internal
data structures, and returns an opaque handle that must be
passed to all subsequent calls to PAPI SDE functions.

• lib_name is a string containing the name of the
library.

int papi_sde_register_counter(

void *handle,

const char *event_name,

int mode,

int type,

void *counter);

For every program variable that the library wishes
to register as an event counter, the function
papi_sde_register_counter() must be called.

• handle is the opaque handle returned by
papi_sde_init().

• event_name is a string containing the name of the
event being registered.

• mode is an integer declaring whether a counter is read-
only or read-write. This is a way to give a software
layer access to internal variables of a different software
layer, and it is a feature that can be particularly
useful to auto-tuning efforts. Additionally, it specifies
whether the count mode is “instantaneous” or “delta”.

• type is an enumeration of the type of the event.
• counter is a pointer to the actual variable that serves

as the counter for this event. The type is “void *” to
enable support for user-defined types.

typedef long long (*papi_sde_fptr_t)(void*);

int papi_sde_register_fp_counter(

void *handle,

const char *event_name,

int mode,

int type,

papi_sde_fptr_t fp_counter,

void *param);

One can imagine the case where a library wishes to
export an event whose value does not map to the value
of a single variable of the library. For example, suppose
we have the case where different threads of a library
are counting an event independently, but the exported
event is the total count across all threads. In this case
the actual count needs to be “assembled” when the user
requests to read it. For such cases we provide the function
papi_sde_register_fp_counter() for registering
a function pointer to an accessor function provided by the
library.

• fp_counter is a pointer to the accessor func-
tion. The accessor function has the return type
“long long int” to conform to the existing API
of PAPI.

• param is an opaque object that the library passes
to PAPI, and PAPI passes it as a parameter to the
accessor function every time it is called. This opaque
parameter gives library developers the flexibility to
pass custom data structures to their accessor functions
when a counter is read.

int papi_sde_unregister_counter(

void *handle,

const char *event_name);

Can be called to unregister an event counter. Useful for
implementing transient events.

int papi_sde_add_counter_to_group(

void *handle,

const char *event_name,

const char *group_name,

uint32_t group_flags);

Adds a counter to a group so that logical groups can be
formed out of multiple related event counters. Groups are
first-class citizens and can be recursively added to other
groups. A group is automatically created the first time a
counter is added to it.

• group_name is a string containing the name of the
group.

• group_flags specifies whether the group should
report the sum, the min, or the max of the counters
it contains.

int papi_sde_create_counter(

void *handle,

const char *event_name,

int type,

void *counter_handle);

Creates a counter whose memory is managed by PAPI
(instead of the library).

• counter_handle is an opaque handle that can be
used to access the created counter.

int papi_sde_inc_counter(

void *counter_handle,

long long increment);

Increments the value of a created counter.

• counter_handle is the opaque handle returned by
papi_sde_create_counter().

• increment is the value to be added to the counter.

Prepared using sagej.cls

Jagode, Danalis, Anzt, Dongarra 5

int papi_sde_reset_counter(

void *counter_handle);

Resets the value of a created counter. After this function is
called, the value of the counter is zero.

• counter_handle is the opaque handle returned by
papi_sde_create_counter().

int papi_sde_create_recorder(

void *handle,

const char *event_name,

size_t typesize,

void *record_handle);

Creates a multi-value SDE (recorder) that can record (log)
a series of values. The memory of the recorder is handled
internally by PAPI.

• typesize is the size of each element (to be
recorded) in bytes.

• record_handle is an opaque handle that can be
used to access the created recorder.

int papi_sde_record(

void *record_handle,

size_t typesize,

void *value);

Records an element into a recorder that was created via
papi_sde_create_recorder().

• record_handle is the opaque handle returned by
papi_sde_create_recorder().

• typesize is the size of the new element in bytes.
• value is a pointer to the new element.

int papi_sde_reset_recorder(

void *record_handle);

Resets the recorder by setting the number of recorded
entries to zero. This function neither frees the allocated
space nor zeros it. It only allows future invocations of
papi_sde_record() to reuse the memory allocated
for the recorder, and overwrite any previously recorded
elements.

• record_handle is the opaque handle returned by
papi_sde_create_recorder().

void *papi_sde_get_counter_handle(

void *handle,

const char *event_name);

Given the opaque handle returned by papi_sde_init()
and the name of a created counter (or a recorder), it returns
the counter_handle of the created counter (or the
record_handle of the recorder).

• event_name is a string containing the name of the
event associated with a created counter, or recorder.

int papi_sde_describe_counter(

void *handle,

const char *event_name,

const char *event_description);

For every SDE registered by a library, the library has the
option to pass an additional string that contains a more elabo-
rate description of the event. This string will be printed when
the PAPI utility papi_native_avail is called. Associ-
ating a description with a registered SDE happens through
the function papi_sde_describe_counter().

• event_description is a string containing the
description of the event.

void * papi_sde_hook_list_events(

papi_sde_fptr_struct_t *fptr_struct);

The function papi_sde_hook_list_events() is not
an API function provided by PAPI. Instead, it is an optional
function that libraries should implement as a hook for the
tool papi_native_avail to be able to list all SDEs in
a library. This function is supposed to call the API functions
described above to register all the SDEs the library wishes to
register.

• fptr_struct is a structure containing pointers to
all SDE functions.

Overhead-Functionality Tradeoff
The design we have adopted gives full control of the
overhead-functionality tradeoff to the library developers.
Each group can choose if the functionality provided by a
feature justifies the amount of performance overhead this
feature will add to their library, or if they want to limit the
SDE types they will utilize to those with zero overhead.

Libraries that already count internal quantities and
events, but do not have a standardized way to export this
information to the outside world, will benefit from PAPI
SDEs while facing zero performance overhead. Libraries
with no event counting functionality can benefit by adding
internal counters, and accessor functions can still be done
with negligible or zero performance overhead. Libraries with
events that do not occur frequently enough for performance
overhead to be of primary concern can use created counters
to communicate these events to users, or to analysis toolkits
that are “listening.” And finally, libraries with events whose
evolution over time is important can record long series of
custom event values for advanced analysis by performance-
conscious users and sophisticated toolkits.

Prepared using sagej.cls

6 Journal Title XX(X)

Users of PAPI-SDEs
Through significant interaction with members of the
performance analysis community, as well as developers of
scientific libraries and applications, the early adoption of
SDEs has found its way into a number of different software
layers. This section illustrates how SDEs can be utilized by
different software packages, specifically, by showcasing their
use in the compiler-based performance analysis tool Byfl,
the sparse linear algebra library MAGMA-Sparse, and the
Tensor Algebra for Many-body Methods (TAMM) library
that is part of the NWChem suite.

Case I: MAGMA-Sparse
For domain scientists working with complex simulation
codes, it is a burden to track down performance bottlenecks
or numeric properties in the numeric software backends.
In particular, if simulation codes utilize different numerical
linear algebra (NLA) libraries in a recursive fashion,
expert knowledge is necessary to extract algorithm-
specific characteristics such as Sparse Matrix-Vector Product
(SpMV) count, the residual or iteration count of a backend
solver. At the same time, this information can be very useful
to identify critical sections, optimize the code stack, or assess
whether or not swapping a backend NLA library promises
performance benefits. The lack of a standard that specifies
how this information can be accessed in iterative sparse
linear algebra libraries is frustrating to say the least. The
alternative for domain scientists is to browse the library-
specific documentation and/or the code to identify the entry
points for gathering solver-specific details.

We have been working on improving this situation
by augmenting MAGMA-Sparse Anzt et al. (2017)—a
collection of solvers for sparse linear systems—with SDEs
that are exposed though the PAPI interface. Table 1 provides
the list of MAGMA solvers that now benefit from SDEs,
and Table 2 lists the registered events and their descriptions
as they are available through PAPI. This enables domain
scientists to monitor the behavior of low-level linear algebra
algorithms without needing expert knowledge about the full
software stack of the simulation code.

BiCG Biconjugate Gradient Method
PBiCG Preconditioned Biconjugate Gradient Method
BiCGStab Stabilized Biconjugate Gradient Method
PBiCGStab Precond. Stabilized Biconjugate Gradient Method
CG Conjugate Gradient Method
PCG Preconditioned Conjugate Gradient Method
CGS Conjugate Gradient Squares Method
PCGS Precond. Conjugate Gradient Squares Method
GMRES Generalized Minimal Residuals
PGMRES Preconditioned Generalized Minimal Residuals
IDR Induced Dimension Reduction Solver
PIDR Precond. Induced Dimension Reduction Solver
QMR Quasi-Minimal Residual
PQMR Preconditioned Quasi-Minimal Residual
TFQMR Transpose-free Quasi-Minimal Residual
PTFQMR Precond. Transpose-free Quasi-Min. Residual
IterRef Iterative Refinement method
LOBPCG LOcally Optimal Block Preconditioned CG

(iterative eigensolver)

Table 1. MAGMA-sparse solvers that ship with SDE support.

As discussed in the “PAPI SDE API” Section, the current
PAPI-SDE component supports different SDE “types” and
“modes” when registering an SDE counter. These types can
be 32-bit integer values (int), 64-bit integer values (long
long), 32-bit fractional values (float), or 64-bit fractional
values (double). Similarly, currently supported count modes
are “instantaneous” or “delta”.

Our chosen naming scheme for SDEs (as seen in Table 2)
makes it easy to identify the “type” of the counter, as well as
its category (single- vs. multi-value). Two of the MAGMA
counters are registered as 64-bit integer (long long), single-
value SDEs, while the three residual counters and the runtime
counter are 64-bit fractional (double), single-value SDEs.
Furthermore, the RCRD string in the event name helps to
identify multi-value SDEs (recorders), which, ultimately,
need to be handled differently. As for the counting “mode,”
all MAGMA SDEs are registered as instantaneous counters.

Usage Examples: Using SDEs allows for easy monitoring
of the characteristics and behavior of the NLA backend
algorithms for a specific problem handled by the top-level
application. The examples in Figures 2–4 illustrate how the
convergence of Krylov solvers can be visualized with the
help of PAPI SDEs. Each graph in these figures shows the
convergence of eight solvers, and each figure uses a different
matrix from the SuiteSparse Matrix Collection Davis and
Hu (2011). Figures 1–3 contain two graphs each. The one
on the left shows the case where preconditioned solvers
were used (using incomplete LU factorization [ILU] as the
preconditioner), and the one on the right shows the case
where the solvers were not preconditioned.

At a quick glance, one can observe from all graphs
that the iterative residual from the GMRES solver (yellow
line) periodically spikes to the value of the initial residual.
This, however, is expected since the GMRES algorithm
periodically restarts its operation.

Looking at Figure 2 specifically, we can observe that QMR
and TFQMR converge at the same rate as most others for
about 400–500 iterations, but then suddenly stop converging
further. This behavior is indeed unexpected and may indicate
a problem with those particular solvers. Furthermore, in what
pertains to this paper, this insight could not be gathered
before by merely examining the final residual, but now it
can be gained in a simple and systematic way through PAPI
without the need to modify the code of these solvers.

10
-5

10
0

10
5

10
10

10
15

 0 100 200 300 400 500 600 700 800 900 1000

Runtime of Solvers:

133.6691 sec

96.4082 sec

75.1033 sec

103.4668 sec

94.2259 sec

125.7239 sec

180.3240 sec

181.2352 sec

R
e
s
id

u
a
l

Iteration

PAPI SDE Recorder: Residual per Iteration (Emilia_923: 923136-by-923136 with 40373538 nonzeros)

PBICG
PBICGSTAB

PCG
PCGS

PGMRES
PIDR

PQMR
PTFQMR

Figure 2. PAPI SDE-Recorder logging convergence of different
ILU-preconditioned MAGMA solvers for a Structural Problem.
(https://sparse.tamu.edu/Janna/Emilia_923)

Prepared using sagej.cls

https://sparse.tamu.edu/Janna/Emilia_923

Jagode, Danalis, Anzt, Dongarra 7

SDE Name (prefixed with sde:::MAGMA::) SDE Description
numiter_I Number of iterations until convergence attained (I=integer)
SpmvCount_I Number of sparse matrix-vector multiplications (SpMV) (I=integer)
InitialResidual_D Initial residual (D=double)
FinalResidual_D Final residual (D=double)
IterativeResidual_D Iterative residual (D=double)
SolverRuntime_D Total run-time of the solver (D=double)
IterativeResidual_RCRD_D Array of all residuals until convergence (RCRD=recorder) (D=double)

Table 2. Registered SDEs in MAGMA to enable users to gather solver-specific details though PAPI.

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

 0 100 200 300 400 500 600 700 800 900 1000

Runtime of Solvers:

147.3716 sec

330.7103 sec

196.2177 sec

241.7744 sec

168.2107 sec

342.2926 sec

150.4123 sec

342.1692 sec

R
e
s
id

u
a
l

Iteration

PAPI SDE Recorder: Residual per Iteration (nd24k: 72000-by-72000 with 28715634 nonzeros)

PBICG
PBICGSTAB

PCG
PCGS

PGMRES
PIDR

PQMR
PTFQMR

(a) ILU-preconditioned

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 0 100 200 300 400 500 600 700 800 900 1000

Runtime of Solvers:

4.7327 sec

4.7476 sec

24.9633 sec

4.7067 sec

3.0867 sec

5.0560 sec

4.8158 sec

4.9617 sec

R
e
s
id

u
a
l

Iteration

PAPI SDE Recorder: Residual per Iteration (nd24k: 72000-by-72000 with 28715634 nonzeros)

BICG
BICGSTAB

CG
CGS

GMRES
IDR

QMR
TFQMR

(b) Unpreconditioned

Figure 1. PAPI SDE-Recorder logging convergence of different MAGMA-sparse solvers for a 2D/3D Problem.
(https://sparse.tamu.edu/ND/nd24k)

MAGMA Solver numiter I SpmvCount I InitialResidual D FinalResidual D SolverRuntime D (sec)
PBICG 431 862 5.9253e+04 5.0977e-09 1.4737e+02
PBICGSTAB 967 1934 5.9253e+04 8.1089e-08 3.3071e+02
PCG 1000 1000 5.9253e+04 -nan 1.9622e+02
PCGS 707 1414 5.9253e+04 1.2268e-05 2.4177e+02
PGMRES 1000 1000 5.9253e+04 8.4847e-03 1.6821e+02
PIDR 1000 2000 5.9253e+04 6.5693e-04 3.4229e+02
PQMR 440 880 5.9253e+04 6.5494e-09 1.5041e+02
PTFQMR 1000 2000 5.9253e+04 8.2972e-03 3.4217e+02
BICG 1000 2000 5.9253e+04 3.1236e+01 4.7327e+00
BICGSTAB 1000 2000 5.9253e+04 6.4980e-01 4.7476e+00
CG 1000 1000 7.7422e+01 2.5707e+01 2.4963e+01
CGS 1000 2000 5.9253e+04 2.4101e+01 4.7067e+00
GMRES 1000 1000 5.9253e+04 1.1280e+00 3.0867e+00
IDR 1000 2000 5.9253e+04 9.6088e-01 5.0560e+00
QMR 1000 2000 5.9253e+04 6.5533e-01 4.8158e+00
TFQMR 1000 2000 5.9253e+04 1.2484e+00 4.9617e+00

Table 3. PAPI single-value SDEs of different MAGMA-sparse solvers for a 2D/3D Problem.
(https://sparse.tamu.edu/ND/nd24k)

Figure 1 considers a different matrix and plots the results
from the MAGMA multi-value SDE that logs the iterative
residual for each solver. For the sake of completion, Table 3
summarizes the results of all MAGMA single-value SDEs
for this particular problem. The left graph in Figure 1 depicts
nicely how differently these solvers behave in terms of
convergence. For example, when using PCGS (dark green
line) the residual first grows, but then the solver manages to
converge within about 700 iterations, whereas other solvers,
such as PIDR (orange line), start better but fail to converge
within 1,000 iterations.

By examining the graph on the right side of Figure 1, we
can easily see the benefits of preconditioning, since none
of the unpreconditioned solvers manages to converge for
this matrix. Notice that the Y-axes of the two graphs are
not to scale, and after 1,000 iterations the unpreconditioned
solvers have stagnated at a level the preconditioned solvers
had reached in the first few hundred iterations.

However, the benefit of any given preconditioner is not
universal. As can be seen by examining Figure 3, the use
of the ILU preconditioner for this particular matrix (shown
on the left) led to significantly higher residual values than

Prepared using sagej.cls

https://sparse.tamu.edu/ND/nd24k
https://sparse.tamu.edu/ND/nd24k

8 Journal Title XX(X)

10
8

10
10

10
12

10
14

10
16

10
18

10
20

 0 100 200 300 400 500 600 700 800 900 1000

Runtime of Solvers:

199.6998 sec

199.3332 sec

115.3053 sec

199.6467 sec

104.2735 sec

201.9447 sec

200.6959 sec

201.3425 sec

R
e
s
id

u
a
l

Iteration

PAPI SDE Recorder: Residual per Iteration (ldoor: 952203-by-952203 with 42493817 nonzeros)

PBICG
PBICGSTAB

PCG
PCGS

PGMRES
PIDR

PQMR
PTFQMR

(a) ILU-preconditioned

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

 0 100 200 300 400 500 600 700 800 900 1000

Runtime of Solvers:

9.3359 sec

8.8140 sec

17.5592 sec

8.7357 sec

10.9683 sec

10.9525 sec

9.7415 sec

10.6497 sec

R
e
s
id

u
a
l

Iteration

PAPI SDE Recorder: Residual per Iteration (ldoor: 952203-by-952203 with 42493817 nonzeros)

BICG
BICGSTAB

CG
CGS

GMRES
IDR

QMR
TFQMR

(b) Unpreconditioned

Figure 3. PAPI SDE-Recorder logging convergence of different MAGMA-sparse solvers for a Structural Problem.
(https://sparse.tamu.edu/GHS_psdef/ldoor)

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

 0 100 200 300 400 500 600 700 800 900 1000

Runtime of Solvers:

17.0336 sec

16.9021 sec

8.4370 sec

16.8644 sec

12.0106 sec

18.2265 sec

17.4329 sec

17.8738 sec

R
e
s
id

u
a
l

Iteration

PAPI SDE Recorder: Residual per Iteration (parabolic_fem: 525825-by-525825 with 3674625 nonzeros)

PBICG
PBICGSTAB

PCG
PCGS

PGMRES
PIDR

PQMR
PTFQMR

(a) ILU-preconditioned: 1,000 iterations

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Runtime of Solvers:

24.5037 sec

19.2207 sec

12.0592 sec

17.1982 sec

24.0682 sec

36.5400 sec

24.0834 sec

18.4653 sec

R
e
s
id

u
a
l

Iteration

PAPI SDE Recorder: Residual per Iteration (parabolic_fem: 525825-by-525825 with 3674625 nonzeros)

PBICG
PBICGSTAB

PCG
PCGS

PGMRES
PIDR

PQMR
PTFQMR

(b) ILU-preconditioned: 2,000 iterations

Figure 4. PAPI SDE-Recorder logging convergence of different MAGMA-sparse solvers for a Computational Fluid Dynamics
Problem. (https://sparse.tamu.edu/Wissgott/parabolic_fem)

the case of the unpreconditioned solvers (shown on the
right). Anomalous behaviors like these create a unique
opportunity for users of libraries that contain PAPI SDEs.
In particular, a user application could initiate one of these
ILU-preconditioned solvers and start monitoring the residual
using PAPI. Upon realizing that the residual has jumped to
values as high as 1014 it could stop the solver instead of
waiting for the default 1,000 iterations to finish. Furthermore,
since the quality of preconditioners depends on the specifics
of the matrix being solved, domain scientists with knowledge
about the nature of their matrix could implement their
own preconditioner and study its behavior using the PAPI
SDEs found inside MAGMA, instead of having to modify
MAGMA code.

By using PAPI SDEs, application scientists can examine
multiple intermediate values of the residual instead of only
the final value. This way, one can assess the trend of the
residual’s evolution. In the left graph of Figure 4 we see
that none of the solvers converges within the default 1,000
iterations. However, being able to see the trend, we could
reasonably extrapolate from the solvers’ slope that at least
a few of them, such as PTFQMR and PBICGSTAB, will
converge if given a few more iterations. Indeed, in the right

graph of Figure 4 we see, when given more iterations, all the
solvers predicted to converge reach convergence shortly after
the 1,000 iteration mark.

This graph also allows for a different kind of optimization.
Namely, if we examine the behavior of individual solvers,
for instance PTFQMR and PCGS, we can observe that, in
many cases, the residual drops in sudden steps rather than
smoothly. This means that if the nature of the application
allows the user to relax their convergence criterion to a value
higher than 10−8, for example 10−6, then these solvers would
converge at about 800 iterations.

Finally, there is one unpredictable observation that can be
extracted from the data in Figure 4. As can be seen in the
“Runtime of Solvers” information, which we provide next to
each graph, the fastest solver for this problem was PCG (light
green), although it does not converge in the least amount of
iterations. This fact, on its own, is a well known artifact of
iterative solvers and it is not surprising. However, consider
the case when a user is not using PAPI SDEs to perform
this in-depth analysis, but rather relies on the single value of
the “final residual”, which is commonly reported by libraries
like MAGMA. Now, suppose a user runs the default 1,000
iterations and only sees the final residuals, as it can be seen

Prepared using sagej.cls

https://sparse.tamu.edu/GHS_psdef/ldoor
https://sparse.tamu.edu/Wissgott/parabolic_fem

Jagode, Danalis, Anzt, Dongarra 9

on the last iteration of the left graph. In this limited view,
PCG would appear to be a poorly performing choice of a
solver, since its residual is higher than 10−4 when at least two
others are around 10−7. However, as we saw after allowing
the solvers to run for more iterations, PCG does result in the
best choice for this problem (when considering the execution
time until completion).

Case II: NWChem
The concept of software-defined events, as well as the
SDE API introduced in this paper, are not limited to
libraries and performance tools. The direct use of SDEs
in real-world applications can be highly beneficial for
in-depth analysis or for quickly identifying performance
and scalability bottlenecks. Focusing on one such real-
world application, this section targets the field of electronic
structure theory—a significant example worth exploring
because most computational chemistry methods are already
unable to take full advantage of current computer resources
at leadership-class computing facilities and are bound to fall
behind even further on future post-petascale systems.

To ease this condition, we focused on the implementation
of SDEs that allow us to characterize the performance
and the level of parallelism of the NWChem quantum
chemistry application Valiev et al. (2010). Specifically, we
worked with the Coupled Cluster Single Double (CCSD)
methods Kowalski et al. (2011) as they are currently
implemented in the TAMM library, which is expected to be
part of the new C++ version of NWChemEx.

The findings of these performance metrics for several
CCSD kernels are discussed below in the “Usage Examples”
section. Ultimately, the objective is to have computational
chemistry experts, who are aware of the scientific function
of different code segments, add SDEs that correspond
to physically meaningful quantities that could reveal
information, such as “computed electron potentials per
second”.

Table 4 lists the SDE-registered NWChem events and
their descriptions as they are available through PAPI. All
four of the NWChem single-value SDEs are registered
as 64-bit integer counters. As for the counting mode,
DGEMM- and FlopCount are registered as delta counters,
while the Contraction_ID and the MaxTaskLength
return instantaneous values.

In addition to these single-value SDEs, we added sup-
port for two multi-values SDEs. For instance, instead

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

8 16 8 16 8 16 4 6 8 4 6 8

#
 o

f
ta

s
k
s
 o

f
a

 g
iv

e
n

 s
iz

e

of "sequential GEMMs per task" for different CCSD contractions

t2_7_3

1
0
.8

 G
F

lo
p
s

2
1
.7

 G
F

lo
p
s

t2_7

1
0
.8

 G
F

lo
p
s

2
1
.7

 G
F

lo
p
s

t2_2_5

7
.1

 G
F

lo
p
s

1
4
.2

 G
F

lo
p
s

t2_2_6

5
.4

 G
F

lo
p
s

8
.1

 G
F

lo
p
s

1
0
.8

 G
F

lo
p
s

t2_8

8
.2

 G
F

lo
p
s

1
2
.3

 G
F

lo
p
s

1
6
.4

 G
F

lo
p
s

t2_7_3t2_7_3 t2_7t2_7 t2_2_5t2_2_5 t2_2_6t2_2_6 t2_8t2_8

Figure 5. PAPI SDE-Recorder logging task lengths and FLOPs
count for NWChem CCSD.

of just monitoring how big the biggest CCSD task
in the NWChem code is, which is accomplished via
MaxTaskLength for each tensor contraction, with the
addition of LengthPerTask_RCRD, we can easily record
the length of all tasks per contraction and study the distribu-
tion of task lengths. Similarly, the FlopsPerTask_RCRD
recorder produces important details about the number of
floating-point operations (FLOPs)computed for each sequen-
tial task.

Usage Examples: The input data is the beta-carotene
molecule (C40H56) in the 6-31G basis set, composed of 472
basis set functions. In these tests, all core electrons are kept
frozen, and 296 electrons are correlated.

Figure 5 shows the distribution of task lengths and FLOPs
count for five contractions with the highest workload in
the case of beta-carotene. The different colors in Figure 5
represent the five different contractions, labelled t2 7 3,
t2 7, t2 2 5, t2 6, and t2 8. To calculate this load, we
used the SDE counters that monitors the total number
of floating-point operations for each CCSD contraction
(e.g., FlopCount_I). For instance, the first contraction
(t2 7 3) computes 327,680 DGEMMs (DgemmCount) and
32,557,729,032 FLOPs (32.5 GFLOPs) (FlopCount). The
x-axis shows the various length of the tasks, meaning
the number of sequential DGEMMs per tasks for each
contraction. In the case of contraction (t2 7 3), there are two
task lengths only, with 16 being the maximum number of
sequential DGEMMs per task.

SDE Name (prefixed with sde:::TAMM::) SDE Description
ContractionID_I ID of CCSD contraction (I=integer)
DgemmCount_I::ContrID=46 Total number of DGEMMs for CCSD ContrID=46 (I=integer)
FlopCount_I::ContrID=46 Total number of floating-point operations for CCSD ContrID=46

(I=integer)
MaxTaskLength_I::ContrID=46 Maximum number of sequential DGEMMs per task for CCSD

ContrID=46 (I=integer)
LengthPerTask_RCRD_I::ContrID=46 Array of the number of sequential DGEMMs per task for CCSD

ContrID=46 (RCRD=recorder) (I=integer)
FlopsPerTask_RCRD_I::ContrID=46 Array of the number of FLOPs per task for CCSD ContrID=46

(RCRD=recorder) (I=integer)

Table 4. Registered SDEs in TAMM / NWChem to enable users to gather CCSD-specific details though PAPI.

Prepared using sagej.cls

10 Journal Title XX(X)

Data from the LengthPerTask_RCRD recorder
is plotted by the bars, and the data from the
FlopsPerTask_RCRD is shown by the labels on top
of each bar. For instance, contraction t2 7 3, which happens
to also be the most compute intensive portion of the code,
has more than 24,000 tasks and approx. 2/3 of these tasks
compute 16 sequential DGEMMs, while the other 8,000
compute eight sequential DGEMMs. Each of these 16,000
tasks performs over 20 GFLOPs and the remaining 8,000
perform about 10.

In summary, these tasks are very expensive, which
ultimately limits the scalability of CCSD. It would
be beneficial to break down the computation of the
CCSD methods into more fine-grained tasks, so that the
serialization imposed by the traditional, linear algorithms
can be transformed into parallelism, allowing the overall
computation to scale to larger computational resources.

Case III: Byfl

Byfl Pakin and McCormick (2014) is a compiler-based
performance analysis tool, written in C++, that relies on
LLVM The LLVM Project (2018) and Clang The Clang
Project (2018). Byfl works by instrumenting the application
code instead of relying on sampling. It instruments an
application at compile time, and then gathers and reports
performance data at run time.

The motivation behind this PAPI-Byfl integration effort is
very much in line with our PAPI-SDE effort. Byfl allows
applications to measure—at the software level—events
that are currently missing from hardware implementations,
namely, bytes transferred to and from memory, and floating-
point operations performed. To bridge this gap, we have
augmented the Byfl software with SDEs in order to exposing
internal Byfl counters though the PAPI interface. This
enables monitoring of both types of performance events—
PAPI-related (hardware and software) events and Byfl-
related (software) events—in a uniform way, through one
consistent interface.

Table 5 lists the SDE-registered Byfl events and their
descriptions as they are available through PAPI. While for
the Byfl case, all counters are registered as “64-bit integer”
and “delta” single-value SDEs; we have seen the benefits of
different types, modes, and single- versus multi-value SDEs
in the previous case studies.

The code snippet in Figure 6 serves as a simple example
illustrating how the new SDE API (described earlier in this

paper) can be used from within Byfl, or another library that
wishes to register SDEs.

Analysis of SDE Performance Overhead
In this section, we provide an experimental evaluation of
the performance overhead associated with SDE recorders.
We focus on papi_sde_record() because it is currently
the most expensive function of the newly added SDE API.
In order to log values with an SDE recorder, memory is
dynamically allocated via memcpy(), and when it runs
out of space, the size of the memory object is changed via
realloc().

The benchmark code invokes the PAPI SDE
function papi_sde_create_recorder() to first
create a recorder and then uses the SDE API call
papi_sde_record() to record 16,384 values of
type double (64-bit fractional). Each of the PAPI SDE
functions feature thread safety. Every time our benchmark
called the function to log another value with the recorder,
it also measured the time it took to execute this function
by reading the CPU time-stamp counter using the x86
instruction rdtsc.

The experiments, mentioned in this section, were
performed on three different architectures:

• Haswell E5-2650 v3 with a frequency of 2.30 GHz
• Westmere-EP E5606 with a frequency of 2.13 GHz
• Gainestown E5520 with a frequency of 2.27 GHz

The benchmarks were written in C (as is PAPI), and
compiled with gcc 4.8.5 using optimization level “-O3”.

1

10

100

1000

10000

16 64 256 1024 4096

34 values > 66ns

32 values > 142ns

34 values > 145ns

Fr
eq

ue
nc

y
of

 m
ea

su
re

m
en

t

Overhead (ns)

Overhead of papi_sde_record() on different hardware (recording 16384 doubles)

Haswell E5-2650 v3
Gainestown E5520

Westmere-EP E5606

Figure 7. Performance Overhead of PAPI SDE Recorders.

SDE Name (prefixed with sde:::BYFL::) SDE Description
load_count_I Number of bytes loaded (I=integer)
store_count_I Number of bytes stored (I=integer)
load_ins_count_I Number of load instructions performed (I=integer)
store_ins_count_I Number of store instructions performed (I=integer)
call_ins_count_I Number of function-call instructions performed (I=integer)
flop_count_I Number of FP operations performed (I=integer)
fp_bits_count_I Number of bits used by all FP operations (I=integer)
op_count _I Number of operations performed (I=integer)
op_bits_count_I Number of bits used by all operations except loads/stores (I=integer)

Table 5. Registered SDEs in Byfl to enable users to gather internal Byfl counters though PAPI.

Prepared using sagej.cls

Jagode, Danalis, Anzt, Dongarra 11

1 #define BYFL_MAX_COUNTERS 9

2

3 extern uint64_t bf_load_count;

4 extern uint64_t bf_store_count;

5 ...

6

7 /* This function is called at BYFL init time */

8 void initialize_papi_sde(void)

9 {

10 papi_sde_fptr_struct_t fptr_struct;

11

12 POPULATE_SDE_FPTR_STRUCT(fptr_struct);

13 papi_sde_hook_list_events(&fptr_struct);

14 }

15

16 /** This function registers and (optionally) describes

17 * events available from BYFL for listing in

18 * papi_native_avail.

19 * @param[in] papi_sde_fptr_struct_t fptr_struct

20 * fptr_struct->init -- function ptr to papi_sde_init

21 * fptr_struct->register_counter -- name of event

22 * fptr_struct->describe_counter -- event description

23 **/

24 papi_handle_t papi_sde_hook_list_events(

25 papi_sde_fptr_struct_t *fptr_struct)

26 {

27 int i;

28 void* sde_handle = nullptr;

29

30 const char* byfl_counter_name[] = {

31 "load_count_I",

32 "byfl::store_count_I",

33 ...

34 };

35

36 const char* byfl_counter_description[] = {

37 "Total number of bytes loaded.",

38 "Total number of bytes stored.",

39 ...

40 };

41

42 uint64_t* byfl_counter_count[] = {

43 &bf_load_count,

44 &bf_store_count,

45 ...

46 };

47

48 /* papi_sde_init() */

49 sde_handle = fptr_struct->init("BYFL");

50

51 /* papi_sde_register_counter() */

52 for (i=0; i<BYFL_MAX_COUNTERS; i++) {

53 fptr_struct->register_counter(sde_handle,

54 byfl_counter_name[i],

55 PAPI_SDE_RO|PAPI_SDE_DELTA,

56 PAPI_SDE_long_long,

57 byfl_counter_count[i]);

58 }

59

60 /* papi_sde_describe_counter() */

61 for (i=0; i<BYFL_MAX_COUNTERS; i++) {

62 fptr_struct->describe_counter(sde_handle,

63 byfl_counter_name[i],

64 byfl_counter_description[i]);

65 }

66

67 return sde_handle;

68 }

Figure 6. Code snippet of SDE API and its usage in Byfl.

The results of this overhead study are shown in Figure 7,
which uses logarithmic axes. On the Haswell architecture,
it takes approx. 16 nanoseconds to complete one recording
via papi_sde_record(). The distribution displays that
this is the case for most of the 16 thousand values that
are recorded with this benchmark. On the two slower
systems—Westmere-EP and Gainestown—the overhead per
SDE recording measures between 30 and 40 nanoseconds.

Furthermore, the graphs for each of the three test systems
display about 32 measurements with significantly higher
timings (∼2 microseconds) than the bulk of the distribution.
These measurements (although they are rare enough not
to affect the statistical properties of the distribution) are
not due to noise, but rather they are an implementation
artifact. Specifically, we have implemented recorders using
contiguous memory that is allocated in 4KiB increments, to
avoid having a large memory overhead in libraries where
recording will not be heavily used. As a result of this policy,
for every 512 values of type double that are recorded,
there will be a call to realloc() in order to increase
the available space. The parameter responsible for defining
the size of the increment of memory allocation can be
tuned to reduce the occurrence of reallocating (and copying)
memory, and the overhead associated with it. However,
as we demonstrate in this paper, the overhead is already
insignificant, and thus, fine tuning the increment size should
not be a concern for most users.

Related Work
The need for software developers to acquire knowledge of
the internal behavior of libraries has been recognized by
some of the communities that develop performance critical
libraries. Particularly, the de facto standard for developing
distributed-memory applications, MPI MPI Forum (2015),
and one of the leading efforts for delivering multi-
threaded shared memory applications, OpenMP OpenMP
Architecture Review Board, provide both instrumentation
and profiling mechanisms as part of their standard. The
two distinct efforts, MPI T Islam et al. (2016) and
OMPT Eichenberger et al. (2013); OpenMP Tools Working
Group respectively, make it clear once more that experts
in performance critical libraries recognize the need for
exporting internal library information to their users through
instrumentation and profiling interfaces.

• MPI T is an interface for tools introduced in the 3.0
version of MPI. It allows tools to understand and
manipulate internal MPI variables in order to provide
a more efficient and application-adapted execution
environment. Similar to the PAPI interface, the MPI
Tool Interface allows the implementation to specify
internal control and performance variables, enabling
tools to iterate over all possible variables to query their
properties, retrieve descriptions about their meaning,
and access and (if appropriate) alter their values.

• The OpenMP standard includes OMPT, a first-party
interface for performance tools. It offers functions to
query OpenMP states and callback functionality for
relevant OpenMP events. This allows tools to explore
details of an OpenMP implementation, examine
runtime states associated with an OpenMP thread,

Prepared using sagej.cls

12 Journal Title XX(X)

identify parallel regions and tasks, and to collect call
stacks.

While these efforts provide a useful view of the execution
of a parallel application, the granularity of the analysis
interval is too coarse grain (mostly at the level of entry
and exit point of MPI functions, OpenMP regions or
tasks). More importantly, unlike the approach described
in this paper, these solutions are specific to MPI and
OpenMP, and so, they do not fit easily or naturally into
the performance tool ecosystem. To incorporate them,
developers of performance critical applications or higher-
level profiling tools would have to implement profiling code
customized for the communication layer of their parallel
application. This paper addresses these challenges. The new
SDE support in PAPI is not limited to a specific library, but
enables any library developers to expose internal information
about their libraries in a consistent and standardized way.
Additionally, the PAPI SDE extension enables performance
toolkits and application developers to capture and utilize
such information across all the software layers used in an
application.

TAU Shende and Malony (2006) is a profiling and tracing
toolkit aimed at the performance evaluation of parallel pro-
grams, providing useful performance visualization analyses
and displays. Like many performance analysis and auto-
tuning tools, TAU relies on PAPI for retrieving performance
counter measurements. TAU also offers the functionality to
profile so-called user-defined events. The meaning of these
events is entirely determined by the user. Unlike PAPI’s SDE
effort, however, TAU’s user-defined events are limited to
single-value events and are specific to TAU only.

Another related project is Caliper Lawrence Livermore
National Laboratory, which offers a source-code annotation
API for program instrumentation and performance measure-
ment. Caliper is primarily a tool for performance experts
to bake performance analysis capabilities directly into the
applications they are trying to study. Among other perfor-
mance values, such as timers, Caliper reads PAPI counters,
so it can work synergistically with PAPI SDE by enabling
performance experts to query library-specific SDEs through
Caliper.

Conclusions
PAPI has provided a unification layer for hardware-based
events, and enabled application developers and performance
toolkits to access these events in a uniform and consistent
way for more than 15 years. This paper presents our latest
SDE developments that allow PAPI to perform the same
role for software-based events. The addition of SDE in PAPI
enables developers of libraries, application components,
and runtime systems to expose internal, performance-
critical information about their software in a consistent and
standardized way.

The SDE integrations discussed in this paper highlight
the importance of the different types of SDEs and their
versatility for a wide variety of software layers such as
the numerical linear algebra library MAGMA-Sparse, the
NWChem quantum chemistry application, and the compiler-
based performance analysis tool Byfl. The overhead analysis
demonstrated that even for the most expensive SDE

functionality (Recorder) the monitoring overhead is very low
(tens of nanoseconds) under extreme use with benchmarks.

In summary, scientific application developers can monitor
SDEs together with traditional hardware performance
counter data to acquire a more complete picture of the
entire application performance. Performance analysis tools
that depend on PAPI for counter monitoring (e.g., Vampir,
TAU, Score-P) will automatically inherit the PAPI SDE
functionality. Using PAPI SDEs, both types of events can
be monitored without the need for users to modify their
applications or learn a new set of library and instrumentation
primitives.

Acknowledgements

This research was supported in part by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National Nuclear
Security Administration. Additionally, some of this material is
based upon work supported in part by the National Science
Foundation NSF under grant 1642440 “SI2-SSE: PAPI Unifying
Layer for Software-Defined Events (PULSE)”.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
research was supported in part by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security
Administration. Additionally, some of this material is based upon
work supported in part by the National Science Foundation NSF
under grant 1642440 “SI2-SSE: PAPI Unifying Layer for Software-
Defined Events (PULSE)”.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

References

Anzt H, Gates M, Dongarra J, Kreutzer M, Wellein G and Köhler
M (2017) Preconditioned Krylov solvers on GPUs. Parallel
Computing 68: 32 – 44. DOI:https://doi.org/10.1016/j.parco.
2017.05.006. Applications for the Heterogeneous Computing
Era.

Davis TA and Hu Y (2011) The university of florida sparse matrix
collection. ACM Trans. Math. Softw. 38(1): 1:1–1:25. DOI:
10.1145/2049662.2049663. URL http://doi.acm.org/

10.1145/2049662.2049663.
Eichenberger AE, Mellor-Crummey J, Schulz M, Wong M, Copty

N, Dietrich R, Liu X, Loh E and Lorenz D (2013) OMPT:
An OpenMP tools application programming interface for
performance analysis. In: Rendell AP MM Chapman BM (ed.)
OpenMP in the Era of Low Power Devices and Accelerators.
IWOMP 2013. Springer, Berlin, Heidelberg. Lecture Notes in
Computer Science, vol 8122.

Islam T, Mohror K and Schulz M (2016) Exploring the MPI tool
information interface: features and capabilities. The Interna-
tional Journal of High Performance Computing Applications
30(2): 212–222. DOI:10.1177/1094342015600507.

Prepared using sagej.cls

http://doi.acm.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/2049662.2049663

Jagode, Danalis, Anzt, Dongarra 13

Kowalski K, Krishnamoorthy S, Olson RM, Tipparaju V and Aprà
E (2011) Scalable implementations of accurate excited-state
coupled cluster theories: Application of high-level methods
to porphyrin-based systems. In: Proceedings of 2011
International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11. New York, NY,
USA: ACM. ISBN 978-1-4503-0771-0, pp. 72:1–72:10. DOI:
10.1145/2063384.2063481. URL http://doi.acm.org/

10.1145/2063384.2063481.
Lawrence Livermore National Laboratory (????) Caliper: Appli-

cation Introspection System. https://computation.

llnl.gov/projects/caliper.
MPI Forum (2015) MPI: A Message-Passing Interface Standard

Version 3.1. http://mpi-forum.org/docs/mpi-3.

1/mpi31-report.pdf.
OpenMP Architecture Review Board (????) OpenMP Application

Program Interface, Version 4.0. http://www.openmp.

org/mp-documents/OpenMP4.0.0.pdf.
OpenMP Tools Working Group (????) OpenMP Technical Report

2 on the OMPT Interface. http://openmp.org/

mp-documents/ompt-tr2.pdf.
Pakin S and McCormick P (2014) Hardware-independent

application characterization. In: 2013 IEEE Interna-
tional Symposium on Workload Characterization (IISWC),
volume 00. pp. 111–112. DOI:10.1109/IISWC.2013.
6704676. URL doi.ieeecomputersociety.org/10.

1109/IISWC.2013.6704676.
Shende SS and Malony AD (2006) The TAU Parallel Performance

System. The International Journal of High Performance
Computing Applications 20(2): 287–311. DOI:10.1177/
1094342006064482.

Terpstra D, Jagode H, You H and Dongarra J (2009) Collecting
Performance Data with PAPI-C. In: Tools for High
Performance Computing 2009, Springer Berlin / Heidelberg,
3rd Parallel Tools Workshop, Dresden, Germany. pp. pp. 157–
173.

The Clang Project (2018) Clang: a C language family frontend for
LLVM. https://clang.llvm.org/.

The LLVM Project (2018) The LLVM Compiler Infrastructure.
https://llvm.org/.

Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP,
Van Dam HJJ, Wang D, Nieplocha J, Aprà E, Windus TL and
de Jong W (2010) NWChem: A comprehensive and scalable
open-source solution for large scale molecular simulations.
Computer Physics Communications 181(9): 1477–1489. DOI:
10.1016/j.cpc.2010.04.018.

Prepared using sagej.cls

http://doi.acm.org/10.1145/2063384.2063481
http://doi.acm.org/10.1145/2063384.2063481
https://computation.llnl.gov/projects/caliper
https://computation.llnl.gov/projects/caliper
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://openmp.org/mp-documents/ompt-tr2.pdf
http://openmp.org/mp-documents/ompt-tr2.pdf
doi.ieeecomputersociety.org/10.1109/IISWC.2013.6704676
doi.ieeecomputersociety.org/10.1109/IISWC.2013.6704676
https://clang.llvm.org/
https://llvm.org/

	Introduction
	Design and Functionality
	Design Decisions
	PAPI SDE Counter Types
	PAPI SDE Application Programming Interface
	Overhead-Functionality Tradeoff

	Users of PAPI-SDEs
	Case I: MAGMA-Sparse
	Case II: NWChem
	Case III: Byfl

	Analysis of SDE Performance Overhead
	Related Work
	Conclusions

