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ABSTRACT
We present our performance analysis, algorithm designs, and
the optimizations needed for the development of high-performance
GPU-only algorithms, and in particular, for the dense Cholesky
factorization. In contrast to currently promoted designs that
solve parallelism challenges on multicore architectures by
representing algorithms as Directed Acyclic Graphs (DAGs),
where nodes are tasks of fine granularity and edges are the
dependencies between the tasks, our designs explicitly target
manycore architectures like GPUs and feature coarse gran-
ularity tasks (that can be hierarchically split into fine grain
data-parallel subtasks). Furthermore, in contrast to hybrid
algorithms that schedule difficult to parallelize tasks on CPUs,
we develop highly-efficient code for entirely GPU execution.
GPU-only codes remove the expensive CPU-to-GPU communi-
cations and the tuning challenges related to slow CPU and/or
low CPU-to-GPU bandwidth. We show that on latest GPUs,
like the P100, this becomes so important that the GPU-only
code even outperforms the hybrid MAGMA algorithms when
the CPU tasks and communications can not be entirely over-
lapped with GPU computations. We achieve up to 4,300 GFlop/s
in double precision on a P100 GPU, which is about 7-8× faster
than high-end multicore CPUs, e.g., two 10-cores Intel Xeon E5-
2650 v3 Haswell CPUs, where MKL runs up to about 500-600
Gflop/s. The new algorithm also outperforms significantly the
GPU-only implementation currently available in the NVIDIA
cuSOLVER library.
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1 INTRODUCTION
The scientific high performance computing community has
faced dramatic hardware changes since the emergence of multi-
core architectures. Multicore architectures are now ubiquitous
– not only in the fastest high performance computers in the
world, as ranked in the Top500 list [23], but also even in small
portable devices like smart phones and watches. Moreover, the
number of cores on the chip continues to grow, with architec-
tures containing 10s of independent cores or more (referred to
as manycore) becoming common. Latest examples include the
new Intel Knights Landing (KNL) Xeon Phi processor with up
to 72 cores, and the new manycore P100 GPU accelerator from
NVIDIA, featuring 56 multi-processors (MP) with 64 CUDA
cores each. This presents the scientific software community
with both a daunting challenge and a unique opportunity. The
challenge arises from the disturbing mismatch between the
design of systems based on this new chip architecture – many
cores with reduced bandwidth and memory available per core
– and the components of the traditional software stack, such
as numerical libraries, on which scientific applications have
relied for their accuracy and performance. The state of the art,
high performance dense linear algebra software libraries, (i.e.,
LAPACK [5]) have shown limitations on multicore architec-
tures [4]. The performance of LAPACK relies on the use of
a standard set of Level-3 Basic Linear Algebra Subprograms
(BLAS) [11] within which nearly all of the parallelism occurs
following the expensive fork-join paradigm, making it prudent
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to revisit and/or redesign existing numerical linear algebra
algorithms to be better suited for such hardware.

The PLASMA library (Parallel Linear Algebra for Scalable
Multi-core Architectures) [19] tackles this challenge for multi-
core architectures by designing and using tile algorithms to
achieve high performance. These tile algorithms can then be
represented by Directed Acyclic Graphs (DAGs), where nodes
are tasks of fine granularity and edges are the data depen-
dencies between the tasks. Then, a runtime environment can
be used to efficiently schedule the DAG across the multicore
platform. Using this methodology, PLASMA provides very
efficient algorithms for multicore architectures because the
scheduling mechanism provides asynchronous execution of
the fine granularity tasks that can remove the expensive syn-
chronizations associated with fork-join between large tasks
(BLAS done in parallel). There are, however, overheads of
scheduling many fine granularity tasks, and on manycore ar-
chitectures like current GPUs and Xeon Phi, hybrid algorithms
as in MAGMA [6, 16, 24] have been more advantageous by
keeping top level tasks of coarse granularity, that are, how-
ever, split hierarchically into fine grain data-parallel subtasks
(through parallel BLAS implementations). However, MAGMA
schedules the difficult-to-parallelize tasks on CPUs, and thus
is not directly applicable for GPU-only execution.

The objective of this paper is to revisit the current state-
of-the-art algorithms designed originally for multicore and
heterogeneous architectures (as in the PLASMA and MAGMA
libraries [4] and redesign them for GPU-only execution. We
present our performance analysis and algorithm designs, and
the optimizations needed to achieve this goal of providing
high-performance GPU-only algorithms, and in particular, the
dense Cholesky factorization. GPU-only codes are of high
interest because they remove the expensive CPU-to-GPU com-
munications and the tuning challenges related to slow CPU
and/or low CPU-to-GPU bandwidth. Indeed, we show that
on the latest GPUs, like the P100, this becomes so important
that the GPU-only code even outperforms the hybrid MAGMA
algorithms when the CPU tasks and communications can not
be entirely overlapped with GPU computations.

2 RELATED WORK
The development of GPU-only dense linear algebra algorithms
was avoided in the past because:

• The implementation and optimization of difficult-to-
parallelize parts of the computation could be evaded
through the use of hybrid algorithms, and

• Hybrid algorithms were faster.
However, recent need in many applications for many indepen-
dent linear algebra problems of small sizes motivated the de-
velopment of the so-called batched linear algebra algorithms [9,
14]. Batched LU, QR, and Cholesky were developed for both
fixed matrix sizes [7, 8, 15] and variable sizes [1, 2] that are
GPU-only. The reason for developing them for GPUs only is
that the sizes were so small that there was not enough compu-
tation for the GPU work to overlap the expensive CPU-to-GPU
communications. Regardless of the motivation, since they

were developed, it was possible to easily extend them to com-
pute single large factorizations for GPU-only execution [2, 18].
Rather than these early implementations that resulted from
highly-optimized batched factorizations for small problems,
in this paper we concentrate on and study in detail specifi-
cally GPU-only algorithms. In turn, the algorithm designs and
optimizations developed here, outperform significantly the
early results, including the implementations that were subse-
quently made available through the cuSOLVER library from
NVIDIA [21].

Besides extending ideas from the batched linear algebra rou-
tines, manycore algorithms can also be built on ideas from the
hybrid linear algebra algorithms. This was demonstrated for
the case of KNL processors in [17]. The difficult-to-parallelize
tasks are the panel factorizations (see Section 3), and these are
the tasks offloaded for execution to the CPUs in the hybrid
algorithms. As the KNL is self-hosted (i.e., there is no addi-
tional CPU host), a virtual CPU abstraction was created from a
subset of the KNL cores that enabled hybrid algorithms to run
efficiently on homogeneous manycore processors [17]. The
panel factorizations can be done in parallel with the trailing
matrix updates in factorizations like QR, LU, and Cholesky
(see Section 3), which is used in the hybrid algorithms to over-
lap CPU work and CPU-to-GPU communications with GPU
work on the trailing matrix updates. We will see that similar
techniques can be developed for GPU-only execution, where
some of GPU’s MPs will perform the compute-intensive ma-
trix update, while others (possibly the same) will do the panel
factorization through different GPU streams.

3 BACKGROUND
In this section, we review the paradigm behind the state-of-the-
art numerical software, namely the LAPACK library for shared-
memory. In particular, we focus on the Cholesky factorization
which is one of the three widely used one-sided factorizations
(QR, LU and Cholesky) in the scientific community. These
factorizations are the main components of solving numerical
linear systems of equations.

The Cholesky factorization (or Cholesky decomposition) is
mainly used as a first step for the numerical solution of the
linear system of equations Ax = b, where A is a symmetric and
positive definite matrix. Such systems often arise in physics ap-
plications, where A is positive definite due to the nature of the
modeled physical phenomenon. The Cholesky factorization
of an n× n real symmetric positive definite matrix A has the
form A = LLT , where L is an n× n real lower triangular matrix
with positive diagonal elements. Due to the symmetry, the
matrix can be factorized either as an upper triangular matrix or
as a lower triangular matrix. In LAPACK, the double precision
algorithm is implemented by the DPOTRF routine. We note
that the reference number of operations for the Cholesky fac-
torization is known to be O( n3

3 ), for that we used this formula
to produce all the Gflop/s mentioned on the figures which
reflect the total elapsed time and thus the higher the flops the
faster the routine is.
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3.1 Description and Concept
The LAPACK library provides a broad set of linear algebra
operations aimed at achieving high performance on systems
equipped with memory hierarchies. The factorisation algo-
rithms implemented in LAPACK leverage the idea of blocking
to limit the amount of bus traffic in favor of a high data reuse.
LAPACK consists of a sequential algorithm that relies on par-
allel building blocks (i.e., the BLAS with its Level-1, 2, and
3 types of operations) in order to exploit parallelism. Most
of these algorithms can be described as the repetition of two
fundamental phases as shown in Figure 1:

• Panel factorization: Depending on the linear algebra
operation that must be performed, a number of trans-
formations are computed for a small portion of the
matrix – the panel – marked by the light and dark blue
portion of Figure 1;

• Trailing submatrix update: In this step, all the transfor-
mations that have been computed during the panel
factorization step must be applied to the rest of the ma-
trix – the trailing submatrix – marked by the green and
magenta portion of Figure 1. This is done by means
of Level-3 BLAS operations.

Cholesky QR LU

PanelFactorize xPOTF2 xGEQF2 xGETF2
xTRSM

xSYRK xLARFB xLASWP
TrailingMatrixUpdate xGEMM xTRSM

xGEMM

Table 1: Routines for panel factorization and the trailing
matrix update.

This design as a two-phase process is typical for the blocked
algorithms in LAPACK. It consists of organizing the linear
algebra algorithm in such a way that only a small part of the
computation is done in the panel phase, while most is done
in the update phase. The panel factorization can be identified
as a sequential execution task that represents a small fraction
of the total number of FLOPS – only θ(n2) are in the panel
vs. a total of θ(n3) FLOPS. It is referenced as a sequence of
memory-bound operations and cannot be parallelized easily.
For the Cholesky factorization, this applies to the potf2 routine,
while the trsm is a Level 3 BLAS routine that can exhibit paral-
lelism. Parallelism in the Cholesky factorization is exploited at
the Level 3 BLAS routines, which are mainly used in the trail-
ing matrix update phase. Most of the flops are computed in
this phase, and for an optimal, well-designed implementation,
the performance of the factorization should behave similar to
the performance of the Level 3 BLAS routine that the trailing
matrix update uses. This methodology implies a “fork-join”
parallel model (as shown in Figure 1) since the execution flow
of the matrix factorization represents a sequence of sequential
operations (the panel factorizations) interleaved with parallel
ones; namely, the updates of the trailing submatrices. For the

sake of completeness, we present in Table 1 the BLAS routines
that should be substituted for each of the phases for the three
LAPACK factorizations.

3.2 Implementation Design Variants
Several algorithmic variants exist for the one-sided factoriza-
tions described above. The two main ones are called Left Look-
ing (LL) and Right Looking (RL). They only differ on the location
of the update applications with regards to the panel. At each
step, the RL variant computes the transformations on the cur-
rent panel, then it applies these transformations to the trailing
submatrix to the right of the panel (called updates). For exam-
ple, in Fig. 2a, the light-gray area represents the portion of the
matrix that has already been factorized. The dark gray area
corresponds to the panel that is currently being factorized. On
the right side of the current panel, the dashed area specifies
the location of the update portion, after the current panel has
been factorized. For the RL variant, the data located in this
area is actually transient and is constantly updated until the
end of the whole factorization. Algorithm 2 shows the imple-
mentation of the RL variant of the Cholesky factorization. In
contrast, Fig. 2b shows the LL variant (also called the ”lazy”
variant), where the current panel is first updated by applying
all the previous transformations coming from the previous
panels (from the left), and then is factorized. Thus, the up-
dates are not applied to the entire trailing matrix as in the RL
variant but are limited only to the current panel. The matrix
is thus completely factorized one panel at a time. Therefore,
the LL variant limits the number of memory accesses (e.g.,
panel writes, if the panel is kept in cache until fully updated)
while increasing the reuse of the data located on the panel.
The LL variant is known to be cache friendly, but decreases
the parallelism, as the subsequent updates of the remaining
matrix columns are delayed and will be eventually applied as
the panel computations move forward. Algorithm 1 presents
the implementation of the LL variant of the Cholesky factor-
ization. Note that the QR and LU factorization will follow the
same sequence but with calls to other BLAS routines. We refer
the reader to Table 1 for the name of the BLAS routines for the
QR and the LU factorization.

Algorithm 1 LL Cholesky
1: for i = 0, nb to N do
2: if (i > 0) then
3: {Update current panel Ai:m,i:i+nb}

4: DSYRK:
Ai:i+nb,i:i+nb = Ai:i+nb,i:i+nb − Ai:i+nb,0:i × AT

i:i+nb,0:i
5: DGEMM:

Ai+nb:m,i:i+nb = Ai+nb:m,i:i+nb − Ai+nb:m,0:i ×
AT

i:i+nb,0:i
6: end if
7: {Panel factorize Ai:m,i:i+nb}

8: DPOTF2 Ai:i+nb,i:i+nb
9: DTRSM Ai+nb:m,i:i+nb = Ai+nb:m,i:i+nb × A−1

i:i+nb,i:i+nb
10: end for



GPGPU-10, February 04-05, 2017, Austin, TX, USA Azzam Haidar, Ahmad Abdelfatah, Stanimire Tomov, and Jack Dongarra

panel 

update 

step 1  step 2  step 3  step 4  

Figure 1: Description and concepts of the Lapack algorithms.

(a) RL variant. (b) LL variant.

Figure 2: One-sided factorization-looking variants.

Algorithm 2 Right looking Cholesky
1: for i = 0, nb to N do
2: {Panel factorize Ai:m,i:i+nb}

3: DPOTF2 Ai:i+nb,i:i+nb
4: DTRSM Ai+nb:m,i:i+nb = Ai+nb:m,i:i+nb × A−1

i:i+nb,i:i+nb
5: {Update trailing matrix Ai+nb:m,i+nb:m}

6: DSYRK:
Ai+nb:m,i+nb:m = Ai+nb:m,i+nb:m − Ai+nb:m,i:i+nb ×
AT

i+nb:m,i:i+nb
7: end for

4 METHODOLOGY AND ALGORITHMIC
ADVANCEMENTS

The state-of-the-art methodology for server-class accelerated
systems is based on hybrid algorithms that use both the CPU
and GPU hardware components [3, 10, 13, 24, 25]. Benchmark
software also uses hybridized methods [12]. Typically, small
or memory bound tasks on the critical path of the algorithm
are assigned to the CPUs (e.g., panel phase), and large data-
parallel tasks to the GPUs (update phase). This is what we
denote as the hybrid approach. While this methodology works

very well, it can have significant drawbacks when the balance
between the processor and the accelerator is skewed. A slow
CPU for example, even after tuning, can make a fast GPU
idle. Moreover, this can be further aggravated by the slow
CPU-to-GPU communication. Also, from an energy point of
view, a hybrid approach consumes power on both the CPU
and the GPU since both hardware are computing. Thus, since
the power efficiency rate of flops/Watt for the CPU is typically
too low compared to the one for the GPU, one can expect a
degradation in the energy efficiency of the hybrid algorithms.
These reasons further motivate the need for an additional
schema that uses only the GPU to perform both the memory
bound and the compute intensive tasks; that is, a variant that
uses only the GPU to perform the whole computation. When
the GPU only is used the CPU is idle and thus its power is
too low compared to the hybrid mode when it is fully loaded.
We use a careful study and analysis of the algorithm to guide
our optimizations for the memory bound operations and to
provide a GPU-only implementation that is very competitive
with the hybrid one in term of performance, and definitely
way ahead in terms of energy efficiency.

We have described above that high-performance linear alge-
bra algorithms can be designed so that their computations use
building block, e.g., BLAS. This is important since the use of
BLAS has been crucial for the high-performance sustainability
of major numerical libraries for decades, and therefore we can
also leverage the lessons learned from that success. However,
to enable the effective use of a building block-based approach,
there is a need to develop highly efficient and optimized ker-
nels.

Below we describe our studies and the methodology toward
achieving high-performance GPU algorithms. We recognize
three possible paths that can help boosting the performance of
any algorithm or application. First is the algorithmic path, then
the kernel optimization path, and finally the implementation
design path.
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4.1 Performance Analysis based on
Algorithmic Design

Here we study the two designs of the Cholesky algorithm. As
seen above in Section 3.2, the panel factorization of both the
left and right looking algorithms is the same. It consists of
calls to potf2 and trsm. The main difference between the two
designs (left or right looking) is the update phase. Note that,
as mentioned above, the performance of the one-sided factor-
ization (Cholesky, LU, or QR) is driven by the performance of
its update phase. The update phase of the left looking design
enforces locality, and most importantly, it uses the gemm rou-
tine for its operations, while the right looking variant exhibits
more parallelism and uses the syrk routine for its operations.
Historically, it is well known that the left looking update phase
does not exhibit as much parallelism as the right looking one.
This raises the question of whether the right looking should be
considered as the only suitable approach for multicore CPUs
or GPUs.

To answer this, we first point out that this description is
not perfectly accurate, as it requires an explanation of the
meaning that one design may be more suitable or may exhibit
more parallelism than another. To do this, we describe first
some of our analysis and then show performance results for
both designs. For a multicore CPU, the parallelism is at the
core/thread level, and thus parameters such as L2 cache sizes,
use of SIMD/AVX instructions, NUMA node effect, etc., will
have to be considered. For a GPU, the parallelism is at the
thread-block and at the SMX level, and thus a large number
of working thread-blocks is always preferable.

Since the performance should be driven by the update phase,
we studied the operations involved in this phase to find out
how parallelism can be extracted. First of all, the parallelism
depends on the shape of the matrices involved, as well as the
size and type of the operation involved in the update phase.
Figure 3 shows the matrix shapes of both the gemm and the syrk
operations, which represent the left and right looking variants,
respectively. It is true that the syrk can exhibit more paral-
lelism, but, we can also extract parallelism from the gemm
shape when nb is “acceptable” (where the acceptable nb is
hardware and software dependent – it depends on the im-
plementation of the gemm and the syrk routines, the caches
size, and other GPU/CPU hardware features; we will show
that nb=128, 256, 512 are good choices). Moreover, the per-
formance also depends on the implementation of these two
routines. Due to the higher need for gemm and since other
Level-3 BLAS can be derived from gemm, most BLAS libraries
– such as cuBLAS, MAGMA, MKL, GOTO, and ATLAS – are
optimized for their gemm routine for all precisions and shapes,
before the other Level-3 BLAS routines, (e.g., their syrk rou-
tine). Figures 4 and 5 show the performance of the gemm and
the syrk routines in both single and double precision, for the
shapes required by the Cholesky update phase for a large value
of n = 10,000 and for different values of nb ranging from 32 to
1,024 on two different GPU architectures (the Nvidia K40c and
the P100). The performance shown in these figures establishes
the performance upper bound for the Cholesky factorization.

From these figures one can conclude that:
• First, in order to reach the upper bound of the update

routine on GPUs – either gemm or syrk– the nb should
be large. The minimal nb where the gemm or syrk
reaches good performance is about nb = 256 or nb =
512 in double precision, and nb = 512 or nb = 1,024
in single precision for both architectures;

• Second, we note that when designing a GPU library,
before struggling on optimizing kernels or overall im-
plementation, one should study and understand the
performance roofline bound of the algorithm;

• Third, one can also notice that these Level 3 BLAS
routines are optimized by the vendor, and sometimes
the vendor focuses their optimization for one specific
shape, or one precision, or just one of the routines.

A C 

B 

A 
SYRK	

C	=	C	–	A*AT	
GEMM	

C	=	C	–	A*BT	

C 

nb nb 

n n 

Figure 3: The shape of the update operation for both Left
and Right looking design.
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Figure 4: The performance of the gemm and syrk routine for
the shape required by the update of either the left or right
looking design when varying the size of nb in both single
and double precision on a Nvidia K40c GPU.

Since the single precision showed larger difference between
the two update routines, we picked up a nb = 512 and showed
in Figure 6 and 7 the performance of the update phase of
the left and the right looking Cholesky factorization step by
step during the process for a matrix of size n = 20480. In
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Figure 5: The performance of the gemm and syrk routine for
the shape required by the update of either the left or right
looking design when varying the size of nb in both single
and double precision on a Nvidia P100 GPU.

other words, timing the performance of the update phase from
inside the Cholesky code for a nb = 512 in single precision
on both the Nvidia K40c and P100 GPU. This experiments
is representative since it illustrates the performance through
the factorization steps where also we can easily figure out the
expected performance for any matrix size. For example we
can expect that the left looking variant is always faster then
the right looking one on single precision on K40c GPU.

step i (e.g., factorized portion)
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Figure 6: The performance of the gemm and syrk routine for
the shape required by the update of either the left or right
looking design when varying the size of nb in both single
and double precision on a Nvidia K40c GPU.

4.2 Performance Analysis based on Kernel
Optimization

After we studied the performance of the update phase and
converged on the possible choices of nb that provide good per-
formance, we could concentrate on optimizing the potf2 kernel
for the possible nb sizes. The potf2 performance requirement
is to have the cost of the panel phase small; otherwise, the

step i (e.g., factorized portion)
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left looking update (sgemm)
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Figure 7: The performance of the gemm and syrk routine for
the shape required by the update of either the left or right
looking design when varying the size of nb in both single
and double precision on a Nvidia P100 GPU.

performance model will not be driven by the update phase.
Indeed, slow potf2 can result in a dramatic slowdown since the
potf2 is a memory bound operation, which even when highly
optimized is still about 100 times less than a Level 3 BLAS
operation (on current GPUs). For hybrid algorithms which
are not the focus of this paper, but are mentioned for com-
pleteness and comparison, the potf2 routine is performed on
the CPU, which is overlapped with GPU work on the update
phase (usually relying on optimized potf2 from vendors; e.g.,
the MKL from Intel). Thus, the panel cost is hidden, which
means that the hybrid approach can reach the peak of the
level 3 BLAS update routine (syrk or gemm), provided that
the updates fully overlap the CPU work and the CPU-to-GPU
communications. We note that in the case where the CPU
and/or the CPU-to-GPU connection is very slow as compared
with the GPU, the potf2 might not always be overlapped. For
the GPU-only approach, the performance of the potf2 routine
can dramatically affect the performance.

The potf2 routine operates on a square submatrix of size nb,
which is the algorithm step size, and consists of three types of
operations – dot products, matrix-vector products, and scaling
of vectors. If the submatrix cannot fit in fast memory, potf2 is
a memory bound kernel since it is an unblocked routine. This
means that a square matrix of size nb is factorized column by
column in an unblocked fashion. Since the kernel consists of a
sequential process (e.g., the column i + 1 cannot be factorized
before finishing the factorization of column i), it involves a lot
of synchronizations. Since nb is small (less or equal to 1,024),
the potf2 factorization usually needs only one thread-block on
the GPU, and thus the other GPU resources might be unused.
If this challenge is not addressed, the inherently slow potf2
(even when it is optimal), can become orders of magnitude
slower, e.g., considering that there are 56 MP on a P100 and
only one MP may end up being used.
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Figure 8: left-looking Cholesky factorization

Algorithm 3 The fused potf2 kernel.
1: for i = 0, ib to m = nb do
2: rAk← A(i:m,0:lb); rC← 0
3: for k = 0, lb to m− i do
4: rAkk← rAk
5: sB← rAk(i:lb,k:k+lb) inplace transpose
6: barrier()
7: rA1← A(i:m,k+lb:k+2lb) prefetching
8: rC← rC + rAkk×sB multiplying
9: barrier()

10: end for
11: sC← rA1 - rC
12: factorize sC
13: end for

We first implemented this routine on GPUs and found that
its performance is about 3 Gflop/s for double precision on
both architectures. We then performed a detailed performance
study based on the collection and analysis of machine coun-
ters. Counter readings were taken using performance tools
(NVIDIA’s CUPTI and PAPI CUDA component [20].

While previously the unblocked potf2 algorithm was im-
plemented with outer loops going from 1 to nb running on
the CPU, calling the computational kernels on the GPU, we
discovered that fusing the operations of potf2 into one kernel
call is needed for performance. Moreover, to increase data
reuse, and hence minimize communications, we concluded
that adding an internal layer of blocking for the potf2 is neces-
sary. The purpose of the fusion optimization is to minimize
the load/store to the main memory and increase the data
reuse at the thread-block level. The inner blocking is needed
because it allows the operation to be performed on an inner
block of size nb× ib, which in turn decreases the number of
register/shared memory required relative to when the whole
nb× nb is in register/shared memory, and thus it allows the
factorization of matrix with large nb size (for example nb > 64
for double precision). The inner blocking can also provide
a very good performance similar to if the whole data is in
shared memory by implementing techniques such as double
buffering and prefetching. The inner blocking layer can be
viewed as the Cholesky algorithm described in Algorithm 2
or 1 but at a kernel level, where all the calls are within one

kernel. We discovered that blocking at the kernel level should
follow a left-looking Cholesky factorization, with a blocking
size ib, which is known to minimize data writes (in this case
from GPU shared memory to GPU main memory).

When the kernel’s working data is small, the computation
associated with it becomes memory bound. Thus, fusing the
four kernels of one iteration of Algorithm 1 (into one GPU ker-
nel), will minimize the memory traffic, increase the data reuse
from shared memory, and reduce the overhead of launching
multiple kernels. Using a left-looking Cholesky algorithm,
the update writes the panel of step k of size m-i×ib in the
fast shared memory instead in the main memory, and so the
merged potf2 routine can reuse the panel from the shared mem-
ory. Note that nb and ib control the amount of the required
shared memory; they are critical for the overall performance,
and thus can be used to (auto)tune the implementation.

We developed an optimized and customized fused kernel
that first performs the update (syrk and gemm operations), and
keeps the updated panel in shared memory to be used by the
factorization step. The cost of the left looking algorithm is
dominated by the update step (syrk and gemm). The panel
C, illustrated in Figure 8, is updated as C = C − A× BT . In
order to decrease its cost, we implemented a double buffering
scheme that performs the update in steps of lb, as described in
Algorithm 3. We mention that we prefix the data array by “r”
and “s” to specify register and shared memory, respectively.
We prefetch data from A into register array rAk while a multi-
plication is being performed between register array rAkk and
the array sB stored in shared memory. Since the matrix B is
the shaded portion of A, our kernel avoids reading it from the
global memory and transposes it in place to the shared mem-
ory sB. Once the update is finished, the factorization (potf2
and trsm) is performed as one operation on the panel C, held
in shared memory.

In order to develop Algorithm 3, a first step is to decide
whether the main loop (e.g., the loop over i at line 1 of Algo-
rithm 3) is on the CPU or on the GPU (inside the kernel). In
this context, we developed loop-inclusive and loop-exclusive ker-
nels. The loop-inclusive kernel is launched once from the CPU
side, meaning that the loop iteration over ib of Algorithm 3
are unrolled inside the kernel. The motivation behind the
loop-inclusive approach is to maximize the reuse of data, not
only in the computation of a single iteration but also among
iterations. More important is that when it is as one kernel, one
can think of overlapping it with computation that might hap-
pen on another stream. If the factorization consists of many
kernels, we might not see the overlap with other computation,
since once the first kernel launch finishes, the GPU scheduler
might schedule another queued thread-block than the one
of the factorization, resulting in a non overlapped execution.
Since the panel factorization requires only one thread-block,
this means that resources might be lost. The loop-exclusive
kernel executes one iteration of Algorithm 3 at each launch.
The amount of shared memory decreases per launch (shared
memory configurations are based on m− i) starting from the
same amount of shared memory as the loop-inclusive at the
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first launch. In the loop-exclusive kernel, we will have to re-load
the previous panel from main memory.

4.3 Performance Optimization based on
Kernel Tuning

The autotuning process of the developed kernels has one tun-
ing parameter to consider (ib). Since the range of values for
ib is intended to be small, we conducted a sweep of all possi-
ble values of ib up to 32. In general, we can define different
best-performing values of ib with different GPUs. The auto-
tuning experiment is offline and needs to be conducted once
per GPU model/architecture. Figure 9 shows the tuning re-
sults for both the loop-inclusive and the loop-exclusive kernels
for different values of ib and for different values of m.

As expected, we observe a relatively low performance for
the loop-exclusive kernel. Since the tile factorization consists
of launching one thread-block, minimizing the amount of re-
quired shared memory do not have any important effect here.
Figure 9 shows that for the same ib the loop-inclusive technique
is always better than the loop-exclusive. The best configuration
was obtained with the loop-inclusive approach for ib = 16.
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Figure 9: Performance tuning of loop-inclusive(incl) and
loop-exclusive(excl) dpotf2 kernel on a Nvidia P100 GPU.

4.4 Performance Optimization based on
Algorithmic Recursion

We have discussed above that nb is preferred to be large (for ex-
ample nb = 512) in order to extract high performance from the
update routine – either gemm or syrk. We have also proposed,
implemented, optimized, and tuned a customized kernel to
perform the potf2 on GPU. The best tuned ib for the potf2 kernel
is ib = 16, as shown in Figure 9. This will limit the size of the
tile that can be factorized using this parameter to nb <= 256
due to the register/shared memory constraints needed for
holding the panel and for prefetching. A small nb might affect
the performance of the update phase and thus might result
in lower performance than expected. Going with larger nb
means that we need to use small ib, which in turn means using

a kernel below its possible peak performance, and this also
might result in lower performance than expected.

Thus, one attractive algorithmic design that can overcome
this issue is the implementation of a recursive algorithm. The
idea here to to split recursively the tile of size nb × nb into
smaller pieces till when the potf2 performs very well. This way
we can factorize tile with large nb by recursion over the factor-
ization of tiles of smaller recnb while continuing to gain high
performance result from the potf2 kernel. Figure 10 and 11
show the performance of the potf2 kernel described in Sec-
tion 4.3, and the recursive potf2 kernel described here, where
the most inner recursion will call the optimized kernel of Sec-
tion 4.3. The results are shown for both GPU architecture for
double precision. We can easily see that the recursive imple-
mentation is needed for large nb
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Figure 10: Effect of the recursive design of the dpotf2 rou-
tine on a Nvidia K40c GPU.

tile size nb
0 256 512 768 1024

G
flo

p/
s

0
10
20
30
40
50
60
70
80
90

100
110
120

recursive dpotf2 (recnb=128)
dpotf2 kernel

Figure 11: Effect of the recursive design of the dpotf2 rou-
tine on a Nvidia P100 GPU.

4.5 Performance Optimization based on
Implementation Design

In the previous section we described how to analyze and find
the performance roofline for an algorithm, as well as how
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to design a GPU-only version of it by optimizing the critical
kernel (potf2) in such a way as to improve it and make it reach
its limit. As shown above the tile factorization (potf2 routine)
needs only one thread-block. However, even if this kernel
requires a small amount of computational time, having the
GPU running only one thread-block for this amount of time is
considered from our point of view as an inefficiency and waste
of resources. Also losing resources for a short time is not as
dramatic as having a non optimized kernel, but we think we
could take advantage of the idle resources. Moreover, in this
paper we are proposing a methodology and if the potf2 routine
requires small percentage of time, the other panel routines for
the other factorization (such as getf2 and geqr2) might not, and
thus we might see a dramatical performance degradation.

For that, we propose to further modify the design in order
to achieve closer to optimal performance. In fact we propose
to overlap the memory bound operation with the compute
intensive operations by implementing a lookahead [22] tech-
nique (e.g., overlapping the tile factorization (potf2 routine)
with the update phase). The idea here is similar to the hybrid
model but where the potf2 runs on GPUs instead of CPUs. For
that, we split the update into two parts. The update of the
next tile (where potf2 has to operate) and the update of the
remaining. Once the update of the next tile is finished (for ex-
ample, lets say at step i, once the update of the tile of step i + 1
where the potf2 operate is done, the potf2 kernel operating on
step i + 1 can start on a separate CUDA stream as the update
of the remaining portion of step i. In Figure 12 and 13, we
show a snapshot of the Nvidia profiler for the right looking
implementation, where we show the potf2 panel is overlapped
with the update phase. Since the font and the color of traces
are enforced by the Nvidia profiler, we clarified the figures
by highlighting and noting the kernels and their sequence to
show the overlap. We provided a high quality figures such a
way that a zoom in the pdf will show the detailed font of the
profiler. The trsm do not need to be overlapped since it is by
itself a Level 3 BLAS routine. It run on the same stream as the
potf2 routine to guarantee dependency.

potf2 step i+1 

update step i 
trsm step i+1 

potf2 step i+2 

update step i+1 

Figure 12: Nvidia profiler snapshot showing the lookahead
potf2 computation executed on stream 15 overlapped with
the update phase running on stream 16 for the right looking
GPU-only variant.

potf2 step i+1 

update step i 

trsm step i+1 
potf2 step i+2 

update step i+1 

Figure 13: Nvidia profiler snapshot showing the lookahead
potf2 computation executed on stream 15 overlapped with
the update phase running on stream 16 for the left looking
GPU-only variant.

5 PERFORMANCE DISCUSSIONS
In this section, we evaluate our proposed design in both of
its flavors (left and right) and compare it with the best hybrid
(CPU-GPU) and CPU only implementations. Performance ex-
periments are conducted on a two-socket 10-core Intel Xeon
E5-2650 v3 (Haswell), running at 2.3 GHz, and two Nvidia
GPUs – the Kepler K40c (15 MP x 192 @ 0.88 GHz), and the
Pascal P100 (56 MP x 64 @ 1.19 GHz). We show comparison for
both single and double precision arithmetic. The hybrid per-
formance numbers are the best obtained among the right or the
left looking variant for each data point. The CPUs results were
the best obtained over several runs as well and with/without
the numactl interleave option. Our aims is not to compare the
GPU with the CPU but we present the results obtained by a re-
cent multicore CPUs system to make the paper self contained
and to show performance on two types of hardware that have
roughly the same cost.

Let’s first comment on the single precision spotrf routine
illustrated in Figures 14 and 16. As expected from the per-
formance of the update routines (gemm and syrk) depicted in
Figure 4 for the K40c and in Figure 5 for the P100, the left and
right looking variants provide slightly different performance
numbers. The left looking variant is advantageous for large
matrices. This is because the sgemm routine outperforms the
ssyrk routine for nb >= 512 and large n, while the right look-
ing variant is advantageous for small sizes where parallelism
is needed. The effect of the left looking variant on large size
is better seen for the K40c GPU (Figure 14) since the differ-
ence between the sgemm and ssyrk is more pronounced for
this GPU. When comparing the achieved performance by the
GPU-only routine with the roofline bound illustrated in Fig-
ures 4 and 5, we can conclude that our GPU-only design is
optimal and reaches close to the roofline peak. When com-
paring it with the hybrid routine that uses the CPU for the
potf2 factorization and hides its cost completely, we can also
settle that the GPU-only implementation is one of the best. We
also compare it with the cuSOLVER Cholesky factorization,
which is a GPU-only implementation provided by Nvidia. It
can be seen that we easily outperform the vendor routine by
a factor of more than 10% in single precision. Comparing it
with the CPU-only implementation on such recent CPU, we
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can easily deduct a factor of 8 and 3 on the P100 and the K40c,
respectively.

We performed the same experiments for double precision
arithmetic and illustrated the results in Figures 15 and 17. In
double precision the difference between the right and left look-
ing is smoother. This is due to the fact that the gemm and the
syrk routines were very well optimized and tuned for double
precision. Attractively, the GPU-only routine is able to achieve
performance similar to the hybrid one, which means that our
proposed potf2 kernel can be considered optimal because the
hybrid routine overlaps the cost of this kernel. Note that, the
cost of the potf2 kernel, when optimized and tuned, is mini-
mal and less than 5% of the total time. Our proposed design
remains better than the cuSOLVER optimized routine on both
the K40c and the P100. The difference on the K40c is more no-
ticeable and is around 10%, while on the P100 is about 5%-10%.
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Figure 14: Performance comparison of the GPU-only, hy-
brid CPU-GPU and CPU-only Cholesky factorization on the
Nvidia K40c GPU using single precision spotrf routine.
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Figure 15: Performance comparison of the GPU-only, hy-
brid CPU-GPU and CPU-only Cholesky factorization on the
Nvidia K40c GPU using double precision dpotrf routine.
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Figure 16: Performance comparison of the GPU-only, hy-
brid CPU-GPU and CPU-only Cholesky factorization on the
Nvidia P100 GPU using single precision spotrf routine.
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Figure 17: Performance comparison of the GPU-only, hy-
brid CPU-GPU and CPU-only Cholesky factorization on the
Nvidia P100 GPU using double precision dpotrf routine.

6 CONCLUSIONS AND FUTURE WORK
In this paper, we presented the methodology of implement-
ing numerical linear algebra routines on the contemporary
hardware platforms that feature accelerators. We have pro-
vided sufficient evidence that memory bound routines can
be designed, optimized, and tuned for GPU architecture in a
way to be competitive with CPUs and reach their theoretical
limits. We show our methodology successfully applied on
the development of high performance Cholesky factorization
that is designed to run only on GPUs. The proposed work
can deliver high performance against state-of-the-art solutions
using multicore CPUs, or hybrid (CPU-GPU), or even vendor
optimized GPU-only routines. Future directions consist of fol-
lowing the same methodology to develop other highly needed
routines, such as the QR and the LU factorizations.



High-performance Cholesky factorization for GPU-only execution GPGPU-10, February 04-05, 2017, Austin, TX, USA

7 ACKNOWLEDGMENT
This material is based upon work supported by the National
Science Foundation under Grant No. ACI-1339822, the Depart-
ment of Energy, and NVIDIA.

REFERENCES
[1] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra.

2016. On the Development of Variable Size Batched Computation for Het-
erogeneous Parallel Architectures. In The 17th IEEE International Workshop
on Parallel and Distributed Scientific and Engineering Computing (PDSEC 2016),
IPDPS 2016. IEEE, IEEE, Chicago, IL.

[2] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra.
2016. Performance Tuning and Optimization Techniques of Fixed and
Variable Size Batched Cholesky Factorization on GPUs. In International
Conference on Computational Science (ICCS’16). San Diego, CA.

[3] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Hatem Ltaief, Ray-
mond Namyst, Samuel Thibault, and Stanimire Tomov. 2010. Faster,
Cheaper, Better – a Hybridization Methodology to Develop Linear Al-
gebra Software for GPUs. In GPU Computing Gems, Wen mei W. Hwu (Ed.).
Vol. 2. Morgan Kaufmann.

[4] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,
P. Luszczek, and S. Tomov. 2009. Numerical Linear Algebra on Emerging
Architectures: The PLASMA and MAGMA projects. J. Phys.: Conf. Ser. 180,
1 (2009).

[5] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Demmel, J. J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
1992. LAPACK Users’ Guide. SIAM, Philadelphia, PA. http://www.netlib.
org/lapack/lug/.

[6] C. Cao, J. Dongarra, P. Du, M. Gates, P. Luszczek, and S. Tomov. 2013.
clMAGMA: High Performance Dense Linear Algebra with OpenCL, In The
ACM International Conference Series. International workshop on OpenCL
(may 13-14 2013). (submitted).

[7] T. Dong, A. Haidar, P. Luszczek, A. Harris, S. Tomov, and J. Dongarra. 2014.
LU Factorization of Small Matrices: Accelerating Batched DGETRF on the
GPU. In Proceedings of 16th IEEE International Conference on High Performance
and Communications (HPCC 2014).

[8] T. Dong, A. Haidar, S. Tomov, and J. Dongarra. 2014. A Fast Batched
Cholesky Factorization on a GPU. In Proc. of 2014 International Conference
on Parallel Processing (ICPP-2014).

[9] Jack Dongarra, Iain Duff, Mark Gates, Azzam Haidar, Sven Hammarling,
Nicholas J. Higham, Jonathon Hogg, Pedro Valero-Lara, Samuel D. Relton,
Stanimire Tomov, and Mawussi Zounon. 2016. A Proposed API for Batched
Basic Linear Algebra Subprograms. MIMS EPrint 2016.25. Manchester In-
stitute for Mathematical Sciences, The University of Manchester, UK. 20
pages. http://eprints.ma.man.ac.uk/2464/

[10] J. Dongarra, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and A. YarKhan.
2014. Model-Driven One-Sided Factorizations on Multicore Accelerated
Systems. International Journal on Supercomputing Frontiers and Innovations 1,
1 (June 2014).

[11] J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, and I. S. Duff. 1990. A
Set of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Softw.
16, 1 (March 1990), 1–17. DOI:http://dx.doi.org/10.1145/77626.79170

[12] Massimiliano Fatica. 2009. Accelerating Linpack with CUDA on Heteroge-
nous Clusters. In Proceedings of 2Nd Workshop on General Purpose Processing

on Graphics Processing Units (GPGPU-2). ACM, New York, NY, USA, 46–51.
DOI:http://dx.doi.org/10.1145/1513895.1513901

[13] Azzam Haidar, Chongxiao Cao, Asim Yarkhan, Piotr Luszczek, Stan-
imire Tomov, Khairul Kabir, and Jack Dongarra. 2014. Unified Devel-
opment for Mixed Multi-GPU and Multi-coprocessor Environments Us-
ing a Lightweight Runtime Environment. In Proceedings of the 2014 IEEE
28th International Parallel and Distributed Processing Symposium (IPDPS
’14). IEEE Computer Society, Washington, DC, USA, 491–500. DOI:http:
//dx.doi.org/10.1109/IPDPS.2014.58

[14] Azzam Haidar, Tingxing Dong, Piotr Luszczek, Stanimire Tomov, and Jack
Dongarra. Batched matrix computations on hardware accelerators based
on GPUs. International Journal of High Performance Computing Applications
doi:10.1177/1094342014567546 (02/2015 ????).

[15] Azzam Haidar, Tingxing Dong, Stanimire Tomov, Piotr Luszczek, and Jack
Dongarra. 2015. Framework for Batched and GPU-resident Factorization
Algorithms to Block Householder Transformations. In ISC High Performance.
Springer, Springer, Frankfurt, Germany.

[16] Azzam Haidar, Jack Dongarra, Khairul Kabir, Mark Gates, Piotr Luszczek,
Stanimire Tomov, and Yulu Jia. 2015. HPC Programming on Intel Many-
Integrated-Core Hardware with MAGMA Port to Xeon Phi. Scientific Pro-
gramming 23 (01-2015 2015). DOI:http://dx.doi.org/10.3233/SPR-140404

[17] Azzam Haidar, Stanimire Tomov, Konstantin Arturov, Murat Guney, Shane
Story, and Jack Dongarra. 2016. LU, QR, and Cholesky Factorizations:
Programming Model, Performance Analysis and Optimization Techniques
for the Intel Knights Landing Xeon Phi. In IEEE High Performance Extreme
Computing Conference (HPEC’16). IEEE, IEEE, Waltham, MA.

[18] Azzam Haidar, Stanimire Tomov, Piotr Luszczek, and Jack Dongarra. 2015.
MAGMA Embedded: Towards a Dense Linear Algebra Library for En-
ergy Efficient Extreme Computing. In 2015 IEEE High Performance Extreme
Computing Conference (HPEC 15), (Best Paper Award). IEEE, IEEE, Waltham,
MA.

[19] Innovative Computing Laboratory, University of Tennessee 2010. PLASMA
Users’ Guide, Parallel Linear Algebra Software for Multicore Architectures,
Version 2.0. Innovative Computing Laboratory, University of Tennessee.
http://icl.cs.utk.edu/projectsfiles/plasma/pdf/users guide.pdf.

[20] Allen D. Malony, Scott Biersdorff, Sameer Shende, Heike Jagode, Stanimire
Tomov, Guido Juckeland, Robert Dietrich, Duncan Poole, and Christopher
Lamb. 2011. Parallel Performance Measurement of Heterogeneous Parallel
Systems with GPUs. In Proc. of ICPP’11. IEEE Computer Society, Washing-
ton, DC, USA, 176–185. DOI:http://dx.doi.org/10.1109/ICPP.2011.71

[21] NVIDIA Corporation 2016. cuSOLVER 8.0. (2016). Available at http:
//docs.nvidia.com/cuda/cusolver/.

[22] Peter E. Strazdins. 1998. Lookahead and Algorithmic Blocking Techniques
Compared for Parallel Matrix Factorization. In 10th International Conference
on Parallel and Distributed Computing and Systems, IASTED. Las Vegas, USA.

[23] Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer. 1993-
2016. TOP500 Supercomputer Sites. (1993-2016). Available from: http:
//www.top500.org/.

[24] S. Tomov, J. Dongarra, and M. Baboulin. 2010. Towards Dense Linear
Algebra for Hybrid GPU Accelerated Manycore Systems. Parellel Comput.
Syst. Appl. 36, 5-6 (2010), 232–240. DOI: 10.1016/j.parco.2009.12.005.

[25] Ichitaro Yamazaki, Stanimire Tomov, and Jack Dongarra. 2012. One-
sided Dense Matrix Factorizations on a Multicore with Multiple {GPU}
Accelerators. Procedia Computer Science 9, 0 (2012), 37 – 46. DOI:http:
//dx.doi.org/10.1016/j.procs.2012.04.005 Proceedings of the Interna-
tional Conference on Computational Science, {ICCS} 2012.

http://www.netlib.org/lapack/lug/
http://www.netlib.org/lapack/lug/
http://eprints.ma.man.ac.uk/2464/
http://dx.doi.org/10.1145/77626.79170
http://dx.doi.org/10.1145/1513895.1513901
http://dx.doi.org/10.1109/IPDPS.2014.58
http://dx.doi.org/10.1109/IPDPS.2014.58
http://dx.doi.org/10.3233/SPR-140404
http://icl.cs.utk.edu/projectsfiles/plasma/pdf/users_guide.pdf
http://dx.doi.org/10.1109/ICPP.2011.71
http://docs.nvidia.com/cuda/cusolver/
http://docs.nvidia.com/cuda/cusolver/
http://www.top500.org/
http://www.top500.org/
http://dx.doi.org/10.1016/j.parco.2009.12.005
http://dx.doi.org/10.1016/j.procs.2012.04.005
http://dx.doi.org/10.1016/j.procs.2012.04.005

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Description and Concept
	3.2 Implementation Design Variants

	4 Methodology and Algorithmic Advancements
	4.1 Performance Analysis based on Algorithmic Design
	4.2 Performance Analysis based on Kernel Optimization
	4.3 Performance Optimization based on Kernel Tuning
	4.4 Performance Optimization based on Algorithmic Recursion
	4.5 Performance Optimization based on Implementation Design

	5 Performance Discussions
	6 Conclusions and Future Work
	7 Acknowledgment
	References

