
New Multi-Stage Algorithm for Symmetric
Eigenvalues and Eigenvectors Achieves Two-Fold

Speedup?

Azzam Haidar1, Piotr Luszczek1, and Jack Dongarra1,2,3

1 University of Tennessee Knoxville
2 Oak Ridge National Laboratory

3 University of Manchester

Abstract. We describe a design and implementation of a multi-stage al-
gorithm for computing eigenvalues and eigenvectors of a dense symmetric
matrix. We show that reformulating the algorithms is beneficial even if
that doubles the computational complexity. Through detailed analysis we
show that the effect of increase in operation count may be compensated
by much improved performance rate. Our performance results indicate
that using our approach achieves very good speedup and scalability over
existing state-of-the-art software.

1 Introduction and Background

Exisiting approaches are for values only [7, 15,21,22,23] The reason quoted in
literature was extra computational cost. We are attempting to test the hypothesis
that even with the additional cost we would be able to achieve faster execution
provided that we reformulate the computations in terms of highly parallel and
cache-friendly kernels.

To solve a Hermitian (symmetric) eigenproblem of the form Ax = λx, and find
its eigenvalues λ and eigenvectors Z such that, A = ZλZH , we usually need three
phases [2,13,24]: (1) We first need to reduce the matrix to tridiagonal form using
an orthogonal transformation Q such that A = QTQH , where T is a tridiagonal
matrix (called a “reduction phase”). Note that, when orthogonal transformations
are applied to generate T , the eigenvalues of T are the same as those of the
original matrix A. (2) Compute eigenpairs (λ,E) of the tridiagonal matrix (called
a “solution phase”); (3) Back transform eigenvectors of the tridiagonal matrix
to the original matrix Z=Q*E (called a “back transformation phase”). Due to
the computational complexity and the data access patterns, it has been well
known that phase 1 is considerably more time consuming than the other two
phases combined. Thus, in this paper, we will focus improving both: the phase of
reduction to tridiagonal matrix and the back transformation phase.

? This research was supported by NSF.

2 Related Work

Solving the symmetric eigenvalue problem is an active research field. Recently,
many researchers have been interested in this area and have developed various
strategies with a number of software implementations. The robust and conven-
tional software LAPACK [5] and ScaLAPACK [10] are for shared-memory and
distributed-memory systems, respectively. Hardware vendors in general provide
well tuned and optimized LAPACK and ScaLAPACK versions. Recent work
has concentrated on accelerating separate components of the solvers, and in
particular, the reduction to tridiagonal form, which is the most time consuming
phase, and also the eigensolver. A new type of algorithm that challenges the stan-
dard one-stage reduction algorithms has been introduced. The idea behind this
new technique is to split the reduction phase into two or more stages, recasting
expensive memory-bound operations that occur during the panel factorization
into compute-bound operations. One of the first uses of a two-stage reduction
occurred in the context of out-of-core solvers for generalized symmetric eigenvalue
problems [14]. Then, a multi-stage method was used to reduce a matrix to tridi-
agonal, bidiagonal and Hessenberg forms [20]. Consequently, a framework called
Successive Band Reduction (SBR) was developed [8, 9]. Communication bounds
for such type of reductions have been established under the Communication
Avoiding framework [7]. A multi-stage approach has also been applied to the
Hessenberg reduction [18,19]. Tile algorithms have also recently seen a rekindled
interest when applied to the two-stage tridiagonal [16,23] and bidiagonal reduc-
tions [22]. Their first stage is implemented using high performance kernels and
asynchronous execution while the second stage is implemented based on cache-
aware kernels and a task coalescing technique [16]. Recently, a distributed-memory
eigensolver library called ELPA [6] was developed for electronic structure codes. It
includes one-stage and two-stage tridiagonalization alborithms, the corresponding
eigenvector transformation, and a modified divide and conquer routine that can
compute the entire eigenspace or a portion thereof.

3 Multi-Stage Asynchronous Algorithm for Tridiagonal
Reduction

Due to its computational complexity and data access patterns, the tridiagonal
reduction phase is the most challenging to develop and optimize: both algorith-
mically and implementation-wise. There are two approaches to the problem: the
standard one-stage approach from LAPACK [4], whereby block Householder
transformations are used to directly reduce the dense matrix to tridiagonal form,
and a newer one, two-stage (or many-stage) approach, whereby block Householder
transformations are used to first reduce the matrix to a band form, and in the
second stage, bulge chasing technique is used to reduce the band matrix to
tridiagonal [16]. The one-stage approach is well known to be memory-bound as
each reflector relies on symmetric matrix-vector multiplications with the trailing
submatrix. Thus, the entire trailing submatrix needs to be loaded into memory.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

	
 	
 	

	
 	
 	

	
 	
 	

4K

	

	
 	
 	

	
 	
 	

	
 	
 	

5K

	

	
 	
 	

	
 	
 	

	
 	
 	

6K

	

	
 	
 	

	
 	
 	

	
 	
 	

7K

	

	
 	
 	

	
 	
 	

	
 	
 	

8K

	

	
 	
 	

	
 	
 	

	
 	
 	

9K

	

	
 	
 	

	
 	
 	

	
 	
 1
0K

	

	
 	
 	

	
 	
 	

	
 	
 1
2K

	

	
 	
 	

	
 	
 	

	
 	
 1
4K

	

	
 	
 	

	
 	
 	

	
 	
 1
6K

	

	
 	
 	

	
 	
 	

	
 	
 1
8K

	

	
 	
 	

	
 	
 	

	
 	
 2
0K

	

	
 	
 	

	
 	
 	

	
 	
 2
2K

	

	
 	
 	

	
 	
 	

	
 	
 2
4K

	

reduc3on	
 to	
 tridiag	
 MRRR	
 eigensolver	
 100%	
 of	
 EV	

apply	
 Q	
 100%	
 of	
 EV	

(a)

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

	
 	
 	

	
 	
 	

	
 	
 	

4K

	

	
 	
 	

	
 	
 	

	
 	
 	

5K

	

	
 	
 	

	
 	
 	

	
 	
 	

6K

	

	
 	
 	

	
 	
 	

	
 	
 	

7K

	

	
 	
 	

	
 	
 	

	
 	
 	

8K

	

	
 	
 	

	
 	
 	

	
 	
 	

9K

	

	
 	
 	

	
 	
 	

	
 	
 1
0K

	

	
 	
 	

	
 	
 	

	
 	
 1
2K

	

	
 	
 	

	
 	
 	

	
 	
 1
4K

	

	
 	
 	

	
 	
 	

	
 	
 1
6K

	

	
 	
 	

	
 	
 	

	
 	
 1
8K

	

	
 	
 	

	
 	
 	

	
 	
 2
0K

	

	
 	
 	

	
 	
 	

	
 	
 2
2K

	

	
 	
 	

	
 	
 	

	
 	
 2
4K

	

reduc3on	
 to	
 tridiag	
 MRRR	
 eigensolver	
 20%	
 of	
 EV	

apply	
 Q	
 20%	
 of	
 EV	

(b)

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

	
 	
 	

	
 	
 	

	
 	
 	

4K

	

	
 	
 	

	
 	
 	

	
 	
 	

5K

	

	
 	
 	

	
 	
 	

	
 	
 	

6K

	

	
 	
 	

	
 	
 	

	
 	
 	

7K

	

	
 	
 	

	
 	
 	

	
 	
 	

8K

	

	
 	
 	

	
 	
 	

	
 	
 	

9K

	

	
 	
 	

	
 	
 	

	
 	
 1
0K

	

	
 	
 	

	
 	
 	

	
 	
 1
2K

	

	
 	
 	

	
 	
 	

	
 	
 1
4K

	

	
 	
 	

	
 	
 	

	
 	
 1
6K

	

	
 	
 	

	
 	
 	

	
 	
 1
8K

	

	
 	
 	

	
 	
 	

	
 	
 2
0K

	

	
 	
 	

	
 	
 	

	
 	
 2
2K

	

	
 	
 	

	
 	
 	

	
 	
 2
4K

	

reduc3on	
 to	
 band	
 bulge	
 chasing	

MRRR	
 eigensolver	
 100%	
 of	
 EV	
 apply	
 Q2	
 100%	
 of	
 EV	

apply	
 Q1	
 100%	
 of	
 EV	

(c)

Fig. 1. The percentage of the time spent in each kernel of the eigensolver using the
standard one stage approach to compute the tridiagonal form: (a) and (b) and the
corresponding percentages for the two-stage approach: (c).

As memory bandwidth is a very scarce resource, this will obviously not scale for
larger matrices, and thus will generate a tremendous amount of cache and TLB
misses. Figure 1a, shows the percentage of the total time for each of the three
components of the eigensolver using the standard one-stage reduction approach
when all the eigenvectors are computed, while Figure 1b shows the execution
time when only 20% of the eigevectors are computed. These figures show that
the reduciton to tridiagonal form requires 90% of the total computing time when
only eigenvalues are needed or when only a portion of the eigenvectors and more
than 60% of the global time when all the eigenvectors are computed. This was the
main motivation for our work, to study and develop an algorithm that compute
both eigenvalues and eigenvectors using the two-stage approach, for the multicore
architecture using the PLASMA [1] project. The technique used here is similar to
the one developed for multicore processors [16]. To put our work into perspective,
we start by briefly describing the first stage (reduction from dense to band), then
we explain more details about the reduction from band to tridiagonal and its
scheduling techniques.

3.1 The First Stage: the Reduction to Band Form

The two-stage approach overcomes the limitations of the one-stage approach that
relies heavily on memory-bound operations. The first stage (the reduction to
band) is compute-intensive and may be performed efficiently using optimized
kernels from Level 3 BLAS. In particular, it relies on tile algorithms [3]. The
matrix is split into tiles, whereby data within a tile is contiguous in memory.
The general algorithm is then broken into tasks and proceeds using the tile data
layout. The tasks are organized into a directed acyclic graph (DAG) [11,12], with
the nodes representing tasks and the edges – the data dependencies between
them. Restructuring linear algebra algorithms as a sequence of tasks that operate
on blocks of data removes the fork-join bottleneck and avoid idle state while
increasing the data locality for each core. This requires implementations of new
computational kernels to be able to operate on the new data structures. The
details of the implementation of this stage are provided elsewhere [16,23].

 0 5 10 15 20 25

 0

 5

 10

 15

 20

 25

nz = 20
(a) xHBCEU (red).

 0 5 10 15 20 25

 0

 5

 10

 15

 20

 25

nz = 25
(b) xHBREL (blue).

 0 5 10 15 20 25

 0

 5

 10

 15

 20

 25

nz = 15
(c) xHBLRU (green)

 0 5 10 15 20 25

 0

 5

 10

 15

 20

 25

nz = 25

sweep 1

sweep 2

(d) bulge overlap.

Fig. 2. Kernel execution of the TRD algorithm during the second stage.

3.2 The Second Stage: the Reduction to Tridiagonal Form

There are numerous shortcomings of the standard bulge chasing procedure that
triggered development of the memory-aware numerical kernels and the scheduling
techniques used here. The most problematic aspect of the standard procedure
is the element-wise elimination [16]. We developed a bulge chasing very similar
algorithm that differs from the standard one in using a column-wise elimination.
Our modification adds a small amount of extra work but it allows the use of the
Level 3 BLAS kernels to compute the transformations or to apply them in the
form of the orthogonal matrix Q2 – the result of computation in this phase. Below
is our brief description of the column-wise bulge chasing approach as well as the
technique used for task scheduling and increasing data locality. The bulge chasing
algorithm consists of three new kernels. The first kernel called xHBCEU triggers
the beginning of each sweep by annihilating the extra non-zero entries within a
single column by calling the xLARFG function. This is shown in Figure 2a. The
kernel then applies the computed elementary Householder reflector from the left
and the right to the corresponding symmetric data block (red triangle) loaded
into the cache memory. The second kernel, xHBREL, continues the application
from the right derived from the previous kernel, either xHBCEU or xHBLRU.
This subsequently generates triangular bulges as shown in Figure 2b, which must
be annihilated by an appropriate technique in order to eventually avoid the
excessive growth of the fill-in structure. Note that the triangular bulges created
by the annihilation process of the sweep i+ 1 overlap with those of the sweep
i, by one column shift to the right and to the bottom, as shown in Figure 2d
where the reader can see that the lower triangular portion of the cyan squares
(the bulge created in sweep i+ 1) overlaps with the lower triangular portion of
the blue squares (corresponding to the bulges created by the previous sweep i).
Thus, during the annihilation of sweep i, if we eliminate each of the triangular
bulges (the lower blue triangular of Figure 2b) with a call to xHBREL for sweep
i, then, at the next step, the annihilation of sweep i + 1 creates a triangular
bulge which will overlap the one previously eliminated and refill the overlapped
region with non-zeros values. As a result, we can reduce the computational cost.
Instead of eliminating the triangular bulge created for sweep i, we only eliminate
the non-overlapped region of it: its first column. The remaining columns can
be delayed to the upcoming annihilation sweeps. In this way, we can avoid the
growth of the bulges – a once created bulge will expand dramatically if not

chased down the diagonal. Our delayed annihilation allows for reduction of extra
computation. Moreover, we designed a cache friendly xHBREL kernel that takes
advantage of the fact that the created bulge (the blue block) remains in the cache
and therefore it directly eliminates its first column and applies the corresponding
left update to the remaining column of the blue block. The third kernel, xHBLRU,
continues the application from the left to the green block of Figure 2c. Since, the
green block is remaining in cache, hence the kernel proceeds with the application
from the right to the symmetric portion. Accordingly, the annihilation of each
sweep can be described as, one call to the first kernel followed by a repetitive
calls to a cycle of the second and the third kernels. The implementation of
this stage is done by using either a dynamic or a static runtime environment
that we developed. This stage is, in our opinion, one of the main challenges
algorithms as it is difficult to track the data dependencies. The annihilation of
the subsequent sweeps will generate computational tasks, which with partially
overlapped data between tasks from previous sweeps (see Figure 2d) – the main
challenge of dependence tracking. We have used our data translation layer (DTL)
and functional dependencies [16,23] to handle the dependencies and to provide
crucial information to the runtime to achieve the correct scheduling.

4 The Application of the Orthogonal Matrices Q1 and Q2

In this section, we discuss the application of the Householder reflectors generated
from the two stages of the reduction to tridiagonal form. The first stage reduces
the original Hermitian matrix A to a band matrix by applying a two-sided
transformation to A such that A = Q1BQ

H
1 . Similarly, the second stage (bulge

chasing) reduces the band matrix B to tridiagonal by applying the transformation
from both the left and the right side to B such that B = Q2TQ

H
2 . Thus, when

the eigenvectors matrix Z of A are requested, the eigenvectors matrix E resulting
from the eigensolver needs to be updated from the left by the Householder
reflectors generated during the reduction phase, according to

Z = Q1Q2E = (I − V1T1V
H
1)(I − V2T2V

H
2)E, (1)

where (V1, T1) and (V2, T2) represent the Householder reflectors generated during
the first and second reduction stages, respectively. The application of the V2
reflectors is not as simple as the application of V1. We begin by first describing
the complexity and the design of the algorithm for applying V2. We represent the
structure of V2 in Figure 3b. Note that these reflectors represent the annihilation
of the band matrix, and thus each is of length nb – the bandwidth size. A näıve
implementation would take each reflector and apply it to the matrix E. Such
an implementation is memory bound, relying on Level 2 BLAS operations and
thus results in poor performance. However, if we want to group them to take
advantage of the efficiency of Level 3 BLAS operations, we must pay attention to
the overlap between them as well as the fact that their application must follow
the specific dependency order of the bulge chasing procedure in which they were
created. Let us give an example that explain those issues. For sweep i (e.g.,

the column at position B(i,i):B(i,i+nb)), its annihilation generates a set of k
Householder reflectors vki , each of length nb represented in column i of the matrix
V2 depicted in Figure 3b. Similarly, the ones related to the annihilation of sweep
i+ 1, are those presented in column i+ 1. They are shifted one element down
compared to those of sweep i. After analyzing the dependencies of the bulge
chasing procedure as explained by the example above, we notice that we can
group the reflectors vki from sweep i with those from sweep i+1, i+2,..., i+ l to
apply them together using a blocked technique according to the diamond shape
region as defined in Figure 3b. While each of those diamonds is considered as
one block, their application needs to follow the dependency order. For example,
applying the green block 4 and the red block 5 of the V2’s in Figure 3b modifies
the green block row 4 and the red block row 5, respectively, of the eigenvector
matrix E drawn in Figure 3c, While each of those diamonds is considered as
one block, their application needs to follow the dependency order. For example,
applying the green block 4 and the red block 5 of the V2’s in Figure 3b modifies
the green block row 4 and the red block row 5, respectively, of the eigenvector
matrix E drawn in Figure 3c, where we can easily observe the overlapped region.
According to the chasing order, block 4 needs to be applied before block 5. We
have drawn a sample of those dependencies by the arrows in Figure 3b. For
clarity, we also represented them by the DAG in Figure 3d. By studying the
pattern of dependencies of this DAG leads us to the conclusion that designing an
algorithm based on such schema provides a very limited number of parallel and
pipelined tasks. Despite these constraints, it is possible to compute efficiently.
Namely, if we design our parallelism based on the matrix E, by splittin E by
block of columns over the number of cores as shown in Figure 3c, then we can
apply each diamond block independently to each portion of E. Moreover, this
method does not require any data communication between cores. The overlap
between each application of V ’s as described above increases the cache reuse. We
also define the size of each block of E in a way that it is possible to fit more than
one region of it in the L2 cache for increased data locality. For example, core 1
applies all the V ’s to the magenta block of Figure 3c, then it moves to its next
assigned block, the black block. We implemented a new kernel that deals with
these diamond shapes in a way that increases the cache reuse.

The application of V1 to the resulting matrix discussed above,G = (I − V2T2V
H
2)E,

can be done easily using our tile algorithm. First, there is no overlap between the
different V1’s. Each tile of a block column of V1’s modifies different area of the
matrix G, e.g., for example any tile of the magenta column of Figure 3a modifies
different area of G. Thus they can be applied independently. Second, they can be
blocked as shown in Figure 3a. Thus their application is also compute-intensive
and involves efficient BLAS 3 kernels. The V1’s are stored in a tile fashion as
shown in Figure 3a to increase data locality. The only constraint to satisfy is
the application from the left meaning that the v4,3 (black tile (4,3)) need to
be applied before that the magenta v4,2. Similary the magenta v4,2 needs to be
aplied before the blue v4,1. The parallelism here comes on both sides, meaning
that the matrix G can be viewed as a set of independent tiles to be updated

0 5 10 15 20 25

0

5

10

15

20

25

nz = 15

(a)

0 5 10 15 20 25

0

5

10

15

20

25

nz = 2

2

1
0 3

4

5

6

7

8

9

12

13

11

10

14

15

(b)

0 5 10 15 20 25

0

5

10

15

20

25

nz = 125

core 0 core 1 core 2 core 0 core 1

4

5

(c)

12 13

11 9

15

14

6 8 10

7 5

3 4

2

1

0

(d)

Fig. 3. (a) Tiling of V1, (b) Blocking technique to apply V2, (c) Distribution of the
eigenvectors matrix that create independent fashion of applying Q2 which increase
locality per core, (d) Portion of the DAG showing the dependency of the V’s of V2.

and also the parallelism can be extracted from applying the V1’s as explained
above. As a result, the design of the tile algorithm generates a large number of
independent tasks that can be applied in an asynchronuous manner using either
a static or dynamic scheduler.

5 Algorithmic Complexity Study

Our model for execution time allows us to ascertain the validity of the two-stage
approach for the case when both eigenvalues and eigenvectors are calculated.
In the one-stage approach, we essentially have two components – first for the
eigenvalues and second for the eigenvectors – each of which has cubic complexity:

t1-s =
4

3

n3

β
+ 2

n3

αp
f (2)

where α is the execution rate of xGEMM measured in flop/s, β is the execution
rate for xGEMV, and f is the fraction of the number of desired eigenvectors
(0 < f ≤ 1). For the two-stage approach, we need to account for both stages that
result in, first, symmetric band form, and, later, tridiagonal form:

t2-s =
4

3

n3

αp
+ 6D

n2

αp′
+ 4

n3

αp
f (3)

where D is the size of band after the first stage and p′ is the level of parallelism
available in the second stage (bulge chasing): p′ ≤ min(D, p).

Clearly, the one stage algorithm does not scale: limp→∞ t1-s = 4/3n3/β as
well as the two-stage one: limp→∞ t2-s = 6Dn2/(αp′). And for large problem sizes

Parameter AMD Magny-Cours Intel Sandy Bridge

α 10 Gflop/s 20 Gflop/s
β 40 MB/s 80 MB/s
p 12 8

Table 1. Sample values of the parameters used in formulas.

two stage approach is superior: limp→∞
t1-s
t2-s

= αp/β+3/2f
1+3f considering the fact that

the quantity αp/β may easily exceed a few orders of magnitude even for a single
socket multicore system – typical values are given as an example in Table 1. The
question then remains in what range of problem sizes n the two-stage algorithm
is viable or for each n t1-s = t2-s. By substitution in (2) and (3) we obtain

n(α, β,D, f, p) =
9βD

2αp− 3fβ − 2β
(4)

which from the theoretical stand-point allows for a wide range of problem sizes
to benefit from our two-stage algorithm.

6 Performance Results

Our experiments have been performed on the largest shared memory system that
we could access. It is representative of a vast class of servers and workstations
commonly used for computationally intensive workloads. We benchmark all
implementations on a four-socket system with AMD Opteron(tm) 6180 SE: 12
cores each (48 cores total), running at 2.5 GHz with 128 GiB of main memory,
where the total number of cores is evenly spread among two physical mother
boards. The cache size per core is 512 KiB. These computations are done in
double precision arithmetic. The theoretical peak for this architecture in double
precision is 480 Gflop/s (10.1 Gflop/s per core). There are a number of software
packages that include an eigensolver. For comparison, we used the latest MKL
(Math Kernel Library) [17] version 13.1, which is a commercial software from
Intel that is a highly optimized programming library. It includes a comprehensive
set of mathematical routines implemented to run well on x86 multicore processors.
In particular, MKL includes the LAPACK-equivalent routines to compute the
tridiagonal reduction DSYTRD, or to find the eigenpairs DSYEVD (divide
and conquer D&C algorithm) and DSYEVR (the Multiple Relatively Robust
Representations MRRR approach).

We performed an extensive study with a large number of experimental tests to
give the reader as much information as possible. We computed the eigenpairs of
a symmetric eigenvalue problem, varying the size of matrices from 2000 to 24000
using the whole 48 cores of the machine. We report the result of improvements
that our two-stage implementation brings to the reduction to tridiagonal form
compared against the one-stage approach from the state-of-the-art numerical
linear algebra libraries. In particular, Figure 4c, shows the comparison between
our implementation versus the DSYTRD routine from Intel’s MKL library. It
asymptotically achieves more than a 8× speedup. This results from the effcient
implementation of the first stage (reduction to band) which is the compute
intensive stage, and from the design of the second stage that maps both the
algorithm and the data to the hardware using cache friendly kernels and scheduling
based on increasing data locality. We illustrate in Figure 4a and Figure 4b the
speedup obtained by our algorithm when computing all the eigenvectors using
either the D&C or the MRRR as the tridiagonal eigensolver. As expected, an

efficient speedup may be oberved here – our implementation is twice as fast
as the optimized MKL solver. Note that the time to compute the eigenpairs
(λ, Z) of the matrix A, is the sum of the time required for three phases: (1)
the time to perform the tridiagonal reduction, (2) the time to compute the
eigenvectors of the tridiagonal, and (3) the time to update these eigenvectors (the
back transformation). Since our work is focused on improving and optimizing
phases 1 and 3, they are now around 3 times faster than those of the one stage
approach. Then, phase 2 became the dominant one. It now consists of 50% of new
reduced global time. This is shown in Figure 1c. Note that the time required for
computing the eigenvectors of the tridiagonal matrix (phase 2) is the same as the
one of the MKL solver. Therefore, reaching a two-fold speedup is worthy effort
and can be considered sped-up by more than a factor of 2. We depict in Figure 4d
the speed-up obtained by our algorithm when only 20% of the eigenvectors are
needed. The graph here has a similar trend to the one presented in Figure 4c, it
achieves more than 4× speedup. We would like to highlight the fact that when a
portion of the eigenvectors is needed, the cost of our algorithm may be reduced
dramatically as both phase 2 and phase 3 require less operation and thus are
faster. For example, to find 20% of the eigenvectors of a matrix of size 20k, our
algorithm requires 150 seconds while it needs 400 seconds when all of them are
computed. This is one of the initial pieces of motivation to develop the two-stage
algorithm.

Finally, we demonstrate that our algorithm is very efficient and can achieve
two-fold speedup over the well know state-of-the-art optimized librairies. It is also
well suitable especially when only the eigenvalues or a portion of the eigenvectors
is needed – the results show 4× to 8× speedup. We believe that this achievement
makes our algorithm a very good candidate for the current and next generation
of machines.

7 Conclusions and Future Work

In this paper, we have presented a novel implementation of an algorithm that
computes eigenvalues and eigenvectors of a symmetric or hermitian matrix. Our
algorithm is based on the two-stage approach and thus performs twice as many
floating operations to obtain the eigenvectors when compared with the classic
approach that is in common use. Such drastic increase in operation count might
have been considered a hindrance a few years back but on modern hardware it
is not so. We attribute this to the formulation of the algorithm in terms more
efficient kernel routines and we show the benefit both theoretically as well as
through practical experiments. Instead of two-fold slow down we were able to
achieve two-fold speed-up over the current breed of state-of-the-art software
packages that were considered the fastest at the time of this writing. Because of
good scalability properties of our algorithm, we believe that our approach lends
itself well to distributed memory implementations and we plan to pursue this
direction in the future.

2k 4k 6k 8k 10k12k14k16k18k20k22k24k
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

Matrix size

Sp
ee

du
p

Our DSYEVD 100% of EV
MKL DSYEVD 100% of EV

(a)

2k 4k 6k 8k 10k12k14k16k18k20k22k24k
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

Matrix size

Sp
ee

du
p

Our DSYEVR 100% of EV
MKL DSYEVR 100% of EV

(b)

2k 4k 6k 8k 10k12k14k16k18k20k22k24k
1
2
3
4
5
6
7
8
9

Matrix size

Sp
ee

du
p

Our DSYTRD
MKL DSYTRD

(c)

2k 4k 6k 8k 10k12k14k16k18k20k22k24k
0.6

1
1.4
1.8
2.2
2.6

3
3.4
3.8
4.2
4.6

Matrix size

Sp
ee

du
p

Our DSYEVR 20% of EV
MKL DSYEVR 20% of EV

(d)

Fig. 4. Speedup comparison versus the MKL librairies for different eigensolver.

References

1. PLASMA. http://icl.cs.utk.edu/plasma/.
2. J. O. Aasen. On the reduction of a symmetric matrix to tridiagonal form. BIT,

11:233–242, 1971.
3. E. Agullo, B. Hadri, H. Ltaief, and J. Dongarra. Comparative study of one-sided

factorizations with multiple software packages on multi-core hardware. SC ’09:
Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, 2009.

4. E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Demmel, J. J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK
Users’ Guide. SIAM, Philadelphia, PA, 1992. http://www.netlib.org/lapack/lug/.

5. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third
edition, 1999.

6. T. Auckenthaler, V. Blum, H. J. Bungartz, T. Huckle, R. Johanni, L. Krämer,
B. Lang, H. Lederer, and P. R. Willems. Parallel solution of partial symmetric
eigenvalue problems from electronic structure calculations. Parallel Comput.,
37(12):783–794, Dec. 2011.

7. G. Ballard, J. Demmel, and I. Dumitriu. Communication-optimal parallel and
sequential eigenvalue and singular value algorithms. Technical Report EECS-2011-

14, EECS University of California, Berkeley, CA, USA, February 2011. LAPACK
Working Note 237.

8. P. Bientinesi, F. D. Igual, D. Kressner, and E. S. Quintana-Ort́ı. Reduction to
condensed forms for symmetric eigenvalue problems on multi-core architectures. In
Proceedings of the 8th international conference on Parallel processing and applied
mathematics: Part I, PPAM’09, pages 387–395, Berlin, Heidelberg, 2010. Springer-
Verlag.

9. C. H. Bischof, B. Lang, and X. Sun. Algorithm 807: The SBR Toolbox—software
for successive band reduction. ACM TOMS, 26(4):602–616, 2000.

10. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.
ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1997.

11. A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. Tomov. The
impact of multicore on math software. In B. K̊agström, E. Elmroth, J. Dongarra, and
J. Wasniewski, editors, Applied Parallel Computing. State of the Art in Scientific
Computing, 8th International Workshop, PARA, volume 4699 of LNCS, pages 1–10.
Springer, 2006.

12. E. Chan, E. S. Quintana-Orti, G. Quintana-Orti, and R. van de Geijn. Supermatrix
out-of-order scheduling of matrix operations for smp and multi-core architectures.
In SPAA ’07: Proceedings of the nineteenth annual ACM symposium on Parallel
algorithms and architectures, pages 116–125, New York, NY, USA, 2007. ACM.

13. G. H. Golub and C. F. V. Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, MD, USA, second edition, 1989.

14. R. G. Grimes and H. D. Simon. Solution of large, dense symmetric generalized
eigenvalue problems using secondary storage. ACM TOMS, 14:241–256, September
1988.

15. A. Haidar, H. Ltaief, and J. Dongarra. Parallel reduction to condensed forms for
symmetric eigenvalue problems using aggregated fine-grained and memory-aware
kernels. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages 8:1–8:11, New York,
NY, USA, 2011. ACM.

16. A. Haidar, H. Ltaief, and J. Dongarra. Parallel reduction to condensed forms for
symmetric eigenvalue problems using aggregated fine-grained and memory-aware
kernels. In SC11: International Conference for High Performance Computing,
Networking, Storage and Analysis, Seattle, WA, USA, November 12-18 2011.

17. Intel. Math Kernel Library. Available at http://software.intel.com/en-us/articles/
intel-mkl/.

18. B. K̊agström, D. Kressner, E. Quintana-Orti, and G. Quintana-Orti. Blocked
Algorithms for the Reduction to Hessenberg-Triangular Form Revisited. BIT
Numerical Mathematics, 48:563–584, 2008.

19. L. Karlsson and B. K̊agström. Parallel two-stage reduction to Hessenberg form
using dynamic scheduling on shared-memory architectures. Parallel Computing,
2011. DOI:10.1016/j.parco.2011.05.001.

20. B. Lang. Efficient eigenvalue and singular value computations on shared memory
machines. Parallel Computing, 25(7):845–860, 1999.

21. H. Ltaief, J. Kurzak, and J. Dongarra. Parallel band two-sided matrix bidiagonal-
ization for multicore architectures. IEEE TPDS, 21(4), April 2010.

22. H. Ltaief, P. Luszczek, and J. Dongarra. High Performance Bidiagonal Reduction
using Tile Algorithms on Homogeneous Multicore Architectures. ACM TOMS,
2011. Accepted.

23. P. Luszczek, H. Ltaief, and J. Dongarra. Two-stage tridiagonal reduction for dense
symmetric matrices using tile algorithms on multicore architectures. In IPDPS 2011:
IEEE International Parallel and Distributed Processing Symposium, Anchorage,
Alaska, USA, May 16-20 2011.

24. B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs,
NJ, USA, 1980.

