
GPU-based LU Factorization and Solve on Batches of Matrices
with Band Structure

Ahmad Abdelfattah
University of Tennessee

Knoxville, USA
ahmad@icl.utk.edu

Stan Tomov
University of Tennessee

Knoxville, USA
tomov@icl.utk.edu

Piotr Luszczek
University of Tennessee

Knoxville, USA
luszczek@icl.utk.edu

Hartwig Anzt
University of Tennessee

Knoxville, USA
hanzt@icl.utk.edu

Jack Dongarra
University of Tennessee

Knoxville, USA
dongarra@icl.utk.edu

ABSTRACT
This paper presents a portable and performance-efficient approach
to solve a batch of linear systems of equations using Graphics Pro-
cessing Units (GPUs). Each system is represented using a special
type of matrices with a band structure above and/or below the
diagonal. Each matrix is factorized using an LU factorization with
partial pivoting for numerical stability. Subsequently, the factors
are used to find the solution for as many right hand sides as needed.
The width of the band is often small enough that performing a
fully dense LU factorization results in poor performance. We follow
the standard LAPACK specifications for addressing this type of
problems and develop a dedicated solver that runs efficiently on
GPUs. No similar solver is currently available in the vendor’s soft-
ware stack, so performance results are shown on both NVIDIA and
AMD GPUs relative to a parallel CPU solution utilizing OpenMP
for thread-level parallelization.

KEYWORDS
Band matrix, LU factorization, batch solvers, GPU computing, per-
formance portability

ACM Reference Format:
Ahmad Abdelfattah, Stan Tomov, Piotr Luszczek, Hartwig Anzt, and Jack
Dongarra. 2023. GPU-based LU Factorization and Solve on Batches of Ma-
trices with Band Structure. In Workshops of The International Conference on
High Performance Computing, Network, Storage, and Analysis (SC-W 2023),
November 12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3624062.3624247

1 INTRODUCTION AND RELATEDWORK
For decades, high performance implementations of dense linear
algebra (DLA) algorithms have been defined using the standard
specifications of BLAS [1] (Basic Linear Algebra Subprograms) and
LAPACK [2] (Linear Algebra Package). The widespread adoption

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11. . . $15.00
https://doi.org/10.1145/3624062.3624247

of these specifications, especially the user-level API, has led to per-
formance portability for applications utilizing DLA functionality
on almost every hardware platform. Most of the vendors providing
high performance computing (HPC) processors ensure that their
BLAS and LAPACK libraries are up-to-date, in terms of perfor-
mance.

The past decade witnessed an increased interest in providing
high performance BLAS and LAPACK functionality for batches of
relatively small and independent matrices [13]. While the then-
existing solutions could provide an adequate functionality (e.g. us-
ing concurrent executions of many BLAS/LAPACK instances), it has
been proven in many past contributions that dedicated implemen-
tations achieve significantly higher performance [6]. For example,
Figure 1 shows the performance gap between dedicated batch linear
algebra kernels and a solution launching kernels concurrently on
multiple streams. The figure shows that both compute-bound ker-
nels (like matrix-multiply at the top) and memory-bound kernels
(like matrix-vector multiply at the bottom) benefit from dedicated
designs for batch workloads. As a result, there have been numer-
ous contributions to provide batch BLAS/LAPACK functionality
on every hardware platform, such as batch matrix multiply [6, 16],
one-sided matrix factorizations [5, 8], and singular value decom-
position [10]. In most cases, it is assumed that the batch is uni-
form, meaning that all matrices have the same dimensions. How-
ever, some recent contributions have also addressed non-uniform
batches [4].

In this paper, we focus on a new functionality that performs the
LU factorization and solves on batches of matrices with band struc-
ture. No equivalent implementation currently exists in the software
offering of the two major GPU vendors (AMD and NVIDIA). Even a
solution based on concurrent streams is not possible since the band
matrix processing is absent from the single matrix API. While some
previous contributions address the batch LU factorization of dense
matrices [5, 19], we are unaware of previous efforts that address
band matrices on modern GPUs, especially with arbitrary number
of sub- and super-diagonals.

2 USE CASES ACROSS APPLICATIONS AND
SOFTWARE LIBRARIES

Since its establishment as the de facto standard, Batched BLAS
and LAPACK [3] continue enjoying deployment in scientific ap-
plications [15]. Here however, we focus on the high performance

1672

https://doi.org/10.1145/3624062.3624247
https://doi.org/10.1145/3624062.3624247
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624247&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12–17, 2023, Denver, CO, USA Abdelfattah et al.

0

5

10

15

20

25

30

35

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

 4
50

 5
00

T
fl
o
p
/s

Matrix size

 batch cublas-dgemm
 streamed cublas-dgemm

0

100

200

300

400

500

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

 4
50

 5
00

G
fl
o
p
/s

Matrix size

 batch cublas-dgemv
 streamed cublas-dgemv

Figure 1: Batch matrix multiply (top) and matrix-vector mul-
tiply (bottom) versus concurrent stream execution using 16
streams. Results are shown in double precision for batches
of size 500 with uniform dimensions. The GPU is an NVIDIA
Tesla H100-PCIe GPU, tested using CUDA-12.1.

computing scenarios that require further extension of what may be
regarded broadly as a batched processing paradigm.

2.1 PELE Suite: Simulation of Chemical Kinetics
PELE is a scientific application representative of combustion sim-
ulation codes. Its major computational workload is concentrated
in solving many occurrences of small linear system, that exhibit
varying patterns of structural sparsity and may differ in numerical
properties with a large range of condition numbers. Even one of
these characteristics would make such matrix batches problematic
for most sparse direct or iterative solvers. To be more precise, the
structural sparsity affects the fill-in and the main memory data
traffic, while the numerical conditioning affects the behavior of
numerical stability measures such as threshold pivoting or the iter-
ation count required for convergence. Using a band dense solver
resolves both of these problems within the same computational
framework with known numerical estimates and bounds.

The typical matrix sizes in batches do not exceed 150 but many
are sized 50 or less thus stressing the design and focusing on taking
advantage of massive parallelism of the compute units at very fine
grain. The motivation behind using a dense solver stems from

the structural sparsity of the problem, where approximaely 90%
of entries are non-zero, with only a few entries dipping down to
arround 30%. Moreover, after accounting for fill-in in direct solvers,
most entries become non-zeros and no matrices’ L and U factors
have less than 90% non-zero entries.

2.2 Plasma Containment in WDMApp and XGC
The XGC (Exascale Gyrokinects) framework [21] aims to solve
particle-in-cell (PIC) formulation for gyrokinetic simulations oc-
curring in physics applications designed specifically for fusion
reactions and plasma containment as represented by the Whole
Device Model Application (WDMApp) project. More specifically,
the code is an implementation of a fast and fully conservative Lan-
dau collision operator in structure-preserving methods for fusion
plasma simulations. Recently, it was used in the recent 10 species
models optimized for the WDMApp’s milestone of ITER project
simulations with tungsten impurities.

The matrices used for simulating the phenomena of interest to
the domain scientists are notably larger in size. For example, a single
species solver resolves 2D domain with Q3 finite elements and AMR
(adaptivemesh refinement). This results in 512 sparse linear systems
in a single batch, each havingM=N=193 equations. In real world
scenarios, multi-species setups are used, representing even greater
importance of batched solvers that could increase their efficiency
due to higher arithmetic intensity for larger problem sizes.

2.3 SUNDIALS Software Library
The SUNDIALS library focuses on solving ODEs (ordinary differen-
tial equations) and the connection to batched solvers occurs in its
ReactEval test program, a part of the Pele physics from the AMREx
application (Exascale AMR)[23]. The test advances only the reaction
equations from a given initial state unlike the full Pele application
problems featuring complete chemical kinetics (reactions), that are
coupled with the compressible (PeleC)[14, 22] or incompressible
(PeleLM[9, 12, 17, 18, 20] and PeleLMeX) Navier-Stokes equations.
In this limited test case, the initial state comes from a sinusoidal
temperature profile. However, ReactEval can also be initialized with
an input file with states produced by PeleLM(eX). Such a setup is
representative of the reaction evolution that typifies a full run of a
Pele simulation with an external source term. Thus, ReactEval can
be considered an excellent benchmark for both time-integration
as well as linear solvers for combustion codes. This capability to
mirror the full PeleLM(eX) setup is its key feature, enabling the
variation of input sets. This results in a range of the simulated
system’s key metrics such as numerical stiffness and condition-
ing. Furthermore, it makes possible the use of variety of chemical
mechanisms, which changes both the size of the ODE and the size
of batch. Controlling the total number of linear systems and the
number of batches occurs by changing the AMR parameters. Only
at the moment the batches are formed, the control is passed to an
efficient band batched solver that is brought to fully exploit the
hardware accelerator’s compute capacity.

The following sections provide the design details of the batch
linear solver on band matrices. Performance results are shown in
double precision for incremental design improvements. The perfor-
mance metric is time-to-solution. It is not trivial to estimate the rate

1673

GPU-based LU Factorization and Solve on Batches of Matrices with Band Structure SC-W 2023, November 12–17, 2023, Denver, CO, USA

* * * * * + + + +
* * * * + + + + +
* * *
* *
*

*
* *

column-major layout band layout

Figure 2: An example of standard layout for band matrices
in LAPACK: with kl= 2 and ku= 3, the lower and upper band-
width, respectively.

of execution (e.g., Gflop/s), since the operation count per matrix
depends on the pivoting pattern, as described later in this section.

3 BAND MATRIX LAYOUT
We assume here that all matrices have the same dimensions and
the same band structure. Also, the data layout is identical to the
standard LAPACK representation of bandmatrices. Figure 2 shows a
9×9 band matrix in the column-major layout and its representation
using the LAPACK’s band storage. A band matrix is characterized
by the number of super-diagonals (upper bandwidth ku) and the
number of sub-diagonals (lower bandwidth kl). A band storage
simply treats every diagonal as a row in the band data layout.

LAPACK defines a special routine (GBSV) for solving Ax = B for a
band matrix A. The routine internally factorizes the matrix using an
LU factorization (GBTRF) followed by forward/backward triangular
solves (GBTRS). This paper adopts the same convention by designing
these routines for a batch execution on the GPU. Note that the
band storage requires extra kl rows at the top, marked by ‘+’ in
Figure 2, for the fill-in resulting from the partial pivoting during
the factorization. Elements marked by ‘∗’ are not referenced.

4 BAND ROUTINES’ USER INTERFACE
Our solution accepts an array of pointers specifying the locations
of each matrix, its pivot vector, and its right hand side(s). Each oper-
ation has a dedicated return code in the info array. A user-defined
GPU stream or queue is also required. Below are the interface dec-
larations of the three main functions described in this paper.

/* band LU factorization */

void dgbtrf_batch(int m, int n, int kl, int ku,

double ** A_array , int lda , int** pv_array ,

int* info , int batch , gpu_stream_t stream);

/* forward/backward solve */

void dgbtrs_batch(transpose_t transA ,

int n, int kl, int ku, int nrhs ,

double ** A_array , int lda , int **pv_array ,

double ** B_array , int ldb , int *info ,

int batch , gpu_stream_t stream);

/* top -level API (factorize and solve) */

void dgbsv_batch(int n, int kl, int ku, int nrhs ,

double ** A_array , int lda , int**pv_array ,

double ** B_array , int ldb , int *info ,

int batch , gpu_stream_t stream);

5 BAND LU FACTORIZATION
5.1 Reference Implementation
We first begin with a reference implementation that supports any
matrix size and any combination of lower/upper bandwidths. This
approach is not expected to be performance efficient, but it guaran-
tees the same numerical behavior regardless of the input character-
istics. Our design is based on the memory-bound building blocks
of the column-wise factorization (GBTF2). A pseudo code is shown
below:

kv = kl + ku;

ju = 0;

for(j = 0; j < min(m, n); j++) {

// length of current column

km = 1 + min(kl, m-j-1);

pivot = IAMAX(km, A(kv, j));

ju = GET_UPDATE_BOUND(kl, ku, j, pivot , ju);

SET_FILLIN(m, n, kl, ku, A, j, ju);

// swap to the right only

SWAP(m, n, kl, ku, A(kv, j), j, ju, pivot);

// scale the current column

SCAL(km -1, A(kv+1, j), 1/A(kb,j));

// rank -1 update

RANK_ONE_UPDATE(m, n, kl, ku, A(kv, j), ju);

}

There are two main differences between the band LU factoriza-
tion and a fully dense one. First, the lower factor is not stored in
its final form. In order to maintain kl rows for the lower factor,
the row-swapping step (due to partial pivoting) affects only the
trailing submatrix, unlike a fully dense factorization which affects
the whole matrix. Second, the update step does not affect the en-
tire trailing matrix. Depending on the pivot location, the functions
GET_UPDATE_BOUND and SET_FILLIN identify the columns affected
in the current iteration, and set the necessary fill-in elements. The
CPU manages the factorization loop, and launches the correspond-
ing GPU kernels at each iteration. As a reference implementation
following a fork-join parallel model, this approach’s performance
is slower than a multicore CPU solution in most cases. However,
further performance optimizations are discussed below.

5.2 Fully fused factorization
Perhaps the simplest approach for achieving high performance is a
fully fused factorization in the shared memory of the GPU. Fully
fused factorizations have the advantage of an optimal memory traf-
fic, since each matrix is read/written exactly once from/to the global
memory. While storing the matrix in the register file could yield a
faster data access, it is not straightforward to map the matrix in the
band layout into the register file in an algorithm-friendly manner.
First, thread ownership of matrix elements is often designed as
one row per thread in one-sided factorizations [7], which enables
coalesced memory accesses. However, a band layout stores a matrix
row in the reverse-diagonal direction. Second, unlike dense factor-
izations, the length of a row is dependent on the (kl, ku) pair, and
an efficient use of the register file would probably require this pair
to be known at compile time. This is why we opt for a in-shared-
memory factorization, where referencing the input matrix is more

1674

SC-W 2023, November 12–17, 2023, Denver, CO, USA Abdelfattah et al.

flexible. Our fused solution works for any (kl, ku) pair, and does
not require dedicated compilation for specific band sizes. It also
works for any matrix sizes, as long as the matrix fits in the shared
memory of the GPU.

Since the shared memory of the GPU is as fast as an L1 cache,
the factorization can be efficiently implemented by factorizing one-
column at a time (no blocking techniques necessary). The design re-
quires a minimum number of threads, not less than (kl + 1). Figure 3
shows the execution time for square matrices for (kl, ku) = (2, 3)
and (10, 7), respectively.

10-1

100

101

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00
0

T
im
e

 (
m
s
)

Matrix size (M = N), KL = 2, KU = 3

 H100 GPU
 MI250x GPU
 mkl+openmp

10-1

100

101

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00
0

T
im
e

 (
m
s
)

Matrix size (M = N), KL = 10, KU = 7

 H100 GPU
 MI250x GPU
 mkl+openmp

Figure 3: Execution time for the fully fused band LU factoriza-
tion for (kl, ku) = (2, 3) and (10, 7), on a batch of 1,000matrices
in double precision. Results are shown for an NVIDIA H100-
PCIe GPU using CUDA-12.1, an AMD MI250x GPU (single
GCD) using ROCM-5.5.1, and an Intel Xeon Gold 6140 CPU
(Skylake) using MKL-2023.0.1.

Despite some performance gains against the CPU solution for
small sizes, larger sizes do not enjoy the same behavior. Note that
the bands are relatively thin, which means that each problem lacks
fine-grain parallelsim. In fact, the advantage of the GPU solution is
mainly in the factorization throughput (i.e., parallelism across the
batch) rather than the amount of parallel work per matrix. A fully
fused solution increases the shared memory pressure for larger
sizes, which in turn limits the number of resident factorizations
per multiprocessor/compute-unit, thus leading to bad throughput.

This explains the staircase-like behavior of our solution on both
GPUs. As the sizes grow, the shared memory requirements affect
the occupancy, which leads to sudden jumps in the execution time.
As an example, the performance drops by almost a factor of 2×
on the MI250x GPU for (kl, ku) = (2, 3) from size 416 × 416 to
size 448 × 448. This is in inflection point where our fused design
begins to consume more than half the available shared memory,
leading to a drop in occupancy from 2 to 1, thus slowing down
the performance by a similar factor. The same behavior is true for
the H100 GPU, but the latter has a much larger shared memory
(≈ 224 KB, compared to 64 KB on the MI210 GPU), which helps
maintain a better throughput. On both GPUs the fused solution
ends up being slower than the CPU solution, and even failing to
run due to exceeding the shared memory capacity. This issue is
addressed in the next section.

5.3 Sliding Window Factorization
In order to solve the occupancy problem, we developed a new design
that significantly improves over the fully fused approach. It uses a
“sliding window” technique, which caches only part of the matrix
that will be affected by the current factorization iteration. This is
an interesting property of the band LU factorization, which we
exploit in this design. During the factorization of the jth column,
the last column affected by the factorization depends on the pivot
location and can be expressed as ju =𝑚𝑎𝑥 (ju,𝑚𝑖𝑛(j+ku+jp, N-1)),
where jp is the current pivot location. The worst case scenario
would be when jp = kl (based on a zero-based indexing), which
means having, at maximum, (kv + 1) columns to update, where
kv = kl + ku.

Figure 4 shows the concept of the sliding window design. It
uses a tunable blocking size (nb), which denotes the number of
columns to be factorized during a single iteration of the kernel.
This “factor window” is highlighted in green in Figure 4. For a
matrix with 𝑁 columns, the total number of iterations required
would be

⌈
𝑁
nb

⌉
. These iterations can translate into either multiple

kernel calls, or multiple iterations inside the same kernel while
shifting the factor/update windows in shared memory. The latter
approach has the better performance overall, since it avoids the
kernel launch overheads, as well as some redundant global memory
traffic. In terms of the shared memory requirements, our design
accounts for the widest possible “update window” that contains
all the columns affected by the current nb columns. However, the
actual number of columns read per matrix still depends on the local
value ju of every factorization. The sliding window of the kernel is,
therefore, the concatenation of the factor window and the update
window.

Instead of caching the entire matrix, the sliding window design
needs to only cache (nb + kv + 1) columns at maximum. The sliding
window size can be calculated as: (kv + nb + 1) × (kv + kl + 1),
meaning that it is constant for a given band regardless of the matrix
size. This is a significant reduction in resources, since we need to
cache only the sliding window (a constant value) instead of the
entire matrix.

The sliding window design requires a careful choice of two tun-
ing parameters that greatly affect the performance of the factoriza-
tion. The first is the blocking size (nb), and the second is the number

1675

GPU-based LU Factorization and Solve on Batches of Matrices with Band Structure SC-W 2023, November 12–17, 2023, Denver, CO, USA
Fa
ct
or

U
pd
at
e

Fa
ct
or

U
pd
at
e

Figure 4: Illustration of the sliding window technique

of threads assigned to a single matrix. The latter has a minimum
value of (kl+1), but has no upper limit. The choice of the tuning
parameters mainly depends on the lower and upper bandwidths. In
order to cover band sizes of interests to the applications mentioned
in Section 2, we have conducted a benchmark sweep for square
matrices up to 1024, for any kl/ku in the range [0:32]. The results
of the benchmark sweep are then fed to a post-processing phase
that extracts the best tuning parameters for a given band pattern.
Separate test sweeps have been conducted for the H100 GPU and
the AMD MI250x GPU.

5.4 The Complete Picture
The three different designs of the band LU factorization are put
together under the same interface in Section 4. In most cases, the
sliding window approach is selected, since it covers a very wide
range of band sizes regardless of the matrix size. However, for very
small matrices (e.g., up to 64×64), the fully fused kernel has a slight
advantage, since it does not have the overhead of shifting the sliding
window in shared memory, which requires extra synchronization
steps. The reference implementation is kept as a safe guard.

Fiure 5 shows the final performance results for the band LU
factorization. For most band sizes of interest, a combination of the
fused kernel and the sliding window kernel is used. The advantage
of the sliding window kernel is apparent for larger sizes, maintain-
ing an advantage over the parallel CPU solution. Table 1 shows the
summary of speedups on the H100 and the MI250x GPUs against
the CPU solution. We observe that larger band sizes have a greater
impact on the performance of the AMD GPU, due to the small
capacity of shared memory, which limits the number of resident
factorizations per compute unit.

H100-PCIe GPU MI250x GPU
(kl, ku) min. max. avg. min. max. avg.
(2, 3) 2.13× 3.43× 3.07× 1.67× 2.32× 1.88×
(10, 7) 3.07× 4.27× 3.56× 0.96× 2.01× 1.16×

Table 1: Minimum andmaximum speedups of the batch band
LU factorization against the parallel CPU solution.

0.5

2.0

3.0

0.1

1.0

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00
0

T
im
e

 (
m
s
)

Matrix size (M = N), KL = 2, KU = 3

 H100 GPU
 MI250x GPU
 mkl+openmp

0.5

2.0

4.0

8.0

0.1

1.0

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00
0

T
im
e

 (
m
s
)

Matrix size (M = N), KL = 10, KU = 7

 H100 GPU
 MI250x GPU
 mkl+openmp

Figure 5: Execution time for the final band LU factorization
for (kl, ku) = (2, 3) and (10, 7), on a batch of 1,000 matrices
in double precision. Results are shown for an NVIDIA H100-
PCIe GPU using CUDA-12.1, an AMD MI250x GPU (single
GCD) using ROCM-5.5.1, and an Intel Xeon Gold 6140 CPU
(Skylake) using MKL-2023.0.1.

6 BAND TRIANGULAR SOLVE (GBTRS)
We follow a similar approach by first providing a reference im-
plementation that proceeds one column at a time. Note that the
upper bandwidth is now equal to (kv = kl+ku). In addition, re-
call that the lower factor L is still stored in kl rows below the
diagonal, but in order to reconstruct its dense form, each column
j∈ {0, 1, · · · , N − 1} must undergo a number of row interchanges
defined by the pivot entries in the interval [0:j]. However, recov-
ering L in its final form is inefficient due to data movement and
the need for an extra workspace. Instead, we apply the pivot en-
tries progressively on the RHS matrix, coupled with rank-1 updates.
For each column j∈ {0, 1, · · · , N − 1} in the lower factor, two GPU
kernels perform a pair of (row swap, rank-1 updates) operations
on the RHS matrix. For the upper factor, a column-wise backward
triangular solver is developed.

We also develop two blocked versions of the forward/backward
triangular solves. Figure 6 shows a combined view of the two solvers.
Similar to the sliding window factorization, the optimized kernels
perform

⌈
𝑁
nb

⌉
iterations, where at each iteration, nb columns of

1676

SC-W 2023, November 12–17, 2023, Denver, CO, USA Abdelfattah et al.

ku

kl

kv

fwd slv

bkwd slv

fw
d
sl
v

bk
w
d
sl
v

nb

nb

Figure 6: A combined view of the sliding window GBTRS ker-
nels

the lower/upper factors are cached in the register file. Assuming
one RHS for simplicity, the forward solver begins with the first
nb columns of the lower factor and the top nb elements of the
RHS vector. The solver needs to cache at most (nb + kl) elements
from the RHS vector in shared memory to accommodate all the
pivoting and rank-1 updates of the nb columns of L. After all the
updates are performed, the top nb elements of the RHS vector are
written back to the global memory, and the remaining elements
are shifted up in shared memory for the next nb columns of L. For
the backward solve, a similar approach is taken except that the
solver begins with that last nb columns of the upper factor and
the bottom nb elements of the RHS vector. At each iteration, it
solves the bottom nb elements, but needs to cache at most (nb +
kv) elements to accommodate the necessary updates. The kernel
writes the bottom nb elements into global memory, shifts down the
remaining elements from the RHS vector, and proceeds to the next
iteration.

7 BAND FACTORIZATION AND SOLVE (GBSV)
The LAPACK standards define GBSV as a driver routine that calls
the factorization (GBTRF) followed by the triangular solves (GBTRS).
This is partially the case in our design, except that small sizes are
handled using a single kernel that performs the factorization and
the solve in a single context. This obviously maximizes the data
reuse and the bandwidth utilization for very small sizes. Similar to a
previous work on the fully dense GESV routine [11], the fused GBSV
kernel performs the band LU factorization on the augmented matrix
[A|B] in shared memory, which implicitly performs the forward
triangular solve. After the factorization is complete, the backward
solve is performed in the shared memory as well. Figure 7 shows
the advantage of using a fused GBSV kernel against performing
the factorization and solve separately. Note that, depending on the
matrix size and the bandwidth, a fused implementation might not
maintain its advantage over a standard approach. Based on our
empirical results, we enable the fused kernel for systems with order
64 or less, and for a single right hand side.

0.05

0.10

0.20

0.30

0.40
0.50

 0 8 1
6

 2
4

 3
2

 4
0

 4
8

 5
6

 6
4

 7
2

 8
0

 8
8

 9
6

 1
04

 1
12

 1
20

 1
28

T
im
e

 (
m
s
)

Matrix size, (KL, KU) = (2, 3), single RHS

 Fused - MI250x GPU
 Std. - MI250x GPU
 Fused - H100 GPU
 Std. - H100 GPU

0.05

0.20

0.40

1.00

2.00

0.10
 0 8 1
6

 2
4

 3
2

 4
0

 4
8

 5
6

 6
4

 7
2

 8
0

 8
8

 9
6

 1
04

 1
12

 1
20

 1
28

T
im
e

 (
m
s
)

Matrix size, (KL, KU) = (10, 7), single RHS

 Fused - MI250x GPU
 Std. - MI250x GPU
 Fused - H100 GPU
 Std. - H100 GPU

Figure 7: Performance comparison of a fully fused GBSV ker-
nel versus the standard approach of separate factorization
and solve. Results are shown for batch of 1,000 matrices in
double precision on an NVIDIAH100-PCIe GPU using CUDA-
12.1, and an AMD MI250x GPU (single GCD) using ROCM-
5.5.1.

8 FINAL PERFORMANCE RESULTS FOR GBSV
Figure 8 shows the final GBSV performance when solving for a single
right hand side. The relative speedups against the CPU solution are
shown in Table 2. In most cases, the GPU solution is better than
the CPU solution. However, the CPU remains a close competitor
for AMD GPUs, especially for larger lower/upper bandwidths. The
main reason is that band matrices do not have sufficient parallelism
within a single problem. Most of the performance gain against the
CPU is based on how many factorization/solves can be executed
concurrently on the GPU. Our design choice is based on shared
memory blocking, so the shared memory capacity plays a pivotal
role on the level of concurrency. This explains the performance gap
between the H100 GPU and the MI250x GPUs.

To emphasize the previous point, we compare the memory band-
widths of both GPUs. By running very large dense matrix vetor
products (GEMV), we are able to estimate the sustained peak memory
bound on both GPUs. The H100-PCIe GPU achieves 47% higher
bandwidth, scoring about 1.92TB/s, versus 1.31TB/s for a single
GCD of the MI250x GPU. For memory-bound kernels such as the

1677

GPU-based LU Factorization and Solve on Batches of Matrices with Band Structure SC-W 2023, November 12–17, 2023, Denver, CO, USA

0.50

5.00

0.10

1.00

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00
0

T
im
e

 (
m
s
)

Matrix size, (KL, KU) = (2, 3), single RHS

 mkl + openmp
 MI250x GPU
 H100 GPU

0.5

5.0

0.1

1.0

10.0

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00
0

T
im
e

 (
m
s
)

Matrix size, (KL, KU) = (10, 7), single RHS

 mkl + openmp
 MI250x GPU
 H100 GPU

Figure 8: Final execution time of the GBSV routine solving for
a single right hand side. Results are shown for batch of 1,000
matrices in double precision on an NVIDIA H100-PCIe GPU
using CUDA-12.1, an AMD MI250x GPU (single GCD) using
ROCM-5.5.1, and an Intel Xeon Gold 6140 CPU (Skylake)
using MKL-2023.0.1.

batch GBTRF/GBSV, we can assume that the memory bandwidth is
the main factor affecting the performance on GPUs. However, our
solution on the H100 GPU is up to 1.88× faster than the MI250x
GPU for (kl, ku) = (2, 3), and up to 3.68× for (kl, ku) = (10, 7). These
speedups are much larger than the bandwidth difference, which
indicates that another factor plays an important role in the per-
formance gap. We believe that the shared memory capacity is the
critical factor impacting the performance on the MI250x GPU, since
its shared memory is 3.5× smaller than the H100 GPU. Other fac-
tors that could impact the performance include the shared memory
bandwidth and the compiler overhead.

Figure 9 shows sample performance results when solving for
multiple right hand sides (#RHS = 10 in this case). The relative
speedups are shown in Table 3. Our best results remain on the
H100 GPU. However, we observe that the MKL-based solution
suffers a sharp increase in the execution time that averages around
2.18× for (kl, ku) = (2, 3) and 1.93× for (kl, ku) = (10, 7). In most
cases, however, both GPUs do not experience the same level of
performance drop. On average, the execution time on the H100
GPU has increased by 49% for (kl, ku) = (2, 3), and by 25% for (kl,

H100-PCIe GPU MI250x GPU
(kl, ku) min. max. avg. min. max. avg.
(2, 3) 2.23× 3.58× 2.54× 1.22× 2.58× 1.59×
(10, 7) 2.79× 4.65× 3.03× 0.92× 1.66× 1.11×

Table 2: Speedup summary of the GPU-accelerated GBSV de-
sign versus the parallel CPU solution. Results are shown for
(kl, ku) = (2, 3) and (10, 7) using a single right hand side.

ku) = (10, 7). On the MI250x GPU, while the average increase in
execution time is 2.19× for (kl, ku) = (2, 3), it was recorded only at
1.33× for (kl, ku) = (10, 7).

0.50

5.00

0.10

1.00

10.00

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00
0

T
im
e

 (
m
s
)

Matrix size, (KL, KU) = (2, 3), #RHS = 10

 mkl + openmp
 MI250x GPU
 H100 GPU

0.5

5.0

0.1

1.0

10.0

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00
0

T
im
e

 (
m
s
)

Matrix size, (KL, KU) = (10, 7), #RHS = 10

 mkl + openmp
 MI250x GPU
 H100 GPU

Figure 9: Final execution time of the GBSV routine solving for
ten right hand sides. Results are shown for batch of 1,000
matrices in double precision on an NVIDIA H100-PCIe GPU
using CUDA-12.1, an AMD MI250x GPU (single GCD) using
ROCM-5.5.1, and an Intel Xeon Gold 6140 CPU (Skylake)
using MKL-2023.0.1.

8.1 Discussion
According to the description and the performance of the proposed
solver, it is clear that it does not take full advantage of the reg-
ister file, although it is usually larger than the shared memory
on modern GPUs. This indeed becomes a limiting factor on hard-
ware with relatively small shared memory. As mentioned earlier,

1678

SC-W 2023, November 12–17, 2023, Denver, CO, USA Abdelfattah et al.

H100-PCIe GPU MI250x GPU
(kl, ku) min. max. avg. min. max. avg.
(2, 3) 3.33× 4.85× 3.69× 1.40× 2.11× 1.57×
(10, 7) 4.12× 7.67× 4.64× 1.42× 3.41× 1.61×

Table 3: Speedup summary of the GPU-accelerated GBSV de-
sign versus the parallel CPU solution. Results are shown for
(kl, ku) = (2, 3) and (10, 7) using ten right hand sides.

caching the matrix in the register file would be a non-trivial task,
and would probably require (kl, ku) to be known at compile-time in
order to guarantee efficient indexing and avoid spilling. However,
it is impractical to compile (KL×KU) kernel instances for every pair
(kl∈[0:KL-1], ku∈[0:KU-1]). For example, if KL = KU = 15, there are
256 kernel instances to compile. Instead, we can use Just-In-Time
(JIT) compiler technology, such as nvrtc and hiprtc to provide
the capability of building a more optimized kernel for a specific
band structure. This, however, requires more intervention from
the user, who now has to create/destroy kernel instances based
on the requirement of a given application. This can be a potential
extension for this paper.

9 CONCLUSION AND FUTUREWORK
This paper presented an efficient use of GPUs to solve a batch of lin-
ear systems that are described using matrices with band structures.
The solver uses a band LU factorization with partial pivoting, and
supports arbitrary problem sizes and bandwidths. To the best of our
knowledge, no similar functionality exists in the vendor’s software
stack, despite the existence of applications that would benefit from
it. Performance results are shown on both NVIDIA and AMD GPUs,
with reasonable speedups observed against a parallel CPU solu-
tion. Future directions include a more robust tuning framework,
investigating more optimizations through just-in-time compilation
technology, and adding support for non-uniform batches of differ-
ent sizes and/or different bandwidths.

ACKNOWLEDGMENTS
This research is supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.

REFERENCES
[1] 1980-2023. BLAS (Basic Linear Algebra Subprograms). http://www.netlib.org/blas
[2] 1992-2023. LAPACK - Linear Algebra PACKage. http://www.netlib.org/lapack
[3] Ahmad Abdelfattah, Timothy Costa, Jack Dongarra, Mark Gates, Azzam Haidar,

Sven Hammarling, Nicholas J. Higham, Jakub Kurzak, Piotr Luszczek, Stanimire
Tomov, and Mawussi Zounon. 2021. A Set of Batched Basic Linear Algebra
Subprograms and LAPACK Routines. ACM Trans. Math. Softw. 47, 3, Article 21
(June 2021), 23 pages. https://doi.org/10.1145/3431921

[4] Ahmad Abdelfattah, Pieter Ghysels, Wajih Boukaram, Stanimire Tomov, Xi-
aoye Sherry Li, and Jack J. Dongarra. 2022. Addressing Irregular Patterns of
Matrix Computations on GPUs and Their Impact on Applications Powered by
Sparse Direct Solvers. In SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, Dallas, TX, USA, November 13-18,
2022, Felix Wolf, Sameer Shende, Candace Culhane, Sadaf R. Alam, and Heike
Jagode (Eds.). IEEE, 26:1–26:14. https://doi.org/10.1109/SC41404.2022.00031

[5] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. 2018.
Batched one-sided factorizations of tiny matrices using GPUs: Challenges and
countermeasures. J. Comput. Sci. 26 (2018), 226–236. https://doi.org/10.1016/j.
jocs.2018.01.005

[6] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack J. Dongarra.
2016. Performance, Design, and Autotuning of Batched GEMM for GPUs. In ISC
High Performance 2016, Frankfurt, Germany, June 19-23, 2016, Proceedings. 21–38.
https://doi.org/10.1007/978-3-319-41321-1_2

[7] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack J. Dongarra. 2017.
Factorization and Inversion of a Million Matrices using GPUs: Challenges and
Countermeasures. In International Conference on Computational Science, ICCS
2017, 12-14 June 2017, Zurich, Switzerland. 606–615. https://doi.org/10.1016/j.
procs.2017.05.250

[8] Ahmad Abdelfattah, Stan Tomov, and Jack J. Dongarra. 2022. Batch QR Factoriza-
tion on GPUs: Design, Optimization, and Tuning. In Computational Science - ICCS
2022 - 22nd International Conference, London, UK, June 21-23, 2022, Proceedings,
Part I (Lecture Notes in Computer Science, Vol. 13350), Derek Groen, Clélia de Mu-
latier, Maciej Paszynski, Valeria V. Krzhizhanovskaya, Jack J. Dongarra, and Peter
M. A. Sloot (Eds.). Springer, 60–74. https://doi.org/10.1007/978-3-031-08751-6_5

[9] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome. 1998. A Con-
servative Adaptive Projection Method for the Variable Density Incompressible
Navier-Stokes Equations. J. Comp. Phys. 142 (1998), 1–46.

[10] Wajih Halim Boukaram, George Turkiyyah, Hatem Ltaief, and David E. Keyes.
2017. Batched QR and SVD algorithms on GPUs with applications in hierarchical
matrix compression. Parallel Comput. (2017). https://doi.org/10.1016/j.parco.
2017.09.001

[11] Chiang-Heng Chien, Hongyi Fan, Ahmad Abdelfattah, Elias P. Tsigaridas, Stan-
imire Tomov, and Benjamin B. Kimia. 2022. GPU-Based Homotopy Continuation
for Minimal Problems in Computer Vision. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24,
2022. IEEE, 15744–15755. https://doi.org/10.1109/CVPR52688.2022.01531

[12] M. S. Day and J. B. Bell. 2000. Numerical Simulation of Laminar Reacting Flows
with Complex Chemistry. Combust. Theory Model 4, 4 (2000), 535–556.

[13] Azzam Haidar, Tingxing Dong, Piotr Luszczek, Stanimire Tomov, and Jack J.
Dongarra. 2015. Batched matrix computations on hardware accelerators based
on GPUs. Int. J. High Perform. Comput. Appl. 29, 2 (2015), 193–208. https:
//doi.org/10.1177/1094342014567546

[14] Marc T Henry de Frahan, Jon S Rood, Marc S Day, Hariswaran Sitaraman,
Shashank Yellapantula, Bruce A Perry, Ray W Grout, Ann Almgren, Weiqun
Zhang, John B Bell, and Jacqueline H Chen. 2022. PeleC: An adaptive mesh
refinement solver for compressible reacting flows. The International Journal
of High Performance Computing Applications OnlineFirst, Open Access (2022),
10943420221121151. https://doi.org/10.1177/10943420221121151

[15] Konstantin Herb and Pol Welter. 2022. Parallel time integration using Batched
BLAS (Basic Linear Algebra Subprograms) routines. Computer Physics Communi-
cations 270 (2022), 108181. https://doi.org/10.1016/j.cpc.2021.108181

[16] IanMasliah, AhmadAbdelfattah, AzzamHaidar, Stanimire Tomov,Marc Baboulin,
Joël Falcou, and Jack J. Dongarra. 2016. High-PerformanceMatrix-MatrixMultipli-
cations of Very Small Matrices. In Euro-Par 2016: Parallel Processing - 22nd Interna-
tional Conference on Parallel and Distributed Computing, Grenoble, France, August
24-26, 2016, Proceedings. 659–671. https://doi.org/10.1007/978-3-319-43659-3_48

[17] A. Nonaka, J. B. Bell, and M. S. Day. 2018. A conservative, thermodynamically
consistent numerical approach for low Mach number combustion. I. Single-level
integration. Combust. Theor. Model. 22, 1 (2018), 156–184.

[18] A. Nonaka, J. B. Bell, M. S. Day, C. Gilet, A. S. Almgren, and M. L. Minion. 2012.
A Deferred Correction Coupling Strategy for Low Mach Number Flow with
Complex Chemistry. Combust. Theory and Model 16, 6 (2012), 1053–1088.

[19] Villa Oreste, Massimiliano Fatica, Nitin A. Gawande, and Antonino Tumeo. 2013.
Power/Performance Trade-offs of Small Batched LU Based Solvers on GPUs. In
Euro-Par 2013 (Lecture Notes in Computer Science, Vol. 8097). Aachen, Germany,
813–825.

[20] R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A. Fiveland,
and J. P. Jessee. 1998. An Adaptive Projection Method for Unsteady, Low-Mach
Number Combustion. Comb. Sci. Tech. 140 (1998), 123–168.

[21] A. Y. Sharma, M. D. J. Cole, T. Görler, Y. Chen, D. R. Hatch, W. Gut-
tenfelder, R. Hager, B. J. Sturdevant, S. Ku, A. Mishchenko, and C. S.
Chang. 2022. Global gyrokinetic study of shaping effects on electro-
magnetic modes at NSTX aspect ratio with ad hoc parallel magnetic
perturbation effects. Physics of Plasmas 29, 11 (Nov. 2022), 112503.
https://doi.org/10.1063/5.0106925 arXiv:https://pubs.aip.org/aip/pop/article-
pdf/doi/10.1063/5.0106925/16627444/112503_1_online.pdf

[22] Hariswaran Sitaraman, Shashank Yellapantula, Marc T. Henry de Frahan, Bruce
Perry, Jon Rood, RayGrout, andMarc Day. 2021. Adaptivemesh based combustion
simulations of direct fuel injection effects in a supersonic cavity flame-holder.
Combustion and Flame 232 (2021), 111531. https://doi.org/10.1016/j.combustflame.
2021.111531

[23] Weiqun Zhang, Ann Almgren, Vince Beckner, John Bell, Johannes Blaschke,
Cy Chan, Marcus Day, Brian Friesen, Kevin Gott, Daniel Graves, Max P. Katz,
Andrew Myers, Tan Nguyen, Andrew Nonaka, Michele Rosso, Samuel Williams,
and Michael Zingale. 2019. AMReX: a framework for block-structured adaptive
mesh refinement. Journal of Open Source Software 4, 37 (2019), 1370. https:
//doi.org/10.21105/joss.01370 https://github.com/AMReX-Codes/amrex.

1679

http://www.netlib.org/blas
http://www.netlib.org/lapack
https://doi.org/10.1145/3431921
https://doi.org/10.1109/SC41404.2022.00031
https://doi.org/10.1016/j.jocs.2018.01.005
https://doi.org/10.1016/j.jocs.2018.01.005
https://doi.org/10.1007/978-3-319-41321-1_2
https://doi.org/10.1016/j.procs.2017.05.250
https://doi.org/10.1016/j.procs.2017.05.250
https://doi.org/10.1007/978-3-031-08751-6_5
https://doi.org/10.1016/j.parco.2017.09.001
https://doi.org/10.1016/j.parco.2017.09.001
https://doi.org/10.1109/CVPR52688.2022.01531
https://doi.org/10.1177/1094342014567546
https://doi.org/10.1177/1094342014567546
https://doi.org/10.1177/10943420221121151
https://doi.org/10.1016/j.cpc.2021.108181
https://doi.org/10.1007/978-3-319-43659-3_48
https://doi.org/10.1063/5.0106925
https://arxiv.org/abs/https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0106925/16627444/112503_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0106925/16627444/112503_1_online.pdf
https://doi.org/10.1016/j.combustflame.2021.111531
https://doi.org/10.1016/j.combustflame.2021.111531
https://doi.org/10.21105/joss.01370
https://doi.org/10.21105/joss.01370
https://github.com/AMReX-Codes/amrex

	Abstract
	1 Introduction and Related Work
	2 Use Cases across Applications and Software Libraries
	2.1 PELE Suite: Simulation of Chemical Kinetics
	2.2 Plasma Containment in WDMApp and XGC
	2.3 SUNDIALS Software Library

	3 Band Matrix Layout
	4 Band Routines' User Interface
	5 Band LU Factorization
	5.1 Reference Implementation
	5.2 Fully fused factorization
	5.3 Sliding Window Factorization
	5.4 The Complete Picture

	6 Band Triangular Solve (GBTRS)
	7 Band Factorization and Solve (GBSV)
	8 Final Performance Results for GBSV
	8.1 Discussion

	9 Conclusion and Future Work
	Acknowledgments
	References

