
2020 IEEE/ACM 11th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA)

High-Order Finite Element Method using Standard
and Device-Level Batch GEMM on GPUs

Natalie Beams, Ahmad Abdelfattah, Stan Tomov, Jack Dongarra
Innovative Computing Laboratory

Tzanio Kolev, Yohann Dudouit
Center for Applied S cientific Computing

Lawrence Livermore National Laboratory, USA
{kolev l ,dudouitl }@llnl.gov

University of Tennessee, USA
{ nbeams,ahmad,tomov,dongarra }@icl.utk.edu

Abstract-We present new GPU implementations of the tensor
contractions arising from basis-related computations for high-
order finite element methods. We consider both tensor and non-
tensor bases. In the case of tensor bases, we introduce new kernels
based on a series of fused device-level matrix multiplications
(GEMMs), specifically designed to utilize the fast memory of the
GPU. For non-tensor bases, we develop a tuned framework
for choosing standard batch-BLAS GEMMs that will maximize
performance across groups of elements. The implementations
are included in a backend of the libCEED library. We present
benchmark results for the diffusion and mass operators using
libCEED integration through the MFEM finite element library
and compare to those of the previously best-performing GPU
backends for stand-alone basis computations. In tensor cases,
we see improvements of approximately 10-30% for some cases,
particularly for higher basis orders. For the non-tensor tests, the
new batch-GEMMs implementation is twice as fast as what was
previously available for basis function order greater than five and
greater than approximately 105 degrees of freedom in the mesh;
up to ten times speedup is seen for eighth-order basis functions.

Index Terms-Tensor contractions, finite elements, high-order
methods, matrix-free FEM, GPU, batched linear algebra

I. INTRODUC TION

The Center for Efficient Exascale Discretizations (CEED)
[l] is a co-design center of the Exascale Computing Project,
with the goal of providing scientific application software
with tools for incorporating effective and accurate high-order
discretization methods that fully utilize current and future
high-performance computing hardware. A key focus of the
CEED project is high-order finite element methods with
matrix-free evaluation, which requires less memory and fewer
FLOPs per "matrix"-vector application than standard methods
involving the assembly of sparse matrices for finite element
operators [2], [3]. In addition to high-level finite element
libraries MFEM [4], Nek5000/NekRS [5], and libParanumal
[6], the CEED project is developing libCEED [7], which gives

This research was supported by NVIDIA and the Exascale Computing
Project (ECP), Project Number: l 7-SC-20-SC, a collaborative effort of two
DOE organizations (the Office of Science and the National Nuclear Security
Administration) responsible for the planning and preparation of a capable
exascale ecosystem, including software, applications, hardware, advanced
system engineering, and early testbed platforms, in support of the nation's
exascale computing imperative.

DOI IO.l 109/ScalA51936.2020.00012
53

applications a flexible, versatile, low-level API for defining
high-order operators for matrix-free evaluation.

libCEED has multiple backends to provide performance
for a variety of use cases across many CPU and GPU
architectures. The work presented here is developed within
the framework of improving the performance of the libCEED
MAGMA [8], [9] backend, specifically the basis computa-
tions for both tensor and non-tensor bases. We describe new
algorithms for device-level batch-GEMM-type operations for
tensor bases, and present examples of tuning standard batch
GEMM for non-tensor bases. Though the algorithms presented
are designed for high-order finite element methods, the tensor
basis kernels could further be adapted for applications with
tensor contractions of similar sizes.

II. RELATED WORK

Many physical systems of interest can be entirely or par-
tially written in terms of tensor contractions [10]. Accordingly,
there has been much interest recently in efficient algorithms
and code generation for general tensor contractions [ll]-[13],
as well as tensor contraction implementations for GPUs [14],
[15]. For tensor contractions arising from high-order finite
element methods, some of the authors have previously investi-
gated the use of batch-GEMMs to perform tensor contractions
[16]. Here, we improve the performance through formulating
a series of tensor contractions to share the same execution
context, thus increasing the memory bandwidth by maximizing
data reuse. Swirydowicz et al. demonstrated highly-tuned opti-
mizations of the specific computations required for the CEED
bake-off problems as part of a corresponding "bake-off kernel"
study [17]; however, these kernels are optimized for each finite
element operator, and cannot be used within libCEED's more
general framework, which is explained further in Section III.
Instead, we focus solely on the "basis actions" of a fully-
compliant libCEED backend. Our series of fused device-level
batch-GEMM actions is similar to the approach of Springer and
Bientinesi for general tensor contractions on CPUs [18].

III. DESIGN OVERVIEW OF A LIBCEED BACKEND

libCEED aims to define and provide an interface to a
general format representing the operators from high-order
discretizations, for which building a sparse matrix is not the

978-1-6654-2270-3/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:19:42 UTC from IEEE Xplore. Restrictions apply.

most efficient choice for storage or use [7]. This format is
based on an algebraic factorization that can be written for a
general finite element operator A as

A = P T GtB t D B G P. (1)
libCEED operations

The P operator is related to the management of a distributed
parallel mesh and is handled by the high-level application
code. libCEED handles local computations, with its func­
tionality accessed through a C e e d struct instance created
by a distributed process. The B t D B sequence of operations
represents, for each local process, the transformation of its
elements to the reference element’s quadrature points and the
subsequent numerical integration of terms in the weak form
of the equation to be solved.

A. libCEED Operators

1) The G Operator - Element Restrictions: The libCEED
element restrictions are mappings between what libCEED calls
“L-vectors,” containing all the degrees of freedom that are
local to a process, and “E-vectors,” with degrees of freedom
ordered by element. In an E-vector, nodes on element bound­
aries will be repeated in multiple elements for continuous
finite element spaces. G is defined as the action that takes
an L-vector and returns an E-vector, and Gt provides the
corresponding reverse mapping.

2) The B Operator - Basis Actions: The B operator takes
the E-vector produced by the element restriction and computes
values for each basis function at the quadrature points of each
element. The specific action of B on the basis functions is
determined by the operator (e.g. interpolation, gradient). In the
tensor case, this action is represented through a series of one­
dimensional tensor contractions for each element, as detailed
in Section IV-A; for non-tensor bases, we structure the basis
actions as standard dense matrix-matrix multiplications (see
Section V). The transpose operator, B t is handled similarly,
with an additional sum over the dimensional component in
the case of the transpose gradient action. The improvement of
these basis operators is the emphasis of this work.

3) The D Operator - QFunctions: A key difference be­
tween libCEED’s factorized approach and other high-order
finite element implementations is the use of the general user-
defined “QFunction.” This function operates solely on the
quadrature points. It involves computations related to the
mesh transformations and the physics of the equation. This
approach provides greater flexibility and ease of implementing
new operators, at the cost of reducing some opportunities
for optimization. The general interface for providing a user-
defined QFunction also allows the use of QFunctions from
other sources, such as automatic differentiation libraries or the
output from functions in outside software.

B. libCEED Backends and Interoperability
Each libCEED backend implements actions related to the

three main libCEED operators, plus a high-level operator that
combines the libCEED actions as listed in equation 1, and

supplemental functions related to memory management. The
libCEED backend structure aims to minimize code duplication
through delegation. The MAGMA backend, for example, dele­
gates QFunction application to the non-fused CUDA backends.

At the time of this work, only two CUDA backends imple­
mented non-tensor basis actions: c u d a - r e f , the reference
CUDA backend, and MAGMA. For tensor bases, the best
performance is achieved by operator fusion with runtime com­
pilation in the c u d a - g e n backend. Here “operator fusion”
refers to creating one kernel to perform the entire high-
level operation, rather than applying each sub-operator (G,
B, D, B t , and Gt) separately. Prior to the work detailed
here, the best non-fused CUDA backend was c u d a - s h a r e d ,
so named because it utilizes the GPU’s shared memory to
increase performance. In cases where fusion is not possible
(e.g. not enough GPU memory available for the fused kernel or
the need for a QFunction provided through an external library
or source, which cannot be converted to code for runtime
compilation), it is important to also have fast “stand-alone”
kernels for the computationally-intensive basis actions.

IV. Te n s o r Ba s i s Co m p u t a t i o n s

We begin with some general definitions related to the kernel
design:

• p: Number of nodes in one direction of the tensor basis. It
is equal to (p+1), where p is the order of basis functions.

• q: Number of nodes in one direction of the tensor
quadrature rule. It is usually equal to (p + 2) or so, but
could be = p or < p.

• P : Total number of nodes in each component in an
element. For the tensor case, it is equal to p dim.

• Q: Total number of quadrature nodes in an element. For
the tensor case, it is equal to qdim.

The MAGMA backend currently provides optimized GPU
kernels for three basis actions: i n t e r p , g r a d , and w e i g h t ,
We will now describe these actions.

A. Tensor Basis Actions

The i n t e r p action interpolates the basis functions to the
quadrature points on the reference element. In the three­
dimensional tensor-grid case, we can write the interpolation
operator as a six-dimensional tensor, J lm nij k , where l ,m ,n e
[1, q] are indices corresponding to the quadrature points and
i, j , k e [1,p] are indices for the basis nodes. This J operator
is the tensor product of its one-dimensional equivalent, J , a
rank-two tensor of size q x p:

'm nijk J ii ® J m j (2)

The i n t e r p action takes an input u ij k containing values of
a function at the basis nodes of an element and returns v lm n ,
the interpolation of this function at the quadrature points.

54

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:19:42 UTC from IEEE Xplore. Restrictions apply.

The g r a d action evaluates the gradient of the basis func­
tions at the quadrature points. We represent it as three separate
series of tensor contractions, V x, V v, and V~,

'D \ m n i j k = 'D l i 3 m j (2 > 3 n k

'D f m n i j k = 'D rn j (2 > <Jnk

'D lm n i j k = j l i y J m j (2 > 'D n k , (3)

where V is again a rank-two tensor of size q xp, corresponding
to the evaluation of the derivative of the one-dimensional basis
functions at each quadrature point on the reference line. The
g r a d action takes the same input of values, ugfc, and produces
vdimn, the gradient of the input function at the quadrature
points, with the d, index referring to the dimension of the
partial derivative.

Unlike the i n t e r p and g r a d actions, the w e i g h t action
takes no input, but merely builds the tensor product of the
one-dimensional quadrature weights iv to create the three-
dimensional weights, Wimn, as

Win-in = IVi ® IVm ® lVn . (4)
The w e i g h t action does not have a transpose action, as it
only computes something for the quadrature points, and has
no correlation with the basis nodes.

B. Design Outlines
The GPU kernels for the basis actions share some coimnon

design outlines. First, the core computational work of each
action is implemented using a GPU device routine instead
of a kernel. This enables calling the routine in different
kernels that perform a certain action. For example, a 3D
g r a d action reads a ID vector and writes a 3D vector in
a non-transposed mode, and reduces a 3D vector to a ID
vector in the transposed mode. However, both kernels call the
same device routines. Second, the device-level basis action
operates only on the shared memory or the register file. Any
global memory transactions are handled separately in other
device routines. Third, apart from temporary scalar variables,
no device routine allocates shared memory buffers or register
arrays. These are usually defined at the kernel level, and passed
to the device routines. Fourth, all device routines assume the
same thread configuration. Such a property would allow the
MAGMA backend to fuse multiple actions into one kernel in
future developments.

C. Device-level Arguments
The i n t e r p and g r a d basis actions accept three main

arguments. The first is an input vector u of size p chm per each
component. Due to data layout considerations in libCEED,
we will make a distinction between the components of the
field u (i.e., whether it is scalar- or vector-valued) and the
components added through the non-transpose g r a d action.
These gradient components will be referred to with dim. The
vector is read-only. We use p djm_1 threads to read the input
vector in a 3D register array r U f d i m] [ncomp] [p] . The
second argument is an input/output vector v of size qchm per

component. We use q'1'"' threads to read/write the vector
using another register array r V f d i m] [ncomp] [q] . The
third argument is one or more constant basis matrices. These
are the J and V basis matrices defined in IV-A. Regardless
of the transposition mode of the basis action, constant basis
matrices are always stored in p x q buffers in the shared
memory of the GPU.

As mentioned previously, the w e i g h t action does not
operate on an input vector u, and uses a constant vector of
the quadrature weights (iv) in place of a basis matrix. It has
an output v.

D. Kernel Configurations

Each kernel in the MAGMA backend performs one basis
action by allocating the necessary register arrays and shared
memory, reading the inputs, performing the action, and writing
the output using a sequence of calls to the appropriate device
routines. The developed kernels are batched across indepen­
dent elements, with a default configuration of one thread-block
per element. The thread configuration is >m ax(p,q)dtm~ 1.
However, sometimes this can lead to inefficient use of warps
(e.g., ID operators would need 1 thread per thread-block).
This is why we allow one thread block to process multiple
elements using parallel groups of threads. The sizes dim,
ncomp, p, and q are compile-time constants that are passed
as C++ template parameters for the kernels. As an example,
consider a 3D i n t e r p action with (p, q) = (2,3). This means
P = 23 = 8, and Q = 33 = 27, and so thread-blocks would
use 3:! = 9 threads per element. Figure 1 is a high-level
representation of such a basis action.

Basis Action

I
One or more basis matrices

(2 X 3 each)

Fig. 1. A high-level view of a 3D basis action kernel for (p ,q) = (2 ,3) .
The u-vector is read using 4 threads, while the n-vector is read/written using
9 threads.

E. Tensor Contraction as Batch GEMM

The i n t e r p and g r a d basis actions call a tensor con­
traction function at their core. The reference CPU backend in
libCEED implements the tensor contraction as follows:

55

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:19:42 UTC from IEEE Xplore. Restrictions apply.

int tensor_contract(
int A , int B, int C, int J,
const double* s, CeedTransposeMode tmode,
int Add,
const double *x, double* y)

{
int tstrideO = B, tstridel = 1;
if (tmode == CEED_TRANSPOSE) {

tstrideO = 1; tstridel = J;
}

in shared memory as a pre-processing step before the next
product.

The first product uses the u-vector as an input, which is
represented as a batch of single-row matrices (size 1 xp). Each
thread possesses one row of the u-vector, and independently
computes the corresponding single-row output matrix (size 1 x
<7) .

if (! Add)
for (int q=0; q<A*J*C; q++)

y[q] = (CeedScalar) 0.0;

for (int a=0; a<A; a++)
for (int b=0; b<B; b++)

for (int j=0; j<J; j++) {
CeedScalar tq = s[j*tstrideO + b*tstridel];
for (int c=0; c<C; C++)

y [(a*J+j)*C+c] += tq * x [(a*B+b)*C+c];
}

return 0;
}

This serial CPU code can be interpreted as a batch g e m m op­
eration. Recall that GEMM is defined as (Cm . n = a A m . /, x
B k . „ I + . n). Figure 2 is a GEMM -like interpretation of the
code above. Each of the x and y vectors can be represented
using an array of independent matrices, of sizes CxB and
C xJ, respectively. The constant B x J matrix s represents
the constant basis matrix for such contraction. The variables
s t r i d e O and s t r i d e l handle the transposition of the s
matrix. The A d d option can be handled through the scalar /3
in the GEMM equation. At all times, the scalar a is set to one.

ro

Fig. 2. Batch GEMM representation of a single tensor contraction in libCEED .

F. Example: 3D i n t e r p and g ra d Basis Actions
The i n t e r p and g r a d basis actions are represented as a

sequence of tensor contractions. The 3D i n t e r p action per­
forms three tensor contractions (i.e. three batch GEMMs), while
the g r a d action requires nine batch GEMMs (three for each
dimension). We consider an example of a 3D i n t e r p basis
action for (p, q) = (2, 3), and for one component only. The
three batch GEMMs are shown in Figures 3 through 5. As
the computation progresses, the batch size becomes smaller
(divided by p), but the individual matrix size becomes larger
(rows multiplied by q, and columns fixed at p, except for
the final output). The intermediate outputs are transformed

1—
1 1®.

] ! 1st product:
"1! Batch = p2 of

1 D GEM M s
j(m,n,k)=(1,q,p) j

Transform to Batch
p of qXp matrices

Fig. 3. First product in a 3D interpolation basis action. For (p, q) = (2, 3),
the first product is a batch DGEMM with 4 operations of size (m, n, k) =
(1, 3, 2).

The output matrices of the first product are transformed
in shared memory into a batch p of q x p matrices. The
transformation also reorganizes the threads so that they are
properly indexed in their respective GEMM operations. The
output is a batch p of q x q matrices.

Fig. 4. Second product in a 3D interpolation basis action. For (p, q) = (2,
3), the second product is a batch DGEMM with 2 operations of size (m, n,
k) = (3, 3, 2).

The final product is one GEMM operation, so the batch size
is one. The output of the second product is transformed into
a single matrix of size (q2 x p). The final output is a (j2 x q
matrix that is stored in the rV register array.

Fig. 5. Third product in a 3D interpolation basis action. For (p, q) = (2, 3),
the third product is single DGEMM operation of size (m, n, k) = (9, 3, 2).

A 3D g r a d basis action can be viewed as performing the
i n t e r p action three times for each dimension i d i m G j 1, 2,

56

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:19:42 UTC from IEEE Xplore. Restrictions apply.

3}. There are some differences, though. First, the g r a d basis
action takes two basis matrices instead of one: d i n t e r p l d ,
which is the one-dimensional interpolation operator J , and
d g r a d l d , the one-dimensional gradient matrix V. Second,
three batch GEMMs take place for each value of i d i m . The
d g r a d l d matrix is used in the first batch GEMM for i d i m = 0,
in the second batch GEMM for i d i m = 1, and in the third
batch GEMM for i d i m = 2. Otherwise, the d i n t e r p l d matrix
is used; this corresponds to the combination of J and V in
Eq. 3. Third, for the non-transposed mode, we read one u-
vector for all values of i d i m , and produce three different v-
vectors. Fourth, for the transposed mode, we read a different
(/-vector for each value of i d i m , and accumulate the result
across i d i m into one /’-vector.

V . N o n t e n s o r B a s i s C o m p u t a t i o n s

In the case of non-tensor bases, the operators for the
i n t e r p , g r a d , and w e i g h t actions cannot be represented
as tensor products of one-dimensional matrices. Instead, in
libCEED, the user provides matrices corresponding to the
interpolation (J), gradient (D), and quadrature weights (W) at
every quadrature node in the one-, two-, or three-dimensional
element. This means the w e i g h t action for non-tensor is no
longer a computation; we will focus solely on i n t e r p and
g r a d . The i n t e r p action for an element is now a standard
matrix-matrix multiplication,

vi = J im , (5)

with input u and output v represented as vectors, since they
are no longer ordered on a tensor grid. The matrix will be
of size Q x P . The g r a d action is similar, except the gradient
matrix D is of size (dim x Q) x P, with dim blocks of Q
rows for each component of the gradient.

Because we need to compute these matrix multiplications
for every element, we can think of an input vector for multiple
elements as a matrix Uie, with each column representing an
element. Then the interpolation action for all elements can be
written as one large matrix-matrix multiplication,

1/' Jli-U-iei (6)

and similarly for the g r a d action. In the case of a vector­
valued field, we can replace the index e with E = e + c * N e,
where c G [1, ncomp] is the component and N e is the total
number of elements being processed by the basis action.

A. Standard vs. Batch GEMM
As we have formulated the non-tensor basis action in terms

of standard matrix multiplication, the actions can be performed
with standard GEMM calls. Figure 6 shows the typical shape
of the GEMM call in libCEED. The dimensions of the matrices
(m, n. A/) usually involve small values of m and k, but a large
value of n. While the size range may vary, we consider the
typical dimensions in the libCEED bake-off problems.

Ideally, a single gemm operation would be enough to
reach the GPU peak performance (e.g. using cublasDgemm).
However, the large value of n compared to the small m

and k values can hinder performance. Therefore, we also
consider performing the DGEMM operation in Figure 6 as a
batch DGEMM operation, splitting the problem across the n
dimension to potentially create a more balanced workload for
the GPU. The batch has the same A, with different B and
C matrices within a fixed stride from each other. Factoring
n into b a tc h C o u n t x //, describing the number of batch
GEMM calls and the number of columns in each B and C
(?;), facilitates performance tuning for the batch GEMM call.
Transforming the DGEMM in Figure 6 into a batch DGEMM does
not require setting up pointer arrays that may impact the
performance. Both cuBLAS and MAGMA provide stride-
based batch d g e m m kernels.

n = nelem X ncomp

B

A o r AT I C

Fig. 6. Shape of the DGEMM operation for the non-tensor basis action in
libCEED.

Figures 7, 8, and 9 show three different behaviors for
the best perfonning DGEMM configuration on three different
problem sizes. The (P , Q) sizes are typical in the standard
MFEM benchmarks for libCEED . We also assume a relatively
large n = n c o m p x n e l e m e n t s = 1 0 , 000 in order to test the
asymptotic performance of the GPU. Each figure marks the
achieved perfonnance of the “non-batch” DGEMM kernel in the
cuBLAS and MAGMA libraries with horizontal dashed lines.
Each figure also shows various perfonnance numbers for the
batch DGEMM kernels in both libraries according to different
(b a t c h C o u n t , p pairs. By trying out different combinations
of (b a t c h C o u n t , ?;), we can find some cases where the batch
kernels achieve better perfonnance than a single d g e m m .

/S' /S' ^ q>
AO Al/ /O Ap AO AO A b cO <O V ' U / U / K' K' cy Cl' Cl' CV

,Q> <0 <0 V *V 0/ K« K« 6-i' Ci' Ci' Ci' Ci' <rV Ci' Cv Cv Cvb <o- <o- .p- ,o- o o- q? A <o A C cQ G E M M c?A5 b 'Q/ o
(batchcount, p)

Fig. 7. Performance of different DGEMM configurations using cuBLAS and
MAGMA. Results are shown for (P , Q) = (27, 64) on a Tesla V100 GPU
using CUDA 10.1 Toolkit.

57

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:19:42 UTC from IEEE Xplore. Restrictions apply.

For relatively small sizes (Figure 7), the batch DGEMM rou­
tine in MAGMA is the best performing kernel. Medium sizes
such as the ones in Figure 8 show a winning scenario for the
batch cuBLAS kernel. As we increase the sizes of (P, Q), we
reach an asymptotic behavior, where the non-batch cuBLAS
DGEMM is on par with its batch variant. Both of the cuBLAS
kernels are within 85% of the GPU peak performance. In this
case, it is usually better to call the non-batch kernel, since the
subdivision size n that achieves the best performance might
not fully divide the original n .

4.5
4.0
3.5

.(n 3.0
Q.

2.5
H 2.0

1.5
1.0
0.5

(batchcount, n)

Fig. 8. Performance of different DGEMM configurations using cuBLAS and
MAGMA. Results are shown for (P , Q) = (125, 216) on a Tesla V100 GPU
using CUDA 10.1 Toolkit.

All the autotuning sweeps for the best performing
(b a t c h C o u n t , n) pair against the regular DGEMM kernels
were conducted offline. The collected results led to the de­
velopment of a very lightweight layer that selects the best
performing kernel out of the four variants that have been tested
during the offline sweep. Although the non-tensor basis actions
usually trail the tensor basis mode in performance (because
of the extra computation, scaling with PQ rather than ~ p4
for the tensor case), the former is more portable due to the
reliance on standard kernels that are usually highly optimized
by vendors and widely-used open source libraries.

VI. LIBCEED Be n c h m a r k s : Ba k e -o f f Pr o b l e m s

To compare and improve performance across a number
of high-level finite element libraries involved in the project,
CEED defined a series of bake-off problems (BPs) [19]. The
BPs centered on variations of solving the positive definite
Helmholtz equation,

— V • p Vu + fiu = f in U, (7)

with p and f nonnegative functions in the domain U . For
BP1, p is taken to be zero and fi to be one, which results in
solving an interpolation problem with a standard mass matrix.
For BP3, p is one and fi is zero, creating a diffusion problem
with the standard stiffness matrix. In terms of the basis actions,
BP1 will test i n t e r p , while BP3 tests g r a d .

The results in Fischer et al. [19] focused on optimized im­
plementations for the matrix-free calculations of each operator

Fig. 9. Performance of different DGEMM configurations using cuBLAS and
MAGMA. Results are shown for (P , Q) = (7 29 ,1000) on a Tesla V100
GPU using CUDA 10.1 Toolkit.

as implemented in Nek5000, MFEM, libParanumal, and deal.ii
[20], without reliance on libCEED. Our results here compare
the performance of standard “non-fused” libCEED backends
as described in III-B on two problems modeled after BP1 and
BP3. We use an implementation of the mass and diffusion
problems provided through MFEM’s integration with libCEED
backends [21]. One slight variation is that the BPs in [19] used
homogeneous Neumann conditions for BP1 and homogeneous
Dirichlet conditions for BP3, while we use Dirichlet conditions
for both. Furthermore, the implementation in [19] used diag­
onally preconditioned CG, while the implementation we used
does not have any preconditioning.

VII. PERFORM ANCE RESULTS

We now discuss the performance results of the MAGMA
basis actions, comparing to the previously best-performing
libCEED CUDA backends for each case, tensor and non­
tensor. Because libCEED’s computations are at the local level,
we demonstrate backend performance improvements on a sin­
gle GPU. The main implication of large-scale MPI parallelism
for our work is a decrease in the local problem size per GPU
(the x-axis on e.g. Fig. 10). For in-depth discussion of strong
scaling for the CEED BPs, see [19].

A. Tensor Results

For the tensor benchmark tests, we consider a three­
dimensional block mesh and standard Q-type hexahedral finite
elements using the Gauss-Lobatto-Legendre (GLL) nodes. We
use basis function orders of p £ [1, 8]. The experiments were
conducted with a Tesla V100 GPU with CUDA 10.2.89.

The results of the mass problem (BP1) and diffusion prob­
lem (BP3) for the c u d a - s h a r e d and MAGMA backends
are shown in Figures 10 and 11, respectively. A representative
subset of tested basis function orders is shown for clarity.
The y-axis, which shows the number of degrees of freedom
(DOFs) in the mesh times the number of conjugate gradient
(CG) iterations divided by time in the solver, represents the
rate at which MFEM using the specified libCEED backend

58

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:19:42 UTC from IEEE Xplore. Restrictions apply.

was able to process the necessary data to apply the matrix-
free operator; alternatively, we can consider this the rate at
which the implementation is able to do the necessary work for
solving the problem. In Figures 12 and 13 we show the ratio of

Fig. 12. Ratio of DOFs processed by MAGMA to the c u d a - s h a r e d back­
end for the mass problem (BP1).

Fig. 10. MAGMA and c u d a - s h a r e d backend performance for tensor-basis
mass problem (BP1).

Fig. 13. Ratio of DOFs processed by MAGMA to the c u d a - s h a r e d back­
end for the diffusion problem (BP3).

Fig. 11. MAGMA and c u d a - s h a r e d backend performance for tensor-basis
diffusion problem (BP3).

this “DOFs processing rate” metric for the MAGMA backend
divided by that of c u d a - s h a r e d . The benefit of MAGMA’s
fused batch-BLAS approach is greatest for higher orders of
basis functions, particularly for the diffusion problem using
the g r a d action, where several cases show approximately 1.2
times speedup; many more are within the range of 1.1 times.
This is important because orders 7 and higher are routinely
used, e.g., for incompressible flow simulations [3], [5].

B. Non-tensor Results

To compare the non-tensor performance, the meshes of the
tensor benchmarks were modified to use P-type tetrahedron
elements, with each element of the hexahedral mesh divided
into six tetrahedrons. In Figures 14 and 15 we consider
the performance of the backends in terms of the rate of
DOFs processed in the CG solver. (Again, a representative
subset of basis function orders was chosen to simplify the

figures.) Now we are comparing the MAGMA backend’s
tuned batch GEMM approach to the c u d a - r e f backend, as
c u d a - s h a r e d does not implement non-tensor bases. In

io2 io3 io4 105 106 107
DOFs

Fig. 14. MAGMA and c u d a - r e f backend performance for non-tensor mass
problem (BP1).

Figure 16, we show the ratio of the metric for MAGMA
compared to c u d a - r e f , this time with BP1 and BP3 on the

circle/solid: MAGMA

102 103

£ 1.0

fe o.s-
□

p = 2
p = 4
p = 6
p = 7
P = 8

square/dash: cuda-shared

104 105 106
DOFs

1C?

102 107

le 9
1.4

Si i o-

^ 0.8

.2 0.6-
U
x 0 .4 -

p = 2
p = 4
p = 6
p = 7
p = 8

circle/solid: MAGMA

square/dash: cuda-shared

104 105 106
DOFs

59

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:19:42 UTC from IEEE Xplore. Restrictions apply.

Ie8

Fig. 15. MAGMA and c u d a - r e f backend performance for non-tensor
diffusion problem (BP3).

same plot. We see similar trends as in the tensor case, in that
there is a greater benefit of the MAGMA backend’s approach
for higher orders of basis functions, with a clear change in
behavior for both BP1 and BP3 for p > 3 . A notable difference
between the tensor case, however, is the continued increase of
speedup for MAGMA as the number of elements in the mesh
increases (larger number of DOFs), where MAGMA can be
up to 10 times faster than c u d a - r e f for p = 8.

Fig. 16. Ratio of DOFs processed by MAGMA to the c u d a - r e f backend
for the mass (dash/star) and diffusion (solid/x).

VIII. Co n c l u s i o n a n d Fu t u r e W o r k

We have presented improvements to a GPU backend for
high-order matrix-free operator in libCEED. The backend is
based on the MAGMA library. It uses both standard and
customized batch matrix multiplication in order to perform
different basis actions as defined in libCEED. The customized
fused batch gemm proves to outperform other GPU backends
that provide a similar functionality for the tensor basis. Non­
tensor basis actions are implemented using standard GEMM rou­
tines from both MAGMA and cuBLAS, which enable them
outperform other backends as well. Future directions include
adding support for AMD GPUs based on the HIP program­

ming model, improving the GPU occupancy for relatively low-
order problems, and designing a standard API for the device­
level batch GEMM, which users can integrate into customized
tensor contraction kernels.

Ac k n o w l e d g m e n t s

This work performed under the auspices of the U.S. Depart­
ment of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344, LLNL-CONF-815596.

Re f e r e n c e s

[1] “CEED,” 2020. [Online]. Available: https://ceed.exascaleproject.org/
[2] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny,

V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev et al., “MFEM: a modular
finite element methods library,” Computers & Mathematics with Appli­
cations, 2020.

[3] M. O. Deville, P. F. Fischer, and E. H. Mund, High-Order Methods for
Incompressible Fluid Flow, ser. Cambridge Monographs on Applied and
Computational Mathematics. Cambridge University Press, 2002.

[4] “MFEM.” [Online]. Available: https://github.com/mfem/mfem
[5] “Nek5000.” [Online]. Available: https://github.com/Nek5000/Nek5000
[6] “libParanumal.” [Online]. Available: https://github.com/paranumal/

libparanumal
[7] “libCEED,” 2020. [Online]. Available: https://github.com/ceed/libceed
[8] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,

H. Ltaief, P. Luszczek, and S. Tomov, “Numerical linear algebra on
emerging architectures: The PLASMA and MAGMA projects,” J. Phys.:
Conf. Ser., vol. 180, no. 1, 2009.

[9] “MAGMA.” [Online]. Available: http://icl.cs.utk.edu/magma/
[10] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”

SIAM Review, vol. 51, no. 3, pp. 455-500, 2009.
[11] D. A. Matthews, “High-performance tensor contraction without trans­

position,” SIAM Journal on Scientific Computing, vol. 40, no. 1, pp.
C1-C24, 2018.

[12] J. Huang, D. A. Matthews, and R. A. van de Geijn, “Strassen’s algorithm
for tensor contraction,” SIAM Journal on Scientific Computing, vol. 40,
no. 3, pp. C305-C326, 2018.

[13] J. Kim, A. Sukumaran-Rajam, V. Thumma, S. Krishnamoorthy, A. Pa-
nyala, L.-N. Pouchet, A. Rountev, and P. Sadayappan, “A code generator
for high-performance tensor contractions on GPUs,” in 2019IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
IEEE, 2019, pp. 85-95.

[14] W. Ma, S. Krishnamoorthy, O. Villa, K. Kowalski, and G. Agrawal, “Op­
timizing tensor contraction expressions for hybrid cpu-gpu execution,”
Cluster computing, vol. 16, no. 1, pp. 131-155, 2013.

[15] Y. Shi, U. N. Niranjan, A. Anandkumar, and C. Cecka, “Tensor contrac­
tions with extended BLAS kernels on CPU and GPU,” in 2016 IEEE
23rd International Conference on High Performance Computing (HiPC).
IEEE, 2016, pp. 193-202.

[16] A. Abdelfattah, M. Baboulin, V. Dobrev, J. J. Dongarra, C. W. Earl,
J. Falcou, A. Haidar, I. Karlin, T. V. Kolev, I. Masliah, and S. Tomov,
“High-Performance Tensor Contractions for GPUs,” in International
Conference on Computational Science 2016, ICCS 2016, 6-8 June
2016, San Diego, California, USA, 2016, pp. 108-118. [Online].
Available: https://doi.org/10.1016/j.procs.2016.05.302

[17] K. Swirydowicz, N. Chalmers, A. Karakus, and T. Warburton, “Accelera­
tion of tensor-product operations for high-order finite element methods,”
The International Journal of High Performance Computing Applications,
vol. 33, no. 4, pp. 735-757, 2019.

[18] P. Springer and P. Bientinesi, “Design of a high-performance gemm-
like tensor-tensor multiplication,” ACM Transactions on Mathematical
Software (TOMS), vol. 44, no. 3, pp. 1-29, 2018.

[19] P. Fischer, M. Min, T. Rathnayake, S. Dutta, T. Kolev, V. Dobrev,
J.-S. Camier, M. Kronbichler, T. Warburton, K. Swirydowicz, and
J. Brown, “Scalability of high-performance PDE solvers,” The
International Journal of High Performance Computing Applications,
vol. 34, no. 5, pp. 562-586, 2020. [Online]. Available: https:
//doi.org/10.1177/1094342020915762

[20] “deal.ii.” [Online]. Available: https://github.com/dealii/dealii
[21] “CEED benchmarks,” 2020. [Online]. Available: https://github.com/

CEED/benchmarks

60

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:19:42 UTC from IEEE Xplore. Restrictions apply.

