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Abstract-We present new GPU implementations of the tensor 
contractions arising from basis-related computations for high-
order finite element methods. We consider both tensor and non-
tensor bases. In the case of tensor bases, we introduce new kernels 
based on a series of fused device-level matrix multiplications 
(GEMMs), specifically designed to utilize the fast memory of the 
GPU. For non-tensor bases, we develop a tuned framework 
for choosing standard batch-BLAS GEMMs that will maximize 
performance across groups of elements. The implementations 
are included in a backend of the libCEED library. We present 
benchmark results for the diffusion and mass operators using 
libCEED integration through the MFEM finite element library 
and compare to those of the previously best-performing GPU 
backends for stand-alone basis computations. In tensor cases, 
we see improvements of approximately 10-30% for some cases, 
particularly for higher basis orders. For the non-tensor tests, the 
new batch-GEMMs implementation is twice as fast as what was 
previously available for basis function order greater than five and 
greater than approximately 105 degrees of freedom in the mesh; 
up to ten times speedup is seen for eighth-order basis functions. 

Index Terms-Tensor contractions, finite elements, high-order 
methods, matrix-free FEM, GPU, batched linear algebra 

I. INTRODUC TION 

The Center for Efficient Exascale Discretizations (CEED) 
[l ] is a co-design center of the Exascale Computing Project, 
with the goal of providing scientific application software 
with tools for incorporating effective and accurate high-order 
discretization methods that fully utilize current and future 
high-performance computing hardware. A key focus of the 
CEED project is high-order finite element methods with 
matrix-free evaluation, which requires less memory and fewer 
FLOPs per "matrix"-vector application than standard methods 
involving the assembly of sparse matrices for finite element 
operators [2], [3]. In addition to high-level finite element 
libraries MFEM [4], Nek5000/NekRS [5], and libParanumal 
[6], the CEED project is developing libCEED [7], which gives 
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applications a flexible, versatile, low-level API for defining 
high-order operators for matrix-free evaluation. 

libCEED has multiple backends to provide performance 
for a variety of use cases across many CPU and GPU 
architectures. The work presented here is developed within 
the framework of improving the performance of the libCEED 
MAGMA [8], [9] backend, specifically the basis computa-
tions for both tensor and non-tensor bases. We describe new 
algorithms for device-level batch-GEMM-type operations for 
tensor bases, and present examples of tuning standard batch 
GEMM for non-tensor bases. Though the algorithms presented 
are designed for high-order finite element methods, the tensor 
basis kernels could further be adapted for applications with 
tensor contractions of similar sizes. 

II. RELATED WORK 

Many physical systems of interest can be entirely or par-
tially written in terms of tensor contractions [10]. Accordingly, 
there has been much interest recently in efficient algorithms 
and code generation for general tensor contractions [ll]-[13], 
as well as tensor contraction implementations for GPUs [14], 
[15]. For tensor contractions arising from high-order finite 
element methods, some of the authors have previously investi-
gated the use of batch-GEMMs to perform tensor contractions 
[16]. Here, we improve the performance through formulating 
a series of tensor contractions to share the same execution 
context, thus increasing the memory bandwidth by maximizing 
data reuse. Swirydowicz et al. demonstrated highly-tuned opti-
mizations of the specific computations required for the CEED 
bake-off problems as part of a corresponding "bake-off kernel" 
study [17]; however, these kernels are optimized for each finite 
element operator, and cannot be used within libCEED's more 
general framework, which is explained further in Section III. 
Instead, we focus solely on the "basis actions" of a fully-
compliant libCEED backend. Our series of fused device-level 
batch-GEMM actions is similar to the approach of Springer and 
Bientinesi for general tensor contractions on CPUs [18]. 

III. DESIGN OVERVIEW OF A LIBCEED BACKEND 

libCEED aims to define and provide an interface to a 
general format representing the operators from high-order 
discretizations, for which building a sparse matrix is not the 
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most efficient choice for storage or use [7]. This format is 
based on an algebraic factorization that can be written for a 
general finite element operator A as

A  = P T GtB t D B G  P. (1)
libCEED operations

The P  operator is related to the management of a distributed 
parallel mesh and is handled by the high-level application 
code. libCEED handles local computations, with its func­
tionality accessed through a C e e d  struct instance created 
by a distributed process. The B t D B  sequence of operations 
represents, for each local process, the transformation of its 
elements to the reference element’s quadrature points and the 
subsequent numerical integration of terms in the weak form 
of the equation to be solved.

A. libCEED Operators

1) The G Operator -  Element Restrictions: The libCEED 
element restrictions are mappings between what libCEED calls 
“L-vectors,” containing all the degrees of freedom that are 
local to a process, and “E-vectors,” with degrees of freedom 
ordered by element. In an E-vector, nodes on element bound­
aries will be repeated in multiple elements for continuous 
finite element spaces. G is defined as the action that takes 
an L-vector and returns an E-vector, and Gt provides the 
corresponding reverse mapping.

2) The B  Operator -  Basis Actions: The B operator takes 
the E-vector produced by the element restriction and computes 
values for each basis function at the quadrature points of each 
element. The specific action of B on the basis functions is 
determined by the operator (e.g. interpolation, gradient). In the 
tensor case, this action is represented through a series of one­
dimensional tensor contractions for each element, as detailed 
in Section IV-A; for non-tensor bases, we structure the basis 
actions as standard dense matrix-matrix multiplications (see 
Section V). The transpose operator, B t is handled similarly, 
with an additional sum over the dimensional component in 
the case of the transpose gradient action. The improvement of 
these basis operators is the emphasis of this work.

3) The D Operator -  QFunctions: A key difference be­
tween libCEED’s factorized approach and other high-order 
finite element implementations is the use of the general user- 
defined “QFunction.” This function operates solely on the 
quadrature points. It involves computations related to the 
mesh transformations and the physics of the equation. This 
approach provides greater flexibility and ease of implementing 
new operators, at the cost of reducing some opportunities 
for optimization. The general interface for providing a user- 
defined QFunction also allows the use of QFunctions from 
other sources, such as automatic differentiation libraries or the 
output from functions in outside software.

B. libCEED Backends and Interoperability
Each libCEED backend implements actions related to the 

three main libCEED operators, plus a high-level operator that 
combines the libCEED actions as listed in equation 1, and

supplemental functions related to memory management. The 
libCEED backend structure aims to minimize code duplication 
through delegation. The MAGMA backend, for example, dele­
gates QFunction application to the non-fused CUDA backends.

At the time of this work, only two CUDA backends imple­
mented non-tensor basis actions: c u d a - r e f , the reference 
CUDA backend, and MAGMA. For tensor bases, the best 
performance is achieved by operator fusion with runtime com­
pilation in the c u d a - g e n  backend. Here “operator fusion” 
refers to creating one kernel to perform the entire high- 
level operation, rather than applying each sub-operator (G, 
B, D, B t , and Gt ) separately. Prior to the work detailed 
here, the best non-fused CUDA backend was c u d a - s h a r e d , 
so named because it utilizes the GPU’s shared memory to 
increase performance. In cases where fusion is not possible 
(e.g. not enough GPU memory available for the fused kernel or 
the need for a QFunction provided through an external library 
or source, which cannot be converted to code for runtime 
compilation), it is important to also have fast “stand-alone” 
kernels for the computationally-intensive basis actions.

IV. Te n s o r  Ba s i s  Co m p u t a t i o n s

We begin with some general definitions related to the kernel 
design:

• p: Number of nodes in one direction of the tensor basis. It 
is equal to (p+1), where p is the order of basis functions.

• q: Number of nodes in one direction of the tensor 
quadrature rule. It is usually equal to (p +  2) or so, but 
could be =  p or < p.

• P : Total number of nodes in each component in an 
element. For the tensor case, it is equal to p dim.

• Q: Total number of quadrature nodes in an element. For 
the tensor case, it is equal to qdim.

The MAGMA backend currently provides optimized GPU 
kernels for three basis actions: i n t e r p , g r a d , and w e i g h t , 
We will now describe these actions.

A. Tensor Basis Actions

The i n t e r p  action interpolates the basis functions to the 
quadrature points on the reference element. In the three­
dimensional tensor-grid case, we can write the interpolation 
operator as a six-dimensional tensor, J lm nij k , where l ,m ,n  e  
[1, q] are indices corresponding to the quadrature points and 
i, j , k e  [1,p] are indices for the basis nodes. This J  operator 
is the tensor product of its one-dimensional equivalent, J ,  a 
rank-two tensor of size q x p:

'm nijk J ii ® J m j (2)

The i n t e r p  action takes an input u ij k containing values of 
a function at the basis nodes of an element and returns v lm n , 
the interpolation of this function at the quadrature points.
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The g r a d  action evaluates the gradient of the basis func­
tions at the quadrature points. We represent it as three separate 
series of tensor contractions, V x, V v, and V~,

'D \ m n i j k  =  'D l i  3 m j  (2 > 3 n k

'D f m n i j k  =  'D rn j (2 > <Jnk

'D lm n i j k  =  j l i  y J m j  (2 > 'D n k ,  ( 3 )

where V  is again a rank-two tensor of size q xp, corresponding 
to the evaluation of the derivative of the one-dimensional basis 
functions at each quadrature point on the reference line. The 
g r a d  action takes the same input of values, ugfc, and produces 
vdimn, the gradient of the input function at the quadrature 
points, with the d, index referring to the dimension of the 
partial derivative.

Unlike the i n t e r p  and g r a d  actions, the w e i g h t  action 
takes no input, but merely builds the tensor product of the 
one-dimensional quadrature weights iv to create the three- 
dimensional weights, Wimn, as

Win-in = IVi ® IVm ® lVn . (4)
The w e i g h t  action does not have a transpose action, as it 
only computes something for the quadrature points, and has 
no correlation with the basis nodes.

B. Design Outlines
The GPU kernels for the basis actions share some coimnon 

design outlines. First, the core computational work of each 
action is implemented using a GPU device routine instead 
of a kernel. This enables calling the routine in different 
kernels that perform a certain action. For example, a 3D 
g r a d  action reads a ID vector and writes a 3D vector in 
a non-transposed mode, and reduces a 3D vector to a ID 
vector in the transposed mode. However, both kernels call the 
same device routines. Second, the device-level basis action 
operates only on the shared memory or the register file. Any 
global memory transactions are handled separately in other 
device routines. Third, apart from temporary scalar variables, 
no device routine allocates shared memory buffers or register 
arrays. These are usually defined at the kernel level, and passed 
to the device routines. Fourth, all device routines assume the 
same thread configuration. Such a property would allow the 
MAGMA backend to fuse multiple actions into one kernel in 
future developments.

C. Device-level Arguments
The i n t e r p  and g r a d  basis actions accept three main 

arguments. The first is an input vector u of size p chm per each 
component. Due to data layout considerations in libCEED, 
we will make a distinction between the components of the 
field u (i.e., whether it is scalar- or vector-valued) and the 
components added through the non-transpose g r a d  action. 
These gradient components will be referred to with dim.  The 
vector is read-only. We use p djm_1 threads to read the input 
vector in a 3D register array r U f d i m ]  [ncomp]  [ p ] . The 
second argument is an input/output vector v of size qchm per

component. We use q'1'"' threads to read/write the vector 
using another register array r V f d i m ]  [ncomp]  [q ] . The 
third argument is one or more constant basis matrices. These 
are the J  and V  basis matrices defined in IV-A. Regardless 
of the transposition mode of the basis action, constant basis 
matrices are always stored in p  x q buffers in the shared 
memory of the GPU.

As mentioned previously, the w e i g h t  action does not 
operate on an input vector u, and uses a constant vector of 
the quadrature weights (iv) in place of a basis matrix. It has 
an output v.

D. Kernel Configurations

Each kernel in the MAGMA backend performs one basis 
action by allocating the necessary register arrays and shared 
memory, reading the inputs, performing the action, and writing 
the output using a sequence of calls to the appropriate device 
routines. The developed kernels are batched across indepen­
dent elements, with a default configuration of one thread-block 
per element. The thread configuration is >m ax(p,q)dtm~ 1. 
However, sometimes this can lead to inefficient use of warps 
(e.g., ID operators would need 1 thread per thread-block). 
This is why we allow one thread block to process multiple 
elements using parallel groups of threads. The sizes dim, 
ncomp, p, and q are compile-time constants that are passed 
as C++ template parameters for the kernels. As an example, 
consider a 3D i n t e r p  action with (p, q) =  (2,3). This means 
P  =  23 =  8, and Q = 33 =  27, and so thread-blocks would 
use 3:! =  9 threads per element. Figure 1 is a high-level
representation of such a basis action.

Basis Action

I
One or more basis matrices 

(2 X  3 each)

Fig. 1. A high-level view of a 3D basis action kernel for (p ,q) =  (2 ,3 ) . 
The u-vector is read using 4 threads, while the n-vector is read/written using 
9 threads.

E. Tensor Contraction as Batch GEMM

The i n t e r p  and g r a d  basis actions call a tensor con­
traction function at their core. The reference CPU backend in 
libCEED implements the tensor contraction as follows:
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int tensor_contract(
int A , int B, int C, int J,
const double* s, CeedTransposeMode tmode,
int Add,
const double *x, double* y)

{
int tstrideO = B, tstridel = 1; 
if (tmode == CEED_TRANSPOSE) { 

tstrideO = 1; tstridel = J;
}

in shared memory as a pre-processing step before the next 
product.

The first product uses the u-vector as an input, which is 
represented as a batch of single-row matrices (size 1 xp). Each 
thread possesses one row of the u-vector, and independently 
computes the corresponding single-row output matrix (size 1 x 
<7 ) .

if ( ! Add)
for (int q=0; q<A*J*C; q++) 

y[q] = (CeedScalar) 0.0;

for (int a=0; a<A; a++) 
for (int b=0; b<B; b++)

for (int j=0; j<J; j++) {
CeedScalar tq = s[j*tstrideO + b*tstridel]; 
for (int c=0; c<C; C++)

y [(a*J+j)*C+c] += tq * x [(a*B+b)*C+c];
}

return 0;
}

This serial CPU code can be interpreted as a batch g e m m  op­
eration. Recall that GEMM is defined as (Cm . n = a A m . /, x 
B k . „ I +  . n). Figure 2 is a GEMM -like interpretation of the
code above. Each of the x  and y vectors can be represented 
using an array of independent matrices, of sizes CxB and 
C xJ, respectively. The constant B x J  matrix s represents 
the constant basis matrix for such contraction. The variables 
s t r i d e O  and s t r i d e l  handle the transposition of the s 
matrix. The A d d  option can be handled through the scalar /3 
in the GEMM equation. At all times, the scalar a  is set to one.

ro

Fig. 2. Batch GEMM representation of a single tensor contraction in libCEED .

F. Example: 3D i n t e r p  and g ra d  Basis Actions
The i n t e r p  and g r a d  basis actions are represented as a 

sequence of tensor contractions. The 3D i n t e r p  action per­
forms three tensor contractions (i.e. three batch GEMMs), while 
the g r a d  action requires nine batch GEMMs (three for each 
dimension). We consider an example of a 3D i n t e r p  basis 
action for (p, q) = (2, 3), and for one component only. The 
three batch GEMMs are shown in Figures 3 through 5. As 
the computation progresses, the batch size becomes smaller 
(divided by p), but the individual matrix size becomes larger 
(rows multiplied by q, and columns fixed at p, except for 
the final output). The intermediate outputs are transformed

1—
1 1®.

]  ! 1st product:
"1! Batch = p2 of 

1 D GEM M s
j(m,n,k)=(1,q,p) j

Transform to Batch 
p of qXp  matrices

Fig. 3. First product in a 3D interpolation basis action. For (p, q) = (2, 3), 
the first product is a batch DGEMM with 4 operations of size (m, n, k) =
(1, 3, 2).

The output matrices of the first product are transformed 
in shared memory into a batch p  of q x p  matrices. The 
transformation also reorganizes the threads so that they are 
properly indexed in their respective GEMM operations. The 
output is a batch p  of q x q matrices.

Fig. 4. Second product in a 3D interpolation basis action. For (p, q) = (2, 
3), the second product is a batch DGEMM with 2 operations of size (m, n, 
k) = (3, 3, 2).

The final product is one GEMM operation, so the batch size 
is one. The output of the second product is transformed into 
a single matrix of size (q2 x p). The final output is a (j2 x q 
matrix that is stored in the rV register array.

Fig. 5. Third product in a 3D interpolation basis action. For (p, q) = (2, 3), 
the third product is single DGEMM operation of size (m, n, k) = (9, 3, 2).

A 3D g r a d  basis action can be viewed as performing the 
i n t e r p  action three times for each dimension i d i m  G j 1, 2,
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3}. There are some differences, though. First, the g r a d  basis 
action takes two basis matrices instead of one: d i n t e r p l d ,  
which is the one-dimensional interpolation operator J ,  and 
d g r a d l d ,  the one-dimensional gradient matrix V. Second, 
three batch GEMMs take place for each value of i d i m .  The 
d g r a d l d  matrix is used in the first batch GEMM for i d i m =  0, 
in the second batch GEMM for i d i m =  1, and in the third 
batch GEMM for i d i m =  2. Otherwise, the d i n t e r p l d  matrix 
is used; this corresponds to the combination of J  and V  in 
Eq. 3. Third, for the non-transposed mode, we read one u- 
vector for all values of i d i m ,  and produce three different v- 
vectors. Fourth, for the transposed mode, we read a different 
(/-vector for each value of i d i m ,  and accumulate the result 
across i d i m  into one /’-vector.

V . N o n t e n s o r  B a s i s  C o m p u t a t i o n s

In the case of non-tensor bases, the operators for the 
i n t e r p ,  g r a d ,  and w e i g h t  actions cannot be represented 
as tensor products of one-dimensional matrices. Instead, in 
libCEED, the user provides matrices corresponding to the 
interpolation (J), gradient (D ), and quadrature weights (W)  at 
every quadrature node in the one-, two-, or three-dimensional 
element. This means the w e i g h t  action for non-tensor is no 
longer a computation; we will focus solely on i n t e r p  and 
g r a d  . The i n t e r p  action for an element is now a standard 
matrix-matrix multiplication,

vi = J im , (5)

with input u and output v represented as vectors, since they 
are no longer ordered on a tensor grid. The matrix will be 
of size Q x P .  The g r a d  action is similar, except the gradient 
matrix D  is of size (dim x Q) x P,  with dim blocks of Q 
rows for each component of the gradient.

Because we need to compute these matrix multiplications 
for every element, we can think of an input vector for multiple 
elements as a matrix Uie, with each column representing an 
element. Then the interpolation action for all elements can be 
written as one large matrix-matrix multiplication,

1/' Jli-U-iei (6)

and similarly for the g r a d  action. In the case of a vector­
valued field, we can replace the index e with E  = e + c * N e, 
where c G [1, ncomp] is the component and N e is the total 
number of elements being processed by the basis action.

A. Standard vs. Batch GEMM
As we have formulated the non-tensor basis action in terms 

of standard matrix multiplication, the actions can be performed 
with standard GEMM calls. Figure 6 shows the typical shape 
of the GEMM call in libCEED. The dimensions of the matrices 
(m, n. A/) usually involve small values of m and k, but a large 
value of n. While the size range may vary, we consider the 
typical dimensions in the libCEED bake-off problems.

Ideally, a single gemm operation would be enough to 
reach the GPU peak performance (e.g. using cublasDgemm). 
However, the large value of n  compared to the small m

and k values can hinder performance. Therefore, we also 
consider performing the DGEMM operation in Figure 6  as a 
batch DGEMM operation, splitting the problem across the n 
dimension to potentially create a more balanced workload for 
the GPU. The batch has the same A, with different B  and 
C  matrices within a fixed stride from each other. Factoring 
n  into b a tc h C o u n t x //, describing the number of batch 
GEMM calls and the number of columns in each B  and C 
(?;), facilitates performance tuning for the batch GEMM call. 
Transforming the DGEMM in Figure 6  into a batch DGEMM does 
not require setting up pointer arrays that may impact the 
performance. Both cuBLAS and MAGMA provide stride- 
based batch d g e m m  kernels.

n = nelem X ncomp

B

A  o r  AT I  C

Fig. 6. Shape of the DGEMM operation for the non-tensor basis action in 
libCEED.

Figures 7, 8, and 9 show three different behaviors for 
the best perfonning DGEMM configuration on three different 
problem sizes. The (P , Q ) sizes are typical in the standard 
MFEM benchmarks for libCEED . We also assume a relatively 
large n  = n c o m p x n e l e m e n t s = 1 0 , 000 in order to test the 
asymptotic performance of the GPU. Each figure marks the 
achieved perfonnance of the “non-batch” DGEMM kernel in the 
cuBLAS and MAGMA libraries with horizontal dashed lines. 
Each figure also shows various perfonnance numbers for the 
batch DGEMM kernels in both libraries according to different 
( b a t c h C o u n t ,  p  pairs. By trying out different combinations 
of ( b a t c h C o u n t ,  ?;), we can find some cases where the batch 
kernels achieve better perfonnance than a single d g e m m .

/S' /S' ^  q>
AO Al/ /O Ap AO AO A b cO <O V ' U / U / K' K' cy Cl' Cl' CV 

,Q> <0 <0 V  *V 0/ K« K« 6-i' Ci' Ci' Ci' Ci' <rV Ci' Cv Cv Cvb  <o- <o- .p- ,o- o o- q? A  <o A  C  cQ G E M M  c?A5 b 'Q/ o
(batchcount, p)

Fig. 7. Performance of different DGEMM configurations using cuBLAS and 
MAGMA. Results are shown for (P , Q) =  (27, 64) on a Tesla V100 GPU 
using CUDA 10.1 Toolkit.
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For relatively small sizes (Figure 7), the batch DGEMM rou­
tine in MAGMA is the best performing kernel. Medium sizes 
such as the ones in Figure 8 show a winning scenario for the 
batch cuBLAS kernel. As we increase the sizes of (P,  Q ), we 
reach an asymptotic behavior, where the non-batch cuBLAS 
DGEMM is on par with its batch variant. Both of the cuBLAS 
kernels are within 85% of the GPU peak performance. In this 
case, it is usually better to call the non-batch kernel, since the 
subdivision size n that achieves the best performance might 
not fully divide the original n .

4.5
4.0
3.5 

.(n 3.0
Q.

2.5 
H 2.0

1.5
1.0 
0.5

(batchcount, n)

Fig. 8. Performance of different DGEMM configurations using cuBLAS and 
MAGMA. Results are shown for (P , Q) =  (125, 216) on a Tesla V100 GPU 
using CUDA 10.1 Toolkit.

All the autotuning sweeps for the best performing 
(b a t c h C o u n t , n) pair against the regular DGEMM kernels 
were conducted offline. The collected results led to the de­
velopment of a very lightweight layer that selects the best 
performing kernel out of the four variants that have been tested 
during the offline sweep. Although the non-tensor basis actions 
usually trail the tensor basis mode in performance (because 
of the extra computation, scaling with PQ  rather than ~  p4 
for the tensor case), the former is more portable due to the 
reliance on standard kernels that are usually highly optimized 
by vendors and widely-used open source libraries.

VI. LIBCEED Be n c h m a r k s : Ba k e -o f f  Pr o b l e m s

To compare and improve performance across a number 
of high-level finite element libraries involved in the project, 
CEED defined a series of bake-off problems (BPs) [19]. The 
BPs centered on variations of solving the positive definite 
Helmholtz equation,

— V • p Vu +  fiu = f  in U, (7)

with p  and f  nonnegative functions in the domain U . For 
BP1, p  is taken to be zero and fi to be one, which results in 
solving an interpolation problem with a standard mass matrix. 
For BP3, p  is one and fi is zero, creating a diffusion problem 
with the standard stiffness matrix. In terms of the basis actions, 
BP1 will test i n t e r p , while BP3 tests g r a d .

The results in Fischer et al. [19] focused on optimized im­
plementations for the matrix-free calculations of each operator

Fig. 9. Performance of different DGEMM configurations using cuBLAS and 
MAGMA. Results are shown for (P , Q) =  (7 29 ,1000) on a Tesla V100 
GPU using CUDA 10.1 Toolkit.

as implemented in Nek5000, MFEM, libParanumal, and deal.ii 
[20], without reliance on libCEED. Our results here compare 
the performance of standard “non-fused” libCEED backends 
as described in III-B on two problems modeled after BP1 and 
BP3. We use an implementation of the mass and diffusion 
problems provided through MFEM’s integration with libCEED 
backends [21]. One slight variation is that the BPs in [19] used 
homogeneous Neumann conditions for BP1 and homogeneous 
Dirichlet conditions for BP3, while we use Dirichlet conditions 
for both. Furthermore, the implementation in [19] used diag­
onally preconditioned CG, while the implementation we used 
does not have any preconditioning.

VII. PERFORM ANCE RESULTS

We now discuss the performance results of the MAGMA 
basis actions, comparing to the previously best-performing 
libCEED CUDA backends for each case, tensor and non­
tensor. Because libCEED’s computations are at the local level, 
we demonstrate backend performance improvements on a sin­
gle GPU. The main implication of large-scale MPI parallelism 
for our work is a decrease in the local problem size per GPU 
(the x-axis on e.g. Fig. 10). For in-depth discussion of strong 
scaling for the CEED BPs, see [19].

A. Tensor Results

For the tensor benchmark tests, we consider a three­
dimensional block mesh and standard Q-type hexahedral finite 
elements using the Gauss-Lobatto-Legendre (GLL) nodes. We 
use basis function orders of p £ [1, 8]. The experiments were 
conducted with a Tesla V100 GPU with CUDA 10.2.89.

The results of the mass problem (BP1) and diffusion prob­
lem (BP3) for the c u d a - s h a r e d  and MAGMA backends 
are shown in Figures 10 and 11, respectively. A representative 
subset of tested basis function orders is shown for clarity. 
The y-axis, which shows the number of degrees of freedom 
(DOFs) in the mesh times the number of conjugate gradient 
(CG) iterations divided by time in the solver, represents the 
rate at which MFEM using the specified libCEED backend

58

Authorized licensed use limited to: University of Manchester. Downloaded on May 19,2021 at 20:19:42 UTC from IEEE Xplore.  Restrictions apply. 



was able to process the necessary data to apply the matrix- 
free operator; alternatively, we can consider this the rate at 
which the implementation is able to do the necessary work for 
solving the problem. In Figures 12 and 13 we show the ratio of

Fig. 12. Ratio of DOFs processed by MAGMA to the c u d a - s h a r e d  back­
end for the mass problem (BP1).

Fig. 10. MAGMA and c u d a - s h a r e d  backend performance for tensor-basis 
mass problem (BP1).

Fig. 13. Ratio of DOFs processed by MAGMA to the c u d a - s h a r e d  back­
end for the diffusion problem (BP3).

Fig. 11. MAGMA and c u d a - s h a r e d  backend performance for tensor-basis 
diffusion problem (BP3).

this “DOFs processing rate” metric for the MAGMA backend 
divided by that of c u d a - s h a r e d . The benefit of MAGMA’s 
fused batch-BLAS approach is greatest for higher orders of 
basis functions, particularly for the diffusion problem using 
the g r a d  action, where several cases show approximately 1.2 
times speedup; many more are within the range of 1.1 times. 
This is important because orders 7 and higher are routinely 
used, e.g., for incompressible flow simulations [3], [5].

B. Non-tensor Results

To compare the non-tensor performance, the meshes of the 
tensor benchmarks were modified to use P-type tetrahedron 
elements, with each element of the hexahedral mesh divided 
into six tetrahedrons. In Figures 14 and 15 we consider 
the performance of the backends in terms of the rate of 
DOFs processed in the CG solver. (Again, a representative 
subset of basis function orders was chosen to simplify the

figures.) Now we are comparing the MAGMA backend’s 
tuned batch GEMM approach to the c u d a - r e f  backend, as 
c u d a - s h a r e d  does not implement non-tensor bases. In

io2 io3 io4 105 106 107
DOFs

Fig. 14. MAGMA and c u d a - r e f  backend performance for non-tensor mass 
problem (BP1).

Figure 16, we show the ratio of the metric for MAGMA 
compared to c u d a - r e f , this time with BP1 and BP3 on the
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Ie8

Fig. 15. MAGMA and c u d a - r e f  backend performance for non-tensor 
diffusion problem (BP3).

same plot. We see similar trends as in the tensor case, in that 
there is a greater benefit of the MAGMA backend’s approach 
for higher orders of basis functions, with a clear change in 
behavior for both BP1 and BP3 for p >  3 . A notable difference 
between the tensor case, however, is the continued increase of 
speedup for MAGMA as the number of elements in the mesh 
increases (larger number of DOFs), where MAGMA can be 
up to 10 times faster than c u d a - r e f  for p =  8.

Fig. 16. Ratio of DOFs processed by MAGMA to the c u d a - r e f  backend 
for the mass (dash/star) and diffusion (solid/x).

VIII. Co n c l u s i o n  a n d  Fu t u r e  W o r k

We have presented improvements to a GPU backend for 
high-order matrix-free operator in libCEED. The backend is 
based on the MAGMA library. It uses both standard and 
customized batch matrix multiplication in order to perform 
different basis actions as defined in libCEED. The customized 
fused batch gemm proves to outperform other GPU backends 
that provide a similar functionality for the tensor basis. Non­
tensor basis actions are implemented using standard GEMM rou­
tines from both MAGMA and cuBLAS, which enable them 
outperform other backends as well. Future directions include 
adding support for AMD GPUs based on the HIP program­

ming model, improving the GPU occupancy for relatively low- 
order problems, and designing a standard API for the device­
level batch GEMM, which users can integrate into customized 
tensor contraction kernels.
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