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The world of computing is in rapid transition, driven by the growth of smartphones, cloud services, and
embedded devices, all while the future of semiconductors is in great flux due to the slowing of Moore’s Law
and increasing semiconductor foundry costs. Concomitantly, the future of advanced scientific computing
(aka supercomputing or high-performance computing (HPC)), is at an important inflection point. For the last
60 years, the world’s fastest computers were almost exclusively produced in the United States on behalf of
scientific research in the national laboratories. Change is now in the wind. While costs now stretch the limits
of U.S. government funding for advanced computing, Japan and China are now leaders in the bespoke HPC
systems funded by government mandates. However, another, perhaps even deeper, fundamental change has
occurred. The major cloud vendors have invested in global networks of massive scale systems that dwarf
today’s HPC systems. Driven by the computing demands of Al these cloud systems are increasingly built using
custom semiconductors, reducing the financial leverage of traditional computing vendors, while also reshaping
how we think about the nature of scientific computation. Building the next generation of leading edge HPC
systems will require rethinking many fundamentals and historical approaches by embracing end-to-end
co-design; custom hardware configurations and packaging; large-scale prototyping, as was common thirty
years ago; and collaborative partnerships with the dominant computing ecosystem companies. Universities,
industry and governments 1l need to reinvest in the basics of collaborative co-design, chiplet systems, quantum
technology and new fabrication technologies. We need to reinvest in training the next generation of computer
architects and collaborate on experimental prototypes.
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1 INTRODUCTION

Today, computing pervades all aspects of our society, in ways once imagined by only a few. Within
science and engineering, computing has often been called the third paradigm, complementing
theory and experiment, with big data and Al often called the fourth paradigm [15]. Spanning both
data analysis and disciplinary and multidisciplinary modeling, scientific computing systems have,
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2 Daniel Reed, Dennis Gannon, and Jack Dongarra

like their commercial counterparts, grown ever larger and more complex, and today’s exascale
scientific computing systems rival global scientific facilities in cost and complexity. However, not
all is well, in the land of scientific computing.

In the initial decades of digital computing, government investments and the insights from
designing and deploying supercomputers often shaped the next generation of mainstream and
consumer computing products. Today, that economic and technological influence has increasingly
shifted to smartphone and cloud service companies. Moreover, the end of Dennard scaling [3],
slowdowns in Moore’s Law, and the rising costs for continuing semiconductor advances, have made
building ever-faster supercomputers more economically challenging and intellectually difficult.

As Figure 1 suggests, our thesis is that cur-
rent approaches to designing and construct- Commodity HPC Era
ing leading edge high-performance computing = Meerestaw 86 Chips
(HPC) systems must change in deep and funda- P
mental ways, embracing end-to-end co-design;
custom hardware configurations and packag- semi;:;iumr’
ing; large-scale prototyping, as was common
thirty years ago; and collaborative partnerships
with the dominant computing ecosystem com- Asics
panies, smartphone and cloud computing ven- o Bespoke HPC Era
dors. We distinguish leading edge HPC — the
very highest performing systems — from the Fig. 1. Technical and Economic Forces Reshaping HPC
broader mainstream of midrange HPC. For the
later, market forces continue to shape the expansion of that market. Let’s begin by examining
how all of this has happened, then examining possible future directions for high-performance
computing innovation and operations.
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2 ECOSYSTEM SHIFTS

To understand the potential future of high performance computing, one must examine the fun-
damental shifts in computing technology. These shifts have occurred along two axes: the rise of
massive scale commercial clouds and the economic and technological challenges associated with
the evolution of semiconductor technology.

2.1 Cloud Innovations

Apple, Samsung, Google, Amazon, Microsoft, and the other cloud service companies are now major
players the computing hardware and software ecosystem, both in scale and in technical approaches.
Initially, these companies purchased standard servers and networking equipment for deployment in
traditional collocation centers (colos). As scale increased, they began designing purpose-built data
centers, optimized for power usage effectiveness (PUE), deployed at sites selected via multifactor
optimization - inexpensive energy availability, tax incentives and political subsidies, political and
geological stability, network access, and customer demand.

As cloud scale, complexity, and operational experience continued to grow, additional optimization
and leverage opportunities emerged, including software defined networking, protocol offloads, and
custom network architectures (greatly reducing dependence on traditional network hardware ven-
dors) [7]; quantitative analysis of processor [16], memory [39, 47], network [8, 11] and disk failure
modes [34, 38], with consequent redesign for reliability and lower cost (dictating specifications
to vendors via consortia like Open Compute [32]); custom processor SKUs, custom accelerators
(FPGAs and ASICs), and finally, complete processor design (e.g., Apple silicon, Google TPUs [20]
and AWS Gravitons). In between, the cloud vendors deployed their own global fiber networks.
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HPC Forecast: Cloudy and Uncertain 3

This virtuous cycle of insatiable consumer demand for rich services, business outsourcing to
the cloud, expanding data center capacity, and infrastructure cost optimization has had several
effects. Most importantly, it has dramatically lessened — and in many cases totally eliminated —
their dependence on traditional computing vendors. One need look no further than cloud service
provider and smartphone vendor market capitalizations, each near or in excess of $1T, to see the
dramatic shifts in influence and scale. Put another way, the locus of innovation and influence has
shifted from chip vendors and system integrators to cloud service providers.

2.2 Semiconductor Evolution

Historically, the most reliable engine of performance gains has been the steady rhythm of semicon-
ductor advances — smaller, faster transistors and larger, higher performance chips. However, as
chip feature sizes have approached 5 nanometers and Dennard scaling ended [3], the cadence of
new technology generations has slowed, even as semiconductor foundry costs have continued to
rise. With the shift to extreme ultraviolet (EUV) lithography [4] and gate-all-around FETs [5], the
“minimax problem” of maximizing chip yields, minimizing manufacturing costs, and maximizing
chip performance has grown increasingly complex for all computing domains, including HPC.

Chiplets [1, 27, 30] have emerged as a way to address these issues, while also integrating multiple
functions in a single package. Rather than fabricating a monolithic system-on-a-chip (SoC), chiplet
technology combines multiple chips, each representing a portion of the desired functionality,
possibly fabricated using different processes by different vendors and including IP from multiple
sources. Chiplet designs are part of the most recent offerings from Intel and AMD, where the latter’s
EPYC and Ryzen processors have delivered industry-leading performance via chiplet integration
[30]. Similarly, Amazon’s Graviton3 uses a chiplet design with seven different chip dies.

3 AN HPC CHECKPOINT

Given the rise of cloud ser-
vices and increasing con- Number of Systems Using X86 Architecture on the Top500
straints on commodity chip *” mintel = AMD

performance increases, it
is useful to examine the
current state of high—performaaﬁge
computing (HPC) and how .
the HPC ecosystem evolved
to reach its current struc-

250
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ture. From the 1970s to the 100
1990s, HPC experienced a w0 |
remarkably active period " I I I lin.. al I

of architectural creativity ’
and exploration. In the late
1970s, the Cray series of Fig. 2. Systems Using the x86-64 Architecture on the TOP500 [43]
machines [36] introduced
vector processing. Companies like Denelcor and Tera then explored highly multi-threaded paral-
lelism via custom processor design. Universities and companies were also active in exploring new
shared memory designs (e.g., NYU Ultracomputer [10], Illinois Cedar [23], Stanford DASH [25],
and BBN Butterfly [24]).

Finally, distributed memory, massively parallel computer designs (e.g., the Caltech Cosmic Cube
[41], Intel iPSC/2 [18], and Beowulf clusters [42]) established a pattern for hyperscaled performance
growth. Riding Moore’s law, the ever-increasing performance of standard microprocessors, together
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with the cost advantage of volume production, led to the demise of most bespoke HPC systems, a
shift often termed the “Attack of the Killer Micros” [31]. What followed was academic and industry
standardization based on x86-64 processors (see Figure 2) and predominantly gigabit Ethernet and
Infiniband networks, the Linux operating system, and message passing via the MPI standard.

By 2000, architectural innovation was limited to node accelerators (e.g., the addition of GPUs),
high-bandwidth memory, and small network improvements. This monoculture of processor, operat-
ing system, and network have become standard interfaces that now define the market boundaries
for innovation. At one time, dozens of high performance computing companies offered competing
products. Today, only a few companies build HPC systems at the largest scales; see Figure 3.

While incremental performance improvements continue, with new x86-64 processors and GPU
accelerators, basic innovation at the architectural level for supercomputers has been largely lost.
However, in the last two years, sparks of architectural creativity are again re-emerging, driven
by the needs to accelerate Al deep learning. Hardware startups, including Graphcore [19], Groq
[2], and Cerebras [13] are exploring new architectural avenues. Concurrently, the major cloud
service and smartphone providers have also developed custom processor SKUs, custom accelerators
(FPGAs and ASICs), and finally, complete processor designs (e.g., Apple A15 SoCs, Google TPUs
[20] and AWS Gravitons).

Against this HPC backdrop, the larger computing ecosystem itself is in flux:

o Dennard scaling [3] has ended and continued performance advances increasingly depend
on functional specialization via custom ASICs and chiplet-integrated packages.

e Moore’s Law is also at or near an end, and transistor costs are likely to increase as feature
sizes continue to decrease.

e Advanced computing of all kinds, including high-performance computing, requires on-
going non-recurring engineering (NRE) investment (.i.e., endothermic) to develop new
technologies and systems.

e The smartphone and cloud services companies are cash rich (i.e., exothermic), and they
are designing, building, and deploying their own hardware and software infrastructure at
unprecedented scale.

e Al is fueling a revolution in how both businesses and researchers think about problems and
their computational solution.

e Talent is following the money and the intellectual opportunities, which are increasingly in
a small number of very large companies or creative startups.

With this backdrop, what is the future of computing? Some of it is obvious, given the current
dominance of smartphone vendors and cloud service providers. However, it seems likely that
continued innovation in advanced high-performance computing will require rethinking some of
our traditional approaches and assumptions, including how, where, and when academia, government
laboratories, and companies spend finite resources and how we expand the global talent base.

4 LEADING EDGE HPC FUTURES

It now seems self-evident that supercomputing, at least at the highest levels, is endothermic,
requiring regular infusions of non-revenue capital to fund the non-recurring engineering (NRE)
costs to develop and deploy new technologies and successive generations of integrated systems.
In turn, that capital can come from either other, more profitable divisions of a business or from
external sources (e.g., government investment). Although most basic research is conducted in
universities, several large companies (e.g., IBM, Microsoft, and Google) still conduct long-term
basic research in addition to applied research and development.
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Fig. 3. Timeline of Advanced Computing

Cloud service companies now offer a variety of HPC clusters, of varying size, performance, and
price. Given this, one might ask why cloud service companies are not investing even more deeply
in the HPC market? Any business leader must always look at the opportunity cost (i.e., the time
constant, the talent commitment, and cost of money) for any NRE investments and the expected
return on investments. The core business question is always how to make the most money with the
money one has, absent some other marketing or cultural reason to spend money on loss leaders,
bragging rights, or political positioning. The key phrase here is“the most money;” simply being
profitable is not enough, which is why HPC is rarely viewed as a primary business opportunity.

The NRE costs for leading edge supercomputing are now quite large relative to the revenues and
market capitalization of those entities we call “computer companies,” and they are increasingly out
of reach for most government agencies, at least under current funding envelopes. The days are
long past when a few million dollars could buy a Cray-1/X-MP/Y-MP/2 or a commodity cluster
and the resulting system would land the top ten of the TOP500 list. Today, hundreds of millions
of dollars are needed to deploy a machine near the top of the TOP500 list, and at least similar, if
not larger, investments in NRE are needed. In addition, the energy and cooling costs for operating
such systems are now substantial and continuing to rise. What does this brave new world mean
for leading edge HPC? We believe five maxims must guide future HPC government and private
sector research and development strategies, for all countries.

Maxim One: Semiconductor constraints dictate new approaches. The “free lunch” of lower cost,
higher performance transistors via Dennard scaling [3] and faster processors via Moore’s Law is at
an end. Moreover, the de facto assumption that integrating more devices onto a single chip is always
the best way to lower costs and maximize performance no longer holds. Individual transistor costs
are now flat to rising as feature sizes approach one nanometer, due to the interplay of chip yields
on 300nm wafers and increasing fabrication facility costs. Today, the investment needed to build
state of the art facilities is denominated in billions of dollars per facility.

As recent geopolitical events have shown, there are substantial social, political, economic, and
national security risks for any country or region that lacks a robust silicon fabrication ecosystem.
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6 Daniel Reed, Dennis Gannon, and Jack Dongarra

Fabless semiconductor firms rightly focus on design and innovation, but manufacturing those
designs depends on reliable access to state of the art fabrication facilities, as the ongoing global
semiconductor shortage has shown. In the U.S., the the U.S. CHIPS Act [28] and its successors, which
would provide government support, are topics of intense political debate, with similar conversations
underway in the European Union. Finally, Intel, TSMC, and GlobalFoundries recently announced
plans to build new chip fabrication facilities in the U.S., each for different reasons.

Optimization must balance chip fabrication facility costs, now near $10B at the leading edge, chip
yield per wafer, and chip performance. This optimization process has rekindled interest in packaging
multiple chips, often fabricated with distinct processes and feature sizes. Such chiplets [27, 30] are
more than a way to mix capabilities from multiple sources, they are an economic and engineering
reaction to the interplay of chip defect rates, the cadence of feature size reductions, and semicon-
ductor manufacturing costs. However, this approach requires academic, government, and industry
collaborations to establish interoperability standards (e.g., the Open Domain-Specific Architecture
(OSDA) project [45] within the Open Compute Project [32] and the Universal Chiplet Interconnect
Express (UCle) [1] standard). Open chiplet standards can allow the best ideas from multiple sources
be integrated effectively, in innovative ways, to develop next-generation HPC architectures.

Maxim Two: End-to-end hardware/software co-design is essential. Leveraging the commodity
semiconductor ecosystem has led to an HPC monoculture, dominated by x86-64 processors and GPU
accelerators. Given current semiconductor constraints, substantially increased system performance
will require more intentional end-to-end co-design [29], from device physics to applications. China
and Japan are developing HPC systems outside of the conventional path, as seen by the Top500.
The supercomputer Fugaku[37] (Post-K Computer), which was developed jointly by RIKEN and
Fujitsu Limited, based on Arm technology with vector instructions, has taken the top spot on the
Top500 List, a ranking of the world’s fastest supercomputers. It also swept the other rankings of
supercomputer performance (i.e., HPCG, HPL-AI, and Graph500). The supercomputer Fugaku is
designed for versatile use based on a co-design approach between an application team and a system
development. Similarly, the Chinese government, academic community, and domestic HPC vendors
have made great efforts in the last few years to build a mature, self-designed software ecosystem
and promote the possibility of running large and complex HPC applications on large, domestically
produced supercomputers. It has been reported that China has two exaflops systems (OceanLight
and Tianhe-3); several Gordon Bell prize submissions were run on OceanLight [26].

Similar application driven co-designs were evident in the recent batch of Al hardware startups
mentioned above, as well as the cloud vendor accelerators. Such co-design means more than
encouraging tweaks of existing products or product plans. Rather, it means looking holistically at
the problem space, then envisioning, designing, testing, and fabricating appropriate solutions. In
addition to deep partnership with hardware vendors and cloud ecosystem operators, end-to-end co-
design will require substantially expanded government investment in basic research and development,
unconstrained by forced deployment timelines. In addition to partnerships with x86-64 vendors, the
ARM license model and the open source RISC-V [12] specification offer intriguing possibilities.

Maxim Three: Prototyping at scale is required to test new ideas. Semiconductors, chiplets, Al
hardware, cloud innovations - the computing system is now in great flux, and not for the first time.
As Figure 3 shows, the 1980s and 1990s were filled with innovative computing research projects and
companies, many aided by government funding, that built novel hardware, new programming tools,
and system software at large scale. To escape the current HPC monoculture and build systems better
suited to current and emerging scientific workloads at the leading edge, we must build real hardware
and software prototypes at scale, not just incremental ones, but ones that truly test new ideas using
custom silicon and associated software. Implicitly, this means accepting the risk of failure, including
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at substantial scale, drawing insights from the failure, and building lessons based on those insights.
A prototyping project that must succeed is not a research project; it is a product development.

Building such prototypes, whether in industry, national laboratories, or academia, depends on
recruiting and sustaining integrated research teams — chip designers, packaging engineers, system
software developers, programming environment developers, and application domain experts —
in an integrated, end-to-end way. Such opportunities make it intellectually attractive to work on
science and engineering problems, particularly given industry partnerships and opportunities to
translate research ideas into practice. Implicit in such teams is coordinated funding for workforce
development, basic research, and the applied R&D needed to develop and test prototype systems.

Maxim Four: The space of leading edge HPC applications is far broader now than in the past.
Leading edge HPC originated in domains dominated by complex optimization problems and solution
of time-dependent partial differential equations on complex meshes. Those domains will always
matter, but other areas of advanced computing in science and engineering are of high and growing
importance. As an example, the Science 2021 Breakthrough of the Year [40] was for Al-enabled
protein structure prediction [21], with transformative implications for biology and biomedicine.

Even in traditional HPC domains, the use of Al for data set reduction and reconstruction and for
PDE solver acceleration, is transforming computational modeling and simulation. The deep learning
methods developed by the cloud companies are changing the course of computational science, and
university collaborations are growing. The University of Washington, with help from Microsoft
Azure on protein-protein interaction [17], is part of a bioscience revolution. In other areas, OpenAl
is showing that deep learning can solve challenging Math Olympiad problems. In astrophysics, deep
learning is being used to classify galaxies [22], generative adversarial networks (GANs) [9] have
been used to understand groundwater flow in superfund sites [46], and deep neural networks have
been trained to help design non-photonic structures [33]. This past year, the flagship conference of
supercomputing (SC2021) had over 20 papers on neural networks in its highly selective program.
The HPC ecosystem is expanding and engaging new domains and approaches in deep learning, creating
new and common ground with cloud service providers.

Maxim Five. Cloud economics have changed the supply chain ecosystem. The largest HPC systems
are now dwarfed by the scale of commercial cloud infrastructure and social media company
deployments. A $500M supercomputer acquisition every five years provides limited financial
leverage relative to the billions of dollars spent each year by cloud vendors. Driven by market
economics, computing hardware and software vendors, themselves small relative to the large cloud
vendors, now respond most directly to cloud vendor needs.

In turn, government investment (e.g., the U.S. Department of Energy (DOE) Exascale DesignFor-
ward, FastForward, and PathForward programs [44], and the European Union’s HPC-Europa3 [6])
are small compared to the scale of commercial cloud investments and their leverage with those
same vendors. For example, HPC-Europa3, funded under the EU’s Eighth Framework Programme,
better known as Horizon 2020, has a budget of only €9.2M [6]. Similarly, the U.S. DOE’s multiyear
investment of $400M via the FastForward, DesignForward, and PathForward programs as part of
the Exascale Computing Project (ECP) targeted reduced power consumption, resilience, improved
network and system integration. The DOE only supplied approximately $100M in NRE for each
of the exascale systems under construction, while the cloud companies invested billions. Market
research [35] suggests that China, Japan, the United States, and the European Union may each
procure 1-2 exascale class systems per year, each estimated at approximately $400M.

The financial implications are clear. The government and academic HPC communities have
limited leverage and cannot influence vendors in the same ways they did in the past. New, collabo-
rative models of partnership and funding are needed that recognize and embrace ecosystem changes
and their implications, both in use of cloud services and collaborative development of new system
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8 Daniel Reed, Dennis Gannon, and Jack Dongarra

architectures. The cloud is evolving as a platform where specialized services such as attached
quantum processors, specialized deep learning accelerators and high-performance graph database
servers, can be configured and integrated into a variety of scientific workflows. However, that is
not the whole HPC story. Massive scale simulations require irregular sparse data structures and
the best algorithms are extremely inefficient on the current generation of supercomputers. The
commercial cloud is part of the future of HPC, but it is by no means all. New architecture research
and advanced prototyping are also needed.

As we have emphasized, the market capitalizations of the smartphone and cloud services vendors
now dominate the computing ecosystem, and the overlap between commercial Al application
hardware needs and those of scientific and engineering computing are creating new opportunities..
We realize this may be heretical to some, but there are times and places where commercial cloud
services can be the best option to support scientific and engineering computing needs.

The performance gaps between cloud services and HPC gaps have lessened substantially over
the past decade, as shown by a recent comparative analysis [14]. Moreover, HPC as a service is
now both real and effective, both because of its performance and the rich and rapidly expanding
set of hardware capabilities and software services. The latter is especially important; cloud services
offer some features not readily available in the HPC software ecosystem.

Some in academia and national laboratory community will immediately say, "But, we can do it
cheaper, and our systems are bigger!” Perhaps, but those may not be the appropriate perspectives.
Proving such claims means being dispassionate about technological innovation, NRE investments,
and opportunity costs. In turn, this requires a mix of economic and cultural realism in making
build versus use decisions and taking an expansive view of the application space, unique hardware
capabilities, and software tools. Opportunity costs are real, though not often quantified in academia
or government. Today, capacity computing (i.e., solving an ensemble of smaller problems) can easily
be satisfied with a cloud-based solution, and on-demand, episodic computing of both capacity and
large-scale scientific computing can benefit from cloud scaling.

5 CONCLUSIONS

The computing ecosystem is in enormous flux, creating both opportunities and challenges for the
future of advanced scientific computing. For the past twenty years, the most reliable engine of
HPC performance gains has been the steady improvement in commodity CPU technology due to
semiconductor advances. But with the slowing of Moore’s Law and the end of Dennard scaling,
improved performance of supercomputers has increasingly relied on larger scale (i.e., building
systems with more computing elements) and GPU co-processing. Concurrently, the computing
ecosystem has shifted, with the rise of hyperscale cloud vendors who are themselves developing
new hardware and software technologies.

Looking forward, it seems increasingly unlikely that future high-end HPC systems will be
procured and assembled solely by commercial integrators from only commodity components.
Rather, future advances will require embracing end-to-end design, testing and evaluating advanced
prototypes, and partnering strategically with both traditional chip and HPC vendors but also with
the new cloud ecosystem vendors. These are likely to involve (a) collaborative partnerships among
academia, government laboratories, chip vendors, and cloud providers, (b) increasingly bespoke
systems, designed and built collaboratively to support key scientific and engineering workload
needs, or (c) a combination of these two.

Put another way, in contrast to midrange systems, leading edge, HPC systems are increasingly
similar to large-scale scientific instruments (e.g., the Vera Rubin Observatory, the LIGO gravity
wave detector, or the Large Hadron Collider), with limited economic incentives for commercial
development. Each contains commercially designed and constructed technology, but each also
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contains large numbers of custom elements for which there is no sustainable business model.
Instead, we build these instruments because we want them to explore open scientific questions,
and we recognize that their design and construction requires both government investment and
innovative private sector partnerships.

Like many other large-scale scientific instruments, where international collaborations are an
increasingly common way to share costs and facilitate research collaborations, leading edge comput-
ing would benefit from increased international partnerships, recognizing that national security and
economic competitiveness issues will necessarily limit sharing of certain "dual use” technologies.
Subject to those very real constraints, we believe greater government investment in semiconductor
futures — both basic research and foundry construction — along with an integrated, long-term research
and development program that funds academic, national laboratory, and private sector partnerships to
design, develop, and test advanced computing prototypes will be needed if we are to build more perfor-
mant leading edge high-performance computing systems. These investments must be tens, perhaps
hundreds of billions of dollars, in scale.

We have long relied on the commercial market for the building blocks of leading edge HPC
systems. Although this has leveraged commodity economics, it has also resulted in systems ill-
matched to the algorithmic needs of scientific and engineering applications. With the end of Moore’s
Law, we now have both the opportunity and the pressing need to invest in first principles design.

Investing in the future is never easy, but it is critical if we are to continue to develop and deploy
new generations of high-performance computing systems, ones that leverage economic shifts,
commercial practices, and emerging technologies to advance scientific discovery. Intel’s Andrew
Grove was right when he said "only the paranoid survive", but paranoia alone is not enough -
successful competitors also need substantial financial resources and a commitment to technological
opportunities and scientific innovation.
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