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SUMMARY

Most predictions of Exascale machines picture billion way parallelism, encompassing not only millions of
cores, but also tens of thousands of nodes. Even considering extremely optimistic advances in hardware
reliability, probabilistic amplification entails that failures will be unavoidable. Consequently, software fault
tolerance is paramount to maintain future scientific productivity. Two major problems hinder ubiquitous
adoption of fault tolerance techniques: 1) traditional checkpoint based approaches incur a steep overhead
on failure free operations and 2) the dominant programming paradigm for parallel applications (the MPI
Standard) offers extremely limited support of software-level fault tolerance approaches. In this paper, we
present an approach that relies exclusively on the features of a high quality implementation, as defined by
the current MPI Standard, to enable algorithmic based recovery, without incurring the overhead of customary
periodic checkpointing. The validity and performance of this approach are evaluated on large scale systems,
using the QR factorization as an example. Copyright c� 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The insatiable processing power needs of domain science has pushed High Performance Computing
(HPC) systems to feature a significant performance increase over the years, even outpacing
“Moore’s law” expectations. Leading HPC systems, whose architectural history is listed in the
Top500† ranking, illustrate the massive parallelism that has been embraced in the recent years;
current number 1 – Titan – has over half a million cores (including accelerators), number 2 –
Sequoia – has over 1.5 million cores, and even with the advent of accelerators, it requires no less than
98,000 cores for the DiRAC system (#23) to breach the Petaflop barrier. Indeed, the International
Exascale Software Project, a group created to evaluate the challenges on the path toward Exascale,
has published a public report outlining that a massive increase in scale will be necessary when
considering probable advances in chip technology, memory and interconnect speeds, as well as
limitations in power consumption and thermal envelope [1]. According to these projections, as early
as 2014, billion way parallel machines, encompassing millions of cores, and tens of thousands of
nodes, will be necessary to achieve the desired level of performance. Even considering extremely
optimistic advances in hardware reliability, probabilistic amplification entails that failures will be
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unavoidable, becoming common events. Hence, fault tolerance is paramount to maintain scientific
productivity.

Already, for Petaflop scale systems the issue has become pivotal. On one hand, the capacity type
workload, composed of a large amount of medium to small scale jobs, which often represent the
bulk of the activity on many HPC systems, is traditionally left unprotected from failures, resulting
in diminished throughput when failures occur. On the other hand, selected capability applications,
whose significance is motivating the construction of supercomputing systems, are protected
against failures by ad-hoc, application-specific approaches, at the cost of straining engineering
efforts, translating into high software development expenditures. Traditional approaches based on
periodic checkpointing and rollback recovery, incurs a steep overhead, as much as 25% [2], on
failure-free operations. Forward recovery techniques, most notably Algorithm-Based Fault Tolerant
techniques (ABFT), use mathematical properties to reconstruct failure-damaged data and do exhibit
significantly lower overheads [3]. However, and this is a major issue preventing their wide adoption,
the resiliency support ABFT demands from the MPI library largely exceeds the specifications of the
MPI Standard [4] and has proven to be an unrealistic requirement, considering that only a handful
of MPI implementations provide it. Several propositions have emerged during the efforts of the MPI
forum toward the MPI-3 standard‡. However, these propositions are still in their infancy and it is
expected that several years will pass before they are blessed by the forum in a future revision and
become generally deployed and available.

The current MPI-3 standard leaves open an optional behavior regarding failures to qualify as a
“high quality implementation.” According to this specification, when using the MPI_ERRORS_-
RETURN error handler, the MPI library should return control to the user when it detects a failure.
In this paper, we propose the idea of Checkpoint-on-Failure (CoF) as a minimal impact feature to
enable MPI libraries to support forward recovery strategies. Despite the default application-wide
abort action that all notable MPI implementations undergo in case of a failure, we demonstrate that
an implementation that enables CoF is simple and yet effectively supports ABFT recovery strategies
that completely avoid costly periodic checkpointing.

This paper is an extended version of the distinguished work published in [5]. It completes the
analysis by considering the broader case of general applications where only part of the computations
are handled by MPI routines. In Section 5, we explain how such applications, for which periodic
checkpoint restart is generally not practical, can still integrate efficiently the subset of their MPI
operations with the CoF approach. Additionally, this type of deployment also reduces the checkpoint
overhead to an insignificant proportion of the runtime: the non-MPI part of the application can
remain dormant during the redeployment of MPI, so that the dataset remains resident in memory
without reloading from checkpoints. We then discuss the evaluation of this application scheme with
an additional evaluation in the experimental section.

The paper is organized as follows: the next section presents typical fault tolerant approaches
and related works to discuss their requirements and limitations. Then in Section 3 we present the
CoF approach, and the minimal support required from the MPI implementation. Section 4 presents
a practical use case: the ABFT QR algorithm and how it has been modified to fit the proposed
paradigm. Section 5 introduces a technique for the integration of CoF-enabled operations in broader
applications, and Section 6 presents an experimental evaluation of the implementation, followed by
our conclusions.

2. BACKGROUND & RELATED WORK

Message passing is the dominant form of communication used in parallel applications, and MPI is
the most popular library used to implement it. In this context, the primary form of fault tolerance
today is rollback recovery with periodical checkpoints to disk. While this method is effective in
allowing applications to recover from failures using a previously saved state, it causes serious

‡http://meetings.mpi-forum.org/mpi3.0_ft.php
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scalability concerns [6]. Moreover, periodic checkpointing requires precise heuristics for fault
frequency to minimize the number of superfluous, expensive protective actions [7, 8, 9, 10, 11].
In contrast, the work presented here focuses on enabling forward recovery. Checkpoint actions are
taken only after a failure is detected; hence the checkpoint interval is optimal by definition, as there
will be one checkpoint interval per effective fault.

Forward recovery leverages algorithms’ properties to complete operations despite failures. In
naturally fault tolerant applications, the algorithm can compute the solution while totally ignoring
the contributions of failed processes. In ABFT applications, a recovery phase is necessary, but
failure damaged data can be reconstructed only by applying mathematical operations on the
remaining dataset [12]. A recoverable dataset is usually created by initially computing redundant
data, dispatched so as to avoid unrecoverable loss of information from failures. At each iteration,
the algorithm applies the necessary mathematical transformations to update the redundant data
(at the expense of more communication and computation). Despite great scalability and low
overhead [3, 13], the adoption of such algorithms has been hindered by the requirement that
the support environment must continue to consistently deliver communications, even after being
crippled by failures.

The current MPI Standard (MPI-3.0, [4]) does not provide significant help to deal with the
required type of behavior. Section 2.8 states in the first paragraph: “MPI does not provide
mechanisms for dealing with failures in the communication system. [. . . ] Whenever possible, such
failures will be reflected as errors in the relevant communication call. Similarly, MPI itself provides
no mechanisms for handling processor failures.” Failures, be they due to a broken link or a dead
process, are considered resource errors. Later, in the same section: “This document does not specify
the state of a computation after an erroneous MPI call has occurred. The desired behavior is
that a relevant error code be returned, and the effect of the error be localized to the greatest
possible extent.” So, for the current standard, process or communication failures are to be handled
as errors, and the behavior of the MPI application after an error has been returned is left unspecified
by the standard. However, the standard does not prevent implementations from going beyond its
requirements, and on the contrary, encourages high-quality implementations to return errors once a
failure is detected. Unfortunately, most of the implementations of the MPI Standard have taken the
path of considering process failures as unrecoverable errors, and the processes of the application are
most often killed by the runtime system when a failure hits any of them, leaving no opportunity for
the user to mitigate the impact of failures.

In the past, some efforts have been undertaken to enable ABFT support in MPI. FT-MPI [14]
was an MPI-1 implementation which proposed changes to the MPI semantics to enable repairing
communicators, thus re-enabling communications for applications damaged by failures. This
approach has proven successful and applications have been implemented using FT-MPI. However,
these modifications were not adopted by the MPI standardization body, and the resulting lack of
portability undermined user adoption for this fault tolerant solution.

During the process that recently resulted in the MPI-3 Standard, a specific working group was
assembled to investigate the issues of Fault Tolerance support in MPI. Some of the early results
are outlined in the following publication [15]. Late in the process, promising results had been
demonstrated toward effective support of process failures and continued MPI operations with
acceptable overhead [16]. However, these propositions were in too early a state to meet the calendar
requirements of MPI-3 and their adoption (and according availability in production systems) is, at
best, postponed to the restart of the MPI Forum toward the next version of the MPI standard.

In [17], the authors discuss alternative or slightly modified interpretations of the MPI Standard
that enable some forms of fault tolerance. One core idea is that process failures happening in another
MPI world, connected only through an inter-communicator, should not prevent the continuation of
normal operations. The complexity of this approach, for both the implementation and users, has
prevented these ideas from having a practical impact.

In the CoF approach, the only requirement from the MPI implementation is that it does not
forcibly kill the living processes without returning control. No stronger support from the MPI stack
is required, and the state of the library is left undefined. This simplicity has enabled us to actually
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implement our proposition, and then experimentally support and evaluate a real ABFT application.
Similarly, little effort would be required to extend MPICH-2 to support CoF (see Section 7 of the
Readme§).

3. ENABLING ALGORITHM-BASED FAULT TOLERANCE IN MPI

3.1. The Checkpoint-on-Failure Protocol

In this paper, we advocate that an extremely efficient form of fault tolerance can be implemented,
strictly based on the MPI Standard, for applications capable of taking advantage of forward recovery.
ABFT methods are an example of forward recovery algorithms, capable of restoring missing
data from redundant information located on other processes. This forward recovery step requires
communication between processes, and we acknowledge that, in light of the current standard,
requiring the MPI implementation to maintain service after failures is too demanding. However,
a high-quality MPI library should at least allow the application to regain control following a process
failure. We note that this control gives the application the opportunity to save its state and exit
gracefully, rather than the usual behavior of being aborted by the MPI implementation.

Algorithm 1 The Checkpoint-on-Failure Protocol

1. MPI returns an error on surviving processes

2. Surviving processes checkpoint

3. Surviving processes exit

4. A new MPI application is started

5. Processes load from checkpoint (if any)

6. Processes enter ABFT dataset recovery

7. Application resumes

?

ABFT
Recovery

1

2
3

4

5 6
7

Based on these observations, we propose a new approach for supporting ABFT applications,
called Checkpoint-on-Failure (CoF). Algorithm 1 presents the steps involved in the CoF method.
In the associated explanatory figure, horizontal lines represent the execution of processes in two
successive MPI applications. When a failure eliminates a process, other processes are notified
and regain control from ongoing MPI calls (1). Surviving processes assume the MPI library is
dysfunctional and do not call further MPI operations (in particular, they do not yet undergo ABFT
recovery). Instead, they checkpoint their current state independently and abort (2, 3). When all
processes exited, the job is usually terminated, but the user (or a managing script, batch scheduler,
runtime support system, etc.) can launch a new MPI application (4), which reloads processes from
checkpoint (5). In the new application, the MPI library is functional and communications possible;
the ABFT recovery procedure is called to restore the data of the process(es) that could not be
restarted from checkpoint (6). When the global state has been repaired by the ABFT procedure,
the application is ready to resume normal execution.

Compared to periodic checkpointing, in CoF, a process pays the cost of creating a checkpoint
only when a failure, or multiple simultaneous failures have happened, hence an optimal number of
checkpoints during the run (and no checkpoint overhead on failure-free executions). Moreover, in
periodic checkpointing, a process is protected only when its checkpoint is stored on safe, remote
storage, while in CoF, local checkpoints are sufficient: the forward recovery algorithm reconstructs
datasets of processes which cannot restart from checkpoint. Of course, CoF also exhibits the same
overhead as the standard ABFT approach: the application might need to do extra computation,
even in the absence of failures, to maintain internal redundancy (whose degree varies with the
maximum number of simultaneous failures) used to recover data damaged by failures. However,

§http://www.mpich.org/documentation/guides/files/mpich2-1.5-README.txt
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ABFT techniques often demonstrate excellent scalability; for example, the overhead on failure-free
execution of the ABFT QR operation (used as an example in Section 4) is inversely proportional to
the number of processes [13].

3.2. MPI Requirements for Checkpoint-on-Failure

Returning Control over Failures: In most MPI implementations, MPI ERRORS ABORT is the
default (and often, only functional) error handler. However, the MPI Standard also defines the
MPI ERRORS RETURN handler. To support CoF, the MPI library should never deadlock because
of failures, but invoke the error handler, at least on processes doing direct communications with the
failed process. The handler takes care of cleaning up at the library level and returns control to the
application.

Termination After Checkpoint: A process that detects a failure ceases to use MPI. It only
checkpoints on some storage and exits without calling MPI Finalize. Exiting without calling
MPI Finalize is an error from the MPI perspective, hence the failure cascades and MPI eventually
returns with a failure notification on every process, which triggers their own checkpoint procedure
and termination.

3.3. Open MPI Implementation

Open MPI is an MPI 2.2 implementation architected such that it contains two main levels, the
runtime (ORTE) and the MPI library (OMPI). As with most MPI library implementations, the
default behavior of Open MPI is to abort after a process failure. This policy was implemented in
the runtime system, preventing any kind of decision from the MPI layer or the user-level. The major
change requested by the CoF protocol was to make the runtime system resilient, and leave the
decision in case of failure to the MPI library policy, and ultimately to the user application.

Failure Resilient Runtime: The ORTE runtime layer provides an out-of-band communication
mechanism (OOB) that relays messages based on a routing policy. Node failures not only impact
the MPI communications, but also disrupt routing at the OOB level. The default routing policy in the
Open MPI runtime has been amended to allow for self-healing behaviors; this effort is not entirely
necessary, but it avoids the significant downtime imposed by a complete redeployment of the parallel
job with resubmission in queues. The underlying OOB topology is automatically updated to route
around failed processes. In some routing topologies, such as a star, this is a trivial operation and only
requires excluding the failed process from the routing tables. For more elaborate topologies, such
as a binomial tree, the healing operation involves computing the closest neighbors in the direction
of the failed process and reconnecting the topology through them. The repaired topology is not
rebalanced, resulting in degraded performance but complete functionality after failures. Although
in-flight messages that were currently “hopping” through the failed processes are lost, other in-flight
messages are safely routed on the repaired topology. Thanks to self-healing topologies, the runtime
remains responsive, even when MPI processes leave.

Failure Notification: The runtime has been augmented with a failure detection service. To track
the status of the failures, an incarnation number has been included in the process names. Following
a failure, the name of the failed process (including the incarnation number) is broadcasted over the
OOB topology. By including this incarnation number, we can identify transient process failures,
prevent duplicate detections, and track message status. ORTE processes monitor the health of their
neighbors in the OOB routing topology. Detection of other processes rely on a failure resilient
broadcast that overlays on the OOB topology. This algorithm has a low probability of creating
a bi-partition of the routing topology, hence ensuring a high accuracy of the failure detector.
However, the underlying OOB routing algorithm has a significant influence on failure detection and
propagation time, as the experiments will show. On each node, the ORTE runtime layer forwards
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failure notifications to the MPI layer, which has been modified to invoke the appropriate MPI error
handler.

4. EXAMPLE: THE QR FACTORIZATION

In this section, we propose to illustrate the applicability of CoF by considering a representative
routine of a widely used class of algorithms: dense linear factorizations. The QR factorization is a
cornerstone building block in many applications, including solving Ax = b when matrices are ill-
conditioned, computing eigenvalues, least square problems, or solving sparse systems through the
GMRES iterative method. For an M ⇥N matrix A, the QR factorization produces Q and R, such
that A = QR and Q is an M ⇥M orthogonal matrix and R is an M ⇥N upper triangular matrix.
The most commonly used implementation of the QR algorithm on a distributed memory machine
comes from the ScaLAPACK linear algebra library [18], based on the block QR algorithm. It uses
a 2D block-cyclic distribution for load balance, and is rich in level 3 BLAS operations, thereby
achieving high performance.

4.1. ABFT QR Factorization

In the context of FT-MPI, the ScaLAPACK QR algorithm has been rendered fault tolerant through
an ABFT method in previous works [13]. This ABFT algorithm protects both the left (Q) and right
(R) factors from fail-stop failures at any time during the execution. At the time of failure, every
surviving process is notified by FT-MPI. FT-MPI then spawns a replacement process that takes the
same grid coordinates in the P ⇥Q block-cyclic distribution. Missing checksums are recovered
from duplicates, a reduction collective communication recovers missing data blocks in the right
factor from checksums. The left factor is protected by the Q-parallel panel checksum, it is either
directly recovered from checksum, or by recomputing the panels in the current Q-wide section
(see [13]). Although this algorithm is fault tolerant, it requires continued service from the MPI
library after failures – which is a stringent requirement that can be waived with CoF.

4.2. Checkpoint-on-Failure QR

Checkpoint Procedure: Compared to a regular ABFT algorithm, CoF requires a different
checkpoint procedure. System-level checkpointing is not applicable, as it would result in restoring
the state of the broken MPI library upon restart. Instead, a custom MPI error handler invokes
an algorithm specific checkpoint procedure, which simply dumps the matrices and the value of
important loop indices into a file.

State Restoration: A ScaLAPACK program has a deep call stack, layering functions from
multiple software packages, such as PBLAS, BLACS, LAPACK and BLAS. In the FT-MPI version
of the algorithm, regardless of when the failure is detected, the current iteration of the algorithm
must be completed before entering the recovery procedure. This ensures an identical call stack
on every process and a complete update of the checksums. In the case of the CoF protocol,
failures interrupt the algorithm immediately, the current iteration cannot be completed due to lack
of communication capabilities. This results in potentially diverging call stacks and incomplete
updates of checksums. However, because failure notification happens only in MPI, lower level,
local procedures (BLAS, LAPACK) are never interrupted.

To resolve the call stack issue, every process restarted from checkpoint undergoes a “dry run”
phase. This operation mimics the loop nests of the QR algorithm down to the PBLAS level, without
actually applying modifications to or exchanging data. When the same loop indices as before the
failure are reached, the matrix content is loaded from the checkpoint; the state is then similar to that
of the FT-MPI based ABFT QR after a failure. The regular recovery procedure can be applied: the
current iteration of the factorization is completed to update all checksums and the dataset is rebuilt
using the ABFT reduction.
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Figure 1. SciDB / CoF ABFT ScaLAPACK Integration

5. APPLICATION OF THE COF PROTOCOL TO A BROADER APPLICATION HORIZON

The CoF protocol circumvents one of the major limitations of current MPI implementations: the
lack of confidence that the MPI library is capable of successfully completing communications once
a failure happened. As illustrated above, algorithms based on the class of naturally fault tolerant
algorithms are capable of taking advantage of this technique and provide efficient fault tolerance
support. In this section, we explain how the CoF protocol can be efficiently integrated with other
kinds of algorithms and applications, increasing the scope of such methods. We will illustrate the
approach with a fault-tolerant database management system, SciDB.

Fault tolerant database management exposes a set of requirements that is best addressed today
using replication and transactional operations. SciDB [19] combines database operations and many
scientific specific operations (including linear algebra routines) to create a highly expressive request
query language suitable for scientists to solve their data analysis problems. The SciDB system
is not implemented on top of MPI for its communication, mainly because of the lack of fault
tolerance capabilities from the MPI Standard. It makes use, however, of the MPI implementation
of the distributed linear algebra operations in ScaLAPACK, to provide, among other things, various
factorization routines. Because most MPI implementations are not usable after a process failure,
and high availability is a necessity in database management systems, the SciDB implementation
cannot integrate the MPI library in its main process. As a result, its linear algebra operations are
implemented as separate processes: a query coordinator will order the distributed database managers
to locate the data on which the factorization operation must be applied and to expose this data in
the expected ScaLAPACK layout using one shared memory segment per node; it will then launch a
ScaLAPACK/MPI application that will attach to this memory segment and apply the operation on it.
If a failure hits a node, the MPI application will abort, and the mpirun child process reports the error
to the data query coordinator. The original data is recovered from the database management system
(using database-specific fault tolerant techniques), and the linear algebra operation relaunches from
scratch on the original data.

This approach can be improved using the CoF protocol and an ABFT implementation of the
factorization operation. The idea is described in Figure 1. The same general approach to combine
SciDB and ScaLAPACK is used; however, the DB managers will compute the initial checksum of
the original data, and expose both the data and checksum to the ABFT-ScaLAPACK process. The
ABFT operation is applied, and if no failure happened, the result of the factorization is accessible
in the shared memory segments as it was before (the checksum data can then be discarded by the
DB managers). If a failure occurs, the MPI process updates the shared memory segments with the
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meta information of the checkpoint (values of the loop counters, etc...); the current statuses of the
shared memory segments represent the rest of the checkpoints that were done in the normal CoF
protocol. Then, the MPI processes quit and the mpirun child process reports the error to the database
coordinator. Instead of fixing the data issue at the DB level, the coordinator relaunches a new ABFT-
ScaLAPACK operation on the same set of nodes plus a spare node with an empty shared memory
segment, and it lets the ABFT algorithm recover the data and continue the original operation. Once
this is successfully completed, the mpirun child process reports success to the database coordinator
whic will find the data in the shared memory segments of the living nodes and can then discard the
checksum data.

This approach has two advantages compared to the original and the checkpoint-based CoF
approaches:

• First, in the case of a failure, instead of restarting from scratch, the factorization incurs only
the small recovery overhead of ABFT, ensuring a faster time-to-solution for the linear algebra
operation. In exchange, a small overhead, for creating and maintaining the checksum data
during the operation, is imposed on the failure-free case.

• Second, this approach removes the cost of writing the checkpoint to a file: the shared memory
segment that survives the exit of the MPI processes where the node was not subject to a failure
and the checksum information maintained by the ABFT algorithm are sufficient to recover the
missing data. The segment of memory on which the operation is computed is made remanent,
creating the bulk of the checkpoint data and reducing to an insignificant value the cost of
checkpointing when a failure occurs. This will be demonstrated in the experimental section,
below.

6. PERFORMANCE DISCUSSION

In this section, we use our Open MPI and ABFT QR implementations to evaluate the performance
of the CoF protocol. We use two test platforms. The first machine, “Dancer”, is a 16-node cluster.
All nodes are equipped with two 2.27GHz quad-core Intel E5520 CPUs with a 20GB/s Infiniband
interconnect. Solid State Drive (SSD) disks are used as the checkpoint storage media. The second
system is the “Kraken” supercomputer. Kraken is a Cray XT5 machine with 9,408 compute nodes.
Each node has two Istanbul 2.6 GHz six-core AMD Opteron processors, 16 GB of memory, and
is connected to other nodes through the SeaStar2+ interconnect. The scalable cluster file system
“Lustre” is used to store checkpoints.

6.1. MPI Library Overhead

One of the concerns when evaluating the performance of fault tolerance techniques is the amount
of overhead introduced by the fault tolerance management additions. Our implementation of
fault detection and notification is mostly implemented in the non-critical ORTE runtime. Typical
HPC systems feature a separated service network (usually Ethernet based) and a performance
interconnect, hence health monitoring traffic, which happens on the OOB service network, is
physically separated from the MPI communications, leaving no opportunity for network jitter.
Changes to MPI functions are minimal: the same condition that used to trigger unconditional abort
has been repurposed to trigger error handlers. As expected, no impact on MPI bandwidth or latency
was measured. The memory usage of the MPI library is slightly increased, as the incarnation number
doubles the size of process names; however, this is negligible in typical deployments.

6.2. Failure Detection

According to the requirement specified in Section 3.2, only in-band failure detection is required to
enable CoF. Processes detecting a failure checkpoint then exit, cascading the failure to processes
communicating with them. However, no recovery action (in particular checkpointing) can take place
before a failure has been notified. Thanks to asynchronous failure propagation in the runtime,
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responsiveness can be greatly improved, with a high probability for the next MPI call to detect
the failures, regardless of communication pattern or checkpoint duration.
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Figure 2. Failure detection time, sorted by process rank, depending on the OOB overlay network used for
failure propagation.

We designed a micro-benchmark to measure failure detection time as experienced by MPI
processes. The benchmark code synchronizes with an MPI_BARRIER, stores the reference date,
injects a failure at a specific rank, and enters a ring algorithm until the MPI error handler stores
the detection date. The OOB routing topology used by the ORTE runtime introduces a non-uniform
distance to the failed process, hence failure detection time experienced by a process may vary with
the position of the failed process in the topology, and the OOB topology. Figure 2(a) and 2(b)
present the case of the linear and binomial OOB topologies, respectively. The curves “Low, Middle,
High” present the behavior for failures happening at different positions in the OOB topology. On
the horizontal axis is the rank of the detecting process, on the vertical axis is the detection time it
experienced. The experiment uses 16 nodes, with one process per node, MPI over Infiniband, OOB
over Ethernet, an average of 20 runs, and the MPI barrier latency is four orders of magnitude lower
than measured values.

In the linear topology (Figure 2(a)) every runtime process is connected to the mpirun process.
For a higher rank, failure detection time increases linearly because it is notified by the mpirun
process only after the notification has been sent to all lower ranks. This issue is bound to increase
with scale. The binomial tree topology (Figure 2(b)) exhibits a similar best failure detection time.
However, this more scalable topology has a low output degree and eliminates most contentions on
outgoing messages, resulting in a more stable, lower average detection time, regardless of the failure
position. Overall, failure detection time is on the order of milliseconds, a much smaller figure than
typical checkpoint time.

6.3. Checkpoint-on-Failure QR Performance

Supercomputer Performance: Figure 3 presents the performance on the Kraken supercomputer.
The process grid is 24⇥ 24 and the block size is 100. ABFT-QR (no failure) presents the
performance of the CoF QR implementation, in a fault-free execution; it is noteworthy, that when
there are no failures, the performance is exactly identical to the performance of the unmodified
ABFT-QR implementation. The ABFT-QR (with CoF recovery, latter called CoF-QR for brevity)
curves present the performance when a failure is injected after the first step of the PDLARFB kernel.
The performance of the non-fault tolerant ScaLAPACK QR is also presented for reference.
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Figure 3. ABFT QR and one CoF recovery on Kraken (Lustre).

Without failures, the performance overhead compared to the regular ScaLAPACK is caused
by the extra computation to maintain the checksums inherent to the ABFT algorithm [13]; this
extra computation is unchanged when applying the CoF method to the ABFT-QR. Only on runs
where failures occur does the CoF protocol undergoe the supplementary overhead of storing and
reloading checkpoints. However, the performance of CoF-QR remains very close to the no-failure
case. For instance, at matrix size N=100,000, CoF-QR still achieves 2.86 Tflop/s after recovering
from a failure, which is 90% of the performance of the non-fault tolerant ScaLAPACK QR. This
demonstrates that the CoF protocol enables efficient, practical recovery schemes on supercomputers.
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Figure 4. ABFT QR and one CoF recovery on Dancer (local SSD).

Impact of Local Checkpoint Storage: Figure 4(a) presents the performance of the CoF-QR
implementation on the Dancer cluster with a 8⇥ 16 process grid. Although a smaller test platform,
the Dancer cluster features local storage on nodes and a variety of performance analysis tools
unavailable on Kraken. As expected (see [13]), the ABFT method has a higher relative cost on
this smaller machine (with a smaller number of processors and a smaller problem size, the cost
in supplementary operations to update checksums is relatively larger). Compared to the Kraken
platform, the relative cost of CoF failure recovery is smaller on Dancer. The CoF protocol incurs
disk accesses to store and load checkpoints when a failure hits, hence the recovery overhead
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depends on I/O performance. By breaking down the relative cost of each recovery step in CoF,
Figure 4(b) shows that checkpoint saving and loading only takes a small percentage of the total
run-time, thanks to the availability of solid state disks on every node. Since checkpoint reloading
immediately follows checkpointing, the OS cache satisfies most disk accesses, resulting in high
I/O performance. For matrices larger than N=44,000, the memory usage on each node is high and
decrease the available space for disk cache, explaining the decline in I/O performance and the higher
cost of checkpoint management. Overall, the presence of fast local storage can be leveraged by the
CoF protocol to speedup recovery (unlike periodic checkpointing, which depends on remote storage
by construction). Nonetheless, as demonstrated by the efficiency on Kraken, while this is a valuable
optimization, it is not a mandatory requirement for satisfactory performance.
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Figure 5. ABFT QR and one recovery on Kraken: comparing CoF and SM-CoF overheads.

Checkpoint-on-Failure, without the Checkpoints: An interesting optimization to CoF is to
avoid the checkpointing cost by using the SM-CoF approach described in Section 5. In this
paragraph, we present the performance of the QR factorization, when applied by a fragile helper
MPI application, onto a dataset exported through a shared memory segment from a resilient, non-
MPI application. Figure 5 compares the overhead incurred by introducing a failure with checkpoint-
based CoF recovery versus a shared-memory-CoF recovery where a master application maintains
the dataset resident in memory.

The cost of the ABFT recovery is unchanged by the use of SM-CoF; the obvious consequence is
that, for very small matrix sizes, when the relative cost of ABFT checksum inversion represents a
large portion of the overall compute time, the difference between the shared-memory optimization
and the checkpoint based CoF is small. A similar result is observed for very large matrices: for
a matrix of size N , checkpointing time is O(N2) while compute time is O(N3), thus the cost
of storing and reloading checkpoints is dwarfed by the total execution time of the application
and achieve similar asymptotic performance. For intermediate matrix sizes, however, the cost of
checkpointing represents a significant share of the overhead experienced by the application during
the recovery procedure. In that case, which is the most relevant in production deployments, the
SM-CoF optimization successfully suppresses the checkpoint overhead and performs similarly to
ABFT-QR on a fully fault tolerant MPI implementation, although at the expense of more complexity
in the application code.

7. CONCLUDING REMARKS

In this paper, we presented an original scheme to enable forward recovery using only features of the
current MPI Standard. Rollback recovery, which relies on periodic checkpointing, has a variety of
issues. The ideal period between checkpoints, a critical parameter, is particularly hard to assess. Too
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short a period wastes time and resources on unnecessary Input/Output. Overestimating the period
results in dramatically increasing the lost computation when returning to the distant last successful
checkpoint. Although Checkpoint-on-Failure involves checkpointing, it takes checkpoint images at
optimal times by design: only after a failure has been detected. This small modification enables
the deployment of ABFT techniques, without requiring a complex, unlikely to be available MPI
implementation that itself survives failures. The MPI library needs only to provide the feature set of
a high quality implementation of the MPI Standard: the MPI communications may be dysfunctional
after a failure, but the library must return control to the application instead of aborting brutally.

We demonstrated, by providing such an implementation in Open MPI, that this feature set can
be easily integrated without noticeable impact on communication performance. We then converted
an existing ABFT QR algorithm to the CoF protocol. Beyond this example, the CoF protocol is
applicable on a large range of applications that already feature an ABFT version (LLT, LU [20],
CG [21], etc.). Many master-slave and iterative methods enjoy an extremely inexpensive forward
recovery strategy where the damaged domains are simply discarded, and therefore can also benefit
from the CoF protocol.

The performance on the Kraken supercomputer reaches 90% of the non-fault tolerant algorithm,
even when including the cost of recovering from a failure (a figure similar to regular, non-compliant
MPI ABFT). In addition, on a platform featuring node local storage, the CoF protocol can leverage
low overhead checkpoints (unlike rollback recovery that requires remote storage). To the extreme,
the cost of checkpointing can be completely avoided when the application uses a master process to
actively retain the dataset in memory during the MPI restart.

The MPI standardization body, the MPI Forum, is currently considering the addition of new MPI
constructs, functions and semantics to support fault-tolerant applications¶. While these additions
may decrease the cost of recovery, they are likely to increase the failure-free overhead on fault
tolerant application performance. It is therefore paramount to compare the cost of the CoF protocol
with prospective candidates to standardization on a wide, realistic range of applications, especially
those that feature a low computational intensity.

¶https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/FaultToleranceWikiPage
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